brainstate 0.1.7__py2.py3-none-any.whl → 0.1.9__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -146
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +509 -470
  58. brainstate/nn/_delay_test.py +238 -0
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1361
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1120
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -208
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/METADATA +91 -99
  127. brainstate-0.1.9.dist-info/RECORD +130 -0
  128. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.7.dist-info/RECORD +0 -131
  133. {brainstate-0.1.7.dist-info → brainstate-0.1.9.dist-info}/top_level.txt +0 -0
brainstate/nn/metrics.py CHANGED
@@ -1,388 +1,388 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import typing as tp
18
- from dataclasses import dataclass
19
- from functools import partial
20
-
21
- import jax
22
- import jax.numpy as jnp
23
- import numpy as np
24
-
25
- from brainstate._state import State
26
-
27
- __all__ = [
28
- 'Average',
29
- 'Statistics',
30
- 'Welford',
31
- 'Accuracy',
32
- 'MultiMetric',
33
- ]
34
-
35
-
36
- class MetricState(State):
37
- """Wrapper class for Metric Variables."""
38
- pass
39
-
40
-
41
- class Metric(object):
42
- """Base class for metrics. Any class that subclasses ``Metric`` should
43
- implement a ``compute``, ``reset`` and ``update`` method."""
44
-
45
- def reset(self) -> None:
46
- """In-place reset the ``Metric``."""
47
- raise NotImplementedError('Must override `reset()` method.')
48
-
49
- def update(self, **kwargs) -> None:
50
- """In-place update the ``Metric``."""
51
- raise NotImplementedError('Must override `update()` method.')
52
-
53
- def compute(self):
54
- """Compute and return the value of the ``Metric``."""
55
- raise NotImplementedError('Must override `compute()` method.')
56
-
57
-
58
- class Average(Metric):
59
- """Average metric.
60
-
61
- Example usage::
62
-
63
- >>> import jax.numpy as jnp
64
- >>> import brainstate as brainstate
65
-
66
- >>> batch_loss = jnp.array([1, 2, 3, 4])
67
- >>> batch_loss2 = jnp.array([3, 2, 1, 0])
68
-
69
- >>> metrics = brainstate.nn.metrics.Average()
70
- >>> metrics.compute()
71
- Array(nan, dtype=float32)
72
- >>> metrics.update(values=batch_loss)
73
- >>> metrics.compute()
74
- Array(2.5, dtype=float32)
75
- >>> metrics.update(values=batch_loss2)
76
- >>> metrics.compute()
77
- Array(2., dtype=float32)
78
- >>> metrics.reset()
79
- >>> metrics.compute()
80
- Array(nan, dtype=float32)
81
- """
82
-
83
- def __init__(self, argname: str = 'values'):
84
- """Pass in a string denoting the key-word argument that :func:`update` will use to derive the new value.
85
- For example, constructing the metric as ``avg = Average('test')`` would allow you to make updates with
86
- ``avg.update(test=new_value)``.
87
-
88
- Args:
89
- argname: an optional string denoting the key-word argument that
90
- :func:`update` will use to derive the new value. Defaults to
91
- ``'values'``.
92
- """
93
- self.argname = argname
94
- self.total = MetricState(jnp.array(0, dtype=jnp.float32))
95
- self.count = MetricState(jnp.array(0, dtype=jnp.int32))
96
-
97
- def reset(self) -> None:
98
- """Reset this ``Metric``."""
99
- self.total.value = jnp.array(0, dtype=jnp.float32)
100
- self.count.value = jnp.array(0, dtype=jnp.int32)
101
-
102
- def update(self, **kwargs) -> None:
103
- """In-place update this ``Metric``. This method will use the value from
104
- ``kwargs[self.argname]`` to update the metric, where ``self.argname`` is
105
- defined on construction.
106
-
107
- Args:
108
- **kwargs: the key-word arguments that contains a ``self.argname``
109
- entry that maps to the value we want to use to update this metric.
110
- """
111
- if self.argname not in kwargs:
112
- raise TypeError(f"Expected keyword argument '{self.argname}'")
113
- values: tp.Union[int, float, jax.Array] = kwargs[self.argname]
114
- self.total.value += (
115
- values if isinstance(values, (int, float)) else values.sum()
116
- )
117
- self.count.value += 1 if isinstance(values, (int, float)) else values.size
118
-
119
- def compute(self) -> jax.Array:
120
- """Compute and return the average."""
121
- return self.total.value / self.count.value
122
-
123
-
124
- @partial(jax.tree_util.register_dataclass,
125
- data_fields=['mean', 'standard_error_of_mean', 'standard_deviation'],
126
- meta_fields=[])
127
- @dataclass
128
- class Statistics:
129
- mean: jnp.float32
130
- standard_error_of_mean: jnp.float32
131
- standard_deviation: jnp.float32
132
-
133
-
134
- class Welford(Metric):
135
- """Uses Welford's algorithm to compute the mean and variance of a stream of data.
136
-
137
- Example usage::
138
-
139
- >>> import jax.numpy as jnp
140
- >>> from brainstate import nn
141
-
142
- >>> batch_loss = jnp.array([1, 2, 3, 4])
143
- >>> batch_loss2 = jnp.array([3, 2, 1, 0])
144
-
145
- >>> metrics = nn.metrics.Welford()
146
- >>> metrics.compute()
147
- Statistics(mean=Array(0., dtype=float32), standard_error_of_mean=Array(nan, dtype=float32), standard_deviation=Array(nan, dtype=float32))
148
- >>> metrics.update(values=batch_loss)
149
- >>> metrics.compute()
150
- Statistics(mean=Array(2.5, dtype=float32), standard_error_of_mean=Array(0.559017, dtype=float32), standard_deviation=Array(1.118034, dtype=float32))
151
- >>> metrics.update(values=batch_loss2)
152
- >>> metrics.compute()
153
- Statistics(mean=Array(2., dtype=float32), standard_error_of_mean=Array(0.43301272, dtype=float32), standard_deviation=Array(1.2247449, dtype=float32))
154
- >>> metrics.reset()
155
- >>> metrics.compute()
156
- Statistics(mean=Array(0., dtype=float32), standard_error_of_mean=Array(nan, dtype=float32), standard_deviation=Array(nan, dtype=float32))
157
- """
158
-
159
- def __init__(self, argname: str = 'values'):
160
- """Pass in a string denoting the key-word argument that :func:`update` will use to derive the new value.
161
- For example, constructing the metric as ``wf = Welford('test')`` would allow you to make updates with
162
- ``wf.update(test=new_value)``.
163
-
164
- Args:
165
- argname: an optional string denoting the key-word argument that
166
- :func:`update` will use to derive the new value. Defaults to
167
- ``'values'``.
168
- """
169
- self.argname = argname
170
- self.count = MetricState(jnp.array(0, dtype=jnp.int32))
171
- self.mean = MetricState(jnp.array(0, dtype=jnp.float32))
172
- self.m2 = MetricState(jnp.array(0, dtype=jnp.float32))
173
-
174
- def reset(self) -> None:
175
- """Reset this ``Metric``."""
176
- self.count.value = jnp.array(0, dtype=jnp.uint32)
177
- self.mean.value = jnp.array(0, dtype=jnp.float32)
178
- self.m2.value = jnp.array(0, dtype=jnp.float32)
179
-
180
- def update(self, **kwargs) -> None:
181
- """In-place update this ``Metric``. This method will use the value from
182
- ``kwargs[self.argname]`` to update the metric, where ``self.argname`` is
183
- defined on construction.
184
-
185
- Args:
186
- **kwargs: the key-word arguments that contains a ``self.argname``
187
- entry that maps to the value we want to use to update this metric.
188
- """
189
- if self.argname not in kwargs:
190
- raise TypeError(f"Expected keyword argument '{self.argname}'")
191
- values: tp.Union[int, float, jax.Array] = kwargs[self.argname]
192
- count = 1 if isinstance(values, (int, float)) else values.size
193
- original_count = self.count.value
194
- self.count.value += count
195
- delta = (
196
- values if isinstance(values, (int, float)) else values.mean()
197
- ) - self.mean.value
198
- self.mean.value += delta * count / self.count.value
199
- m2 = 0.0 if isinstance(values, (int, float)) else values.var() * count
200
- self.m2.value += (
201
- m2 + delta * delta * count * original_count / self.count
202
- )
203
-
204
- def compute(self) -> Statistics:
205
- """Compute and return the mean and variance statistics in a
206
- ``Statistics`` dataclass object.
207
- """
208
- variance = self.m2.value / self.count.value
209
- standard_deviation = variance ** 0.5
210
- sem = standard_deviation / (self.count.value ** 0.5)
211
- return Statistics(
212
- mean=self.mean.value,
213
- standard_error_of_mean=sem,
214
- standard_deviation=standard_deviation,
215
- )
216
-
217
-
218
- class Accuracy(Average):
219
- """Accuracy metric. This metric subclasses :class:`Average`,
220
- and so they share the same ``reset`` and ``compute`` method
221
- implementations. Unlike :class:`Average`, no string needs to
222
- be passed to ``Accuracy`` during construction.
223
-
224
- Example usage::
225
-
226
- >>> import brainstate as brainstate
227
- >>> import jax, jax.numpy as jnp
228
-
229
- >>> logits = jax.random.normal(jax.random.key(0), (5, 2))
230
- >>> labels = jnp.array([1, 1, 0, 1, 0])
231
- >>> logits2 = jax.random.normal(jax.random.key(1), (5, 2))
232
- >>> labels2 = jnp.array([0, 1, 1, 1, 1])
233
-
234
- >>> metrics = brainstate.nn.metrics.Accuracy()
235
- >>> metrics.compute()
236
- Array(nan, dtype=float32)
237
- >>> metrics.update(logits=logits, labels=labels)
238
- >>> metrics.compute()
239
- Array(0.6, dtype=float32)
240
- >>> metrics.update(logits=logits2, labels=labels2)
241
- >>> metrics.compute()
242
- Array(0.7, dtype=float32)
243
- >>> metrics.reset()
244
- >>> metrics.compute()
245
- Array(nan, dtype=float32)
246
- """
247
-
248
- def update(self, *, logits: jax.Array, labels: jax.Array, **_) -> None: # type: ignore[override]
249
- """In-place update this ``Metric``.
250
-
251
- Args:
252
- logits: the outputted predicted activations. These values are
253
- argmax-ed (on the trailing dimension), before comparing them
254
- to the labels.
255
- labels: the ground truth integer labels.
256
- """
257
- if logits.ndim != labels.ndim + 1:
258
- raise ValueError(
259
- f'Expected logits.ndim==labels.ndim+1, got {logits.ndim} and {labels.ndim}'
260
- )
261
- elif labels.dtype in (jnp.int64, np.int32, np.int64):
262
- labels = jnp.astype(labels, jnp.int32)
263
- elif labels.dtype != jnp.int32:
264
- raise ValueError(f'Expected labels.dtype==jnp.int32, got {labels.dtype}')
265
-
266
- super().update(values=(logits.argmax(axis=-1) == labels))
267
-
268
-
269
- class MultiMetric(Metric):
270
- """MultiMetric class to store multiple metrics and update them in a single call.
271
-
272
- Example usage::
273
-
274
- >>> from brainstate import nn
275
- >>> import jax, jax.numpy as jnp
276
-
277
- >>> metrics = nn.metrics.MultiMetric(
278
- ... accuracy=nn.metrics.Accuracy(),
279
- ... loss=nn.metrics.Average(),
280
- ... )
281
-
282
- >>> metrics
283
- MultiMetric(
284
- accuracy=Accuracy(
285
- argname='values',
286
- total=MetricState(
287
- value=Array(0., dtype=float32)
288
- ),
289
- count=MetricState(
290
- value=Array(0, dtype=int32)
291
- )
292
- ),
293
- loss=Average(
294
- argname='values',
295
- total=MetricState(
296
- value=Array(0., dtype=float32)
297
- ),
298
- count=MetricState(
299
- value=Array(0, dtype=int32)
300
- )
301
- )
302
- )
303
-
304
- >>> metrics.accuracy
305
- Accuracy(
306
- argname='values',
307
- total=MetricState(
308
- value=Array(0., dtype=float32)
309
- ),
310
- count=MetricState(
311
- value=Array(0, dtype=int32)
312
- )
313
- )
314
-
315
- >>> metrics.loss
316
- Average(
317
- argname='values',
318
- total=MetricState(
319
- value=Array(0., dtype=float32)
320
- ),
321
- count=MetricState(
322
- value=Array(0, dtype=int32)
323
- )
324
- )
325
-
326
- >>> logits = jax.random.normal(jax.random.key(0), (5, 2))
327
- >>> labels = jnp.array([1, 1, 0, 1, 0])
328
- >>> logits2 = jax.random.normal(jax.random.key(1), (5, 2))
329
- >>> labels2 = jnp.array([0, 1, 1, 1, 1])
330
-
331
- >>> batch_loss = jnp.array([1, 2, 3, 4])
332
- >>> batch_loss2 = jnp.array([3, 2, 1, 0])
333
-
334
- >>> metrics.compute()
335
- {'accuracy': Array(nan, dtype=float32), 'loss': Array(nan, dtype=float32)}
336
- >>> metrics.update(logits=logits, labels=labels, values=batch_loss)
337
- >>> metrics.compute()
338
- {'accuracy': Array(0.6, dtype=float32), 'loss': Array(2.5, dtype=float32)}
339
- >>> metrics.update(logits=logits2, labels=labels2, values=batch_loss2)
340
- >>> metrics.compute()
341
- {'accuracy': Array(0.7, dtype=float32), 'loss': Array(2., dtype=float32)}
342
- >>> metrics.reset()
343
- >>> metrics.compute()
344
- {'accuracy': Array(nan, dtype=float32), 'loss': Array(nan, dtype=float32)}
345
- """
346
-
347
- def __init__(self, **metrics):
348
- """Pass in key-word arguments to the constructor, e.g.
349
- ``MultiMetric(keyword1=Average(), keyword2=Accuracy(), ...)``.
350
-
351
- Args:
352
- **metrics: the key-word arguments that will be used to access
353
- the corresponding ``Metric``.
354
- """
355
- # TODO: raise error if a kwarg is passed that is in ('reset', 'update', 'compute'), since these names are reserved for methods
356
- self._metric_names = []
357
- for metric_name, metric in metrics.items():
358
- self._metric_names.append(metric_name)
359
- vars(self)[metric_name] = metric
360
-
361
- def reset(self) -> None:
362
- """Reset all underlying ``Metric``'s."""
363
- for metric_name in self._metric_names:
364
- getattr(self, metric_name).reset()
365
-
366
- def update(self, **updates) -> None:
367
- """In-place update all underlying ``Metric``'s in this ``MultiMetric``. All
368
- ``**updates`` will be passed to the ``update`` method of all underlying
369
- ``Metric``'s.
370
-
371
- Args:
372
- **updates: the key-word arguments that will be passed to the underlying ``Metric``'s
373
- ``update`` method.
374
- """
375
- # TODO: should we give the option of updating only some of the metrics and not all? e.g. if for some kwargs==None, don't do update
376
- # TODO: should we raise an error if a kwarg is passed into **updates that has no match with any underlying metric? e.g. user typo
377
- for metric_name in self._metric_names:
378
- getattr(self, metric_name).update(**updates)
379
-
380
- def compute(self) -> dict[str, Metric]:
381
- """Compute and return the value of all underlying ``Metric``'s. This method
382
- will return a dictionary, mapping strings (defined by the key-word arguments
383
- ``**metrics`` passed to the constructor) to the corresponding metric value.
384
- """
385
- return {
386
- f'{metric_name}': getattr(self, metric_name).compute()
387
- for metric_name in self._metric_names
388
- }
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import typing as tp
18
+ from dataclasses import dataclass
19
+ from functools import partial
20
+
21
+ import jax
22
+ import jax.numpy as jnp
23
+ import numpy as np
24
+
25
+ from brainstate._state import State
26
+
27
+ __all__ = [
28
+ 'Average',
29
+ 'Statistics',
30
+ 'Welford',
31
+ 'Accuracy',
32
+ 'MultiMetric',
33
+ ]
34
+
35
+
36
+ class MetricState(State):
37
+ """Wrapper class for Metric Variables."""
38
+ pass
39
+
40
+
41
+ class Metric(object):
42
+ """Base class for metrics. Any class that subclasses ``Metric`` should
43
+ implement a ``compute``, ``reset`` and ``update`` method."""
44
+
45
+ def reset(self) -> None:
46
+ """In-place reset the ``Metric``."""
47
+ raise NotImplementedError('Must override `reset()` method.')
48
+
49
+ def update(self, **kwargs) -> None:
50
+ """In-place update the ``Metric``."""
51
+ raise NotImplementedError('Must override `update()` method.')
52
+
53
+ def compute(self):
54
+ """Compute and return the value of the ``Metric``."""
55
+ raise NotImplementedError('Must override `compute()` method.')
56
+
57
+
58
+ class Average(Metric):
59
+ """Average metric.
60
+
61
+ Example usage::
62
+
63
+ >>> import jax.numpy as jnp
64
+ >>> import brainstate as brainstate
65
+
66
+ >>> batch_loss = jnp.array([1, 2, 3, 4])
67
+ >>> batch_loss2 = jnp.array([3, 2, 1, 0])
68
+
69
+ >>> metrics = brainstate.nn.metrics.Average()
70
+ >>> metrics.compute()
71
+ Array(nan, dtype=float32)
72
+ >>> metrics.update(values=batch_loss)
73
+ >>> metrics.compute()
74
+ Array(2.5, dtype=float32)
75
+ >>> metrics.update(values=batch_loss2)
76
+ >>> metrics.compute()
77
+ Array(2., dtype=float32)
78
+ >>> metrics.reset()
79
+ >>> metrics.compute()
80
+ Array(nan, dtype=float32)
81
+ """
82
+
83
+ def __init__(self, argname: str = 'values'):
84
+ """Pass in a string denoting the key-word argument that :func:`update` will use to derive the new value.
85
+ For example, constructing the metric as ``avg = Average('test')`` would allow you to make updates with
86
+ ``avg.update(test=new_value)``.
87
+
88
+ Args:
89
+ argname: an optional string denoting the key-word argument that
90
+ :func:`update` will use to derive the new value. Defaults to
91
+ ``'values'``.
92
+ """
93
+ self.argname = argname
94
+ self.total = MetricState(jnp.array(0, dtype=jnp.float32))
95
+ self.count = MetricState(jnp.array(0, dtype=jnp.int32))
96
+
97
+ def reset(self) -> None:
98
+ """Reset this ``Metric``."""
99
+ self.total.value = jnp.array(0, dtype=jnp.float32)
100
+ self.count.value = jnp.array(0, dtype=jnp.int32)
101
+
102
+ def update(self, **kwargs) -> None:
103
+ """In-place update this ``Metric``. This method will use the value from
104
+ ``kwargs[self.argname]`` to update the metric, where ``self.argname`` is
105
+ defined on construction.
106
+
107
+ Args:
108
+ **kwargs: the key-word arguments that contains a ``self.argname``
109
+ entry that maps to the value we want to use to update this metric.
110
+ """
111
+ if self.argname not in kwargs:
112
+ raise TypeError(f"Expected keyword argument '{self.argname}'")
113
+ values: tp.Union[int, float, jax.Array] = kwargs[self.argname]
114
+ self.total.value += (
115
+ values if isinstance(values, (int, float)) else values.sum()
116
+ )
117
+ self.count.value += 1 if isinstance(values, (int, float)) else values.size
118
+
119
+ def compute(self) -> jax.Array:
120
+ """Compute and return the average."""
121
+ return self.total.value / self.count.value
122
+
123
+
124
+ @partial(jax.tree_util.register_dataclass,
125
+ data_fields=['mean', 'standard_error_of_mean', 'standard_deviation'],
126
+ meta_fields=[])
127
+ @dataclass
128
+ class Statistics:
129
+ mean: jnp.float32
130
+ standard_error_of_mean: jnp.float32
131
+ standard_deviation: jnp.float32
132
+
133
+
134
+ class Welford(Metric):
135
+ """Uses Welford's algorithm to compute the mean and variance of a stream of data.
136
+
137
+ Example usage::
138
+
139
+ >>> import jax.numpy as jnp
140
+ >>> from brainstate import nn
141
+
142
+ >>> batch_loss = jnp.array([1, 2, 3, 4])
143
+ >>> batch_loss2 = jnp.array([3, 2, 1, 0])
144
+
145
+ >>> metrics = nn.metrics.Welford()
146
+ >>> metrics.compute()
147
+ Statistics(mean=Array(0., dtype=float32), standard_error_of_mean=Array(nan, dtype=float32), standard_deviation=Array(nan, dtype=float32))
148
+ >>> metrics.update(values=batch_loss)
149
+ >>> metrics.compute()
150
+ Statistics(mean=Array(2.5, dtype=float32), standard_error_of_mean=Array(0.559017, dtype=float32), standard_deviation=Array(1.118034, dtype=float32))
151
+ >>> metrics.update(values=batch_loss2)
152
+ >>> metrics.compute()
153
+ Statistics(mean=Array(2., dtype=float32), standard_error_of_mean=Array(0.43301272, dtype=float32), standard_deviation=Array(1.2247449, dtype=float32))
154
+ >>> metrics.reset()
155
+ >>> metrics.compute()
156
+ Statistics(mean=Array(0., dtype=float32), standard_error_of_mean=Array(nan, dtype=float32), standard_deviation=Array(nan, dtype=float32))
157
+ """
158
+
159
+ def __init__(self, argname: str = 'values'):
160
+ """Pass in a string denoting the key-word argument that :func:`update` will use to derive the new value.
161
+ For example, constructing the metric as ``wf = Welford('test')`` would allow you to make updates with
162
+ ``wf.update(test=new_value)``.
163
+
164
+ Args:
165
+ argname: an optional string denoting the key-word argument that
166
+ :func:`update` will use to derive the new value. Defaults to
167
+ ``'values'``.
168
+ """
169
+ self.argname = argname
170
+ self.count = MetricState(jnp.array(0, dtype=jnp.int32))
171
+ self.mean = MetricState(jnp.array(0, dtype=jnp.float32))
172
+ self.m2 = MetricState(jnp.array(0, dtype=jnp.float32))
173
+
174
+ def reset(self) -> None:
175
+ """Reset this ``Metric``."""
176
+ self.count.value = jnp.array(0, dtype=jnp.uint32)
177
+ self.mean.value = jnp.array(0, dtype=jnp.float32)
178
+ self.m2.value = jnp.array(0, dtype=jnp.float32)
179
+
180
+ def update(self, **kwargs) -> None:
181
+ """In-place update this ``Metric``. This method will use the value from
182
+ ``kwargs[self.argname]`` to update the metric, where ``self.argname`` is
183
+ defined on construction.
184
+
185
+ Args:
186
+ **kwargs: the key-word arguments that contains a ``self.argname``
187
+ entry that maps to the value we want to use to update this metric.
188
+ """
189
+ if self.argname not in kwargs:
190
+ raise TypeError(f"Expected keyword argument '{self.argname}'")
191
+ values: tp.Union[int, float, jax.Array] = kwargs[self.argname]
192
+ count = 1 if isinstance(values, (int, float)) else values.size
193
+ original_count = self.count.value
194
+ self.count.value += count
195
+ delta = (
196
+ values if isinstance(values, (int, float)) else values.mean()
197
+ ) - self.mean.value
198
+ self.mean.value += delta * count / self.count.value
199
+ m2 = 0.0 if isinstance(values, (int, float)) else values.var() * count
200
+ self.m2.value += (
201
+ m2 + delta * delta * count * original_count / self.count
202
+ )
203
+
204
+ def compute(self) -> Statistics:
205
+ """Compute and return the mean and variance statistics in a
206
+ ``Statistics`` dataclass object.
207
+ """
208
+ variance = self.m2.value / self.count.value
209
+ standard_deviation = variance ** 0.5
210
+ sem = standard_deviation / (self.count.value ** 0.5)
211
+ return Statistics(
212
+ mean=self.mean.value,
213
+ standard_error_of_mean=sem,
214
+ standard_deviation=standard_deviation,
215
+ )
216
+
217
+
218
+ class Accuracy(Average):
219
+ """Accuracy metric. This metric subclasses :class:`Average`,
220
+ and so they share the same ``reset`` and ``compute`` method
221
+ implementations. Unlike :class:`Average`, no string needs to
222
+ be passed to ``Accuracy`` during construction.
223
+
224
+ Example usage::
225
+
226
+ >>> import brainstate as brainstate
227
+ >>> import jax, jax.numpy as jnp
228
+
229
+ >>> logits = jax.random.normal(jax.random.key(0), (5, 2))
230
+ >>> labels = jnp.array([1, 1, 0, 1, 0])
231
+ >>> logits2 = jax.random.normal(jax.random.key(1), (5, 2))
232
+ >>> labels2 = jnp.array([0, 1, 1, 1, 1])
233
+
234
+ >>> metrics = brainstate.nn.metrics.Accuracy()
235
+ >>> metrics.compute()
236
+ Array(nan, dtype=float32)
237
+ >>> metrics.update(logits=logits, labels=labels)
238
+ >>> metrics.compute()
239
+ Array(0.6, dtype=float32)
240
+ >>> metrics.update(logits=logits2, labels=labels2)
241
+ >>> metrics.compute()
242
+ Array(0.7, dtype=float32)
243
+ >>> metrics.reset()
244
+ >>> metrics.compute()
245
+ Array(nan, dtype=float32)
246
+ """
247
+
248
+ def update(self, *, logits: jax.Array, labels: jax.Array, **_) -> None: # type: ignore[override]
249
+ """In-place update this ``Metric``.
250
+
251
+ Args:
252
+ logits: the outputted predicted activations. These values are
253
+ argmax-ed (on the trailing dimension), before comparing them
254
+ to the labels.
255
+ labels: the ground truth integer labels.
256
+ """
257
+ if logits.ndim != labels.ndim + 1:
258
+ raise ValueError(
259
+ f'Expected logits.ndim==labels.ndim+1, got {logits.ndim} and {labels.ndim}'
260
+ )
261
+ elif labels.dtype in (jnp.int64, np.int32, np.int64):
262
+ labels = jnp.astype(labels, jnp.int32)
263
+ elif labels.dtype != jnp.int32:
264
+ raise ValueError(f'Expected labels.dtype==jnp.int32, got {labels.dtype}')
265
+
266
+ super().update(values=(logits.argmax(axis=-1) == labels))
267
+
268
+
269
+ class MultiMetric(Metric):
270
+ """MultiMetric class to store multiple metrics and update them in a single call.
271
+
272
+ Example usage::
273
+
274
+ >>> from brainstate import nn
275
+ >>> import jax, jax.numpy as jnp
276
+
277
+ >>> metrics = nn.metrics.MultiMetric(
278
+ ... accuracy=nn.metrics.Accuracy(),
279
+ ... loss=nn.metrics.Average(),
280
+ ... )
281
+
282
+ >>> metrics
283
+ MultiMetric(
284
+ accuracy=Accuracy(
285
+ argname='values',
286
+ total=MetricState(
287
+ value=Array(0., dtype=float32)
288
+ ),
289
+ count=MetricState(
290
+ value=Array(0, dtype=int32)
291
+ )
292
+ ),
293
+ loss=Average(
294
+ argname='values',
295
+ total=MetricState(
296
+ value=Array(0., dtype=float32)
297
+ ),
298
+ count=MetricState(
299
+ value=Array(0, dtype=int32)
300
+ )
301
+ )
302
+ )
303
+
304
+ >>> metrics.accuracy
305
+ Accuracy(
306
+ argname='values',
307
+ total=MetricState(
308
+ value=Array(0., dtype=float32)
309
+ ),
310
+ count=MetricState(
311
+ value=Array(0, dtype=int32)
312
+ )
313
+ )
314
+
315
+ >>> metrics.loss
316
+ Average(
317
+ argname='values',
318
+ total=MetricState(
319
+ value=Array(0., dtype=float32)
320
+ ),
321
+ count=MetricState(
322
+ value=Array(0, dtype=int32)
323
+ )
324
+ )
325
+
326
+ >>> logits = jax.random.normal(jax.random.key(0), (5, 2))
327
+ >>> labels = jnp.array([1, 1, 0, 1, 0])
328
+ >>> logits2 = jax.random.normal(jax.random.key(1), (5, 2))
329
+ >>> labels2 = jnp.array([0, 1, 1, 1, 1])
330
+
331
+ >>> batch_loss = jnp.array([1, 2, 3, 4])
332
+ >>> batch_loss2 = jnp.array([3, 2, 1, 0])
333
+
334
+ >>> metrics.compute()
335
+ {'accuracy': Array(nan, dtype=float32), 'loss': Array(nan, dtype=float32)}
336
+ >>> metrics.update(logits=logits, labels=labels, values=batch_loss)
337
+ >>> metrics.compute()
338
+ {'accuracy': Array(0.6, dtype=float32), 'loss': Array(2.5, dtype=float32)}
339
+ >>> metrics.update(logits=logits2, labels=labels2, values=batch_loss2)
340
+ >>> metrics.compute()
341
+ {'accuracy': Array(0.7, dtype=float32), 'loss': Array(2., dtype=float32)}
342
+ >>> metrics.reset()
343
+ >>> metrics.compute()
344
+ {'accuracy': Array(nan, dtype=float32), 'loss': Array(nan, dtype=float32)}
345
+ """
346
+
347
+ def __init__(self, **metrics):
348
+ """Pass in key-word arguments to the constructor, e.g.
349
+ ``MultiMetric(keyword1=Average(), keyword2=Accuracy(), ...)``.
350
+
351
+ Args:
352
+ **metrics: the key-word arguments that will be used to access
353
+ the corresponding ``Metric``.
354
+ """
355
+ # TODO: raise error if a kwarg is passed that is in ('reset', 'update', 'compute'), since these names are reserved for methods
356
+ self._metric_names = []
357
+ for metric_name, metric in metrics.items():
358
+ self._metric_names.append(metric_name)
359
+ vars(self)[metric_name] = metric
360
+
361
+ def reset(self) -> None:
362
+ """Reset all underlying ``Metric``'s."""
363
+ for metric_name in self._metric_names:
364
+ getattr(self, metric_name).reset()
365
+
366
+ def update(self, **updates) -> None:
367
+ """In-place update all underlying ``Metric``'s in this ``MultiMetric``. All
368
+ ``**updates`` will be passed to the ``update`` method of all underlying
369
+ ``Metric``'s.
370
+
371
+ Args:
372
+ **updates: the key-word arguments that will be passed to the underlying ``Metric``'s
373
+ ``update`` method.
374
+ """
375
+ # TODO: should we give the option of updating only some of the metrics and not all? e.g. if for some kwargs==None, don't do update
376
+ # TODO: should we raise an error if a kwarg is passed into **updates that has no match with any underlying metric? e.g. user typo
377
+ for metric_name in self._metric_names:
378
+ getattr(self, metric_name).update(**updates)
379
+
380
+ def compute(self) -> dict[str, Metric]:
381
+ """Compute and return the value of all underlying ``Metric``'s. This method
382
+ will return a dictionary, mapping strings (defined by the key-word arguments
383
+ ``**metrics`` passed to the constructor) to the corresponding metric value.
384
+ """
385
+ return {
386
+ f'{metric_name}': getattr(self, metric_name).compute()
387
+ for metric_name in self._metric_names
388
+ }