Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,441 +0,0 @@
1
- import numpy as np
2
- import pytest
3
- from numpy.testing import assert_allclose
4
-
5
- import quimb as qu
6
- import quimb.tensor as qtn
7
-
8
-
9
- class TestGeometries:
10
- @pytest.mark.parametrize("cyclic", [False, True])
11
- @pytest.mark.parametrize(
12
- "edge_fn,shape,percell,coordination",
13
- [
14
- (qtn.edges_2d_square, (3, 3), 1, 4),
15
- (qtn.edges_2d_hexagonal, (3, 3), 2, 3),
16
- (qtn.edges_2d_kagome, (3, 3), 3, 4),
17
- (qtn.edges_2d_triangular, (3, 3), 1, 6),
18
- (qtn.edges_2d_triangular_rectangular, (3, 3), 2, 6),
19
- (qtn.edges_3d_cubic, (3, 3, 3), 1, 6),
20
- (qtn.edges_3d_pyrochlore, (3, 3, 3), 4, 6),
21
- (qtn.edges_3d_diamond, (3, 3, 3), 2, 4),
22
- (qtn.edges_3d_diamond_cubic, (2, 2, 2), 8, 4),
23
- ],
24
- )
25
- def test_basic(self, cyclic, edge_fn, shape, percell, coordination):
26
- edges = edge_fn(*shape, cyclic=cyclic)
27
- tn = qtn.TN_rand_from_edges(edges, D=2)
28
- assert tn.num_tensors == qu.prod(shape) * percell
29
- assert max(t.ndim for t in tn) == coordination
30
-
31
-
32
- class TestSpinHam1D:
33
- @pytest.mark.parametrize("cyclic", [False, True])
34
- def test_var_terms(self, cyclic):
35
- n = 8
36
- Hd = qu.ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic)
37
- Ht = qtn.MPO_ham_mbl(n, dh=0.77, seed=42, cyclic=cyclic).to_dense()
38
- assert_allclose(Hd, Ht)
39
-
40
- @pytest.mark.parametrize("var_two", ["none", "some", "only"])
41
- @pytest.mark.parametrize(
42
- "var_one", ["some", "only", "only-some", "def-only", "none"]
43
- )
44
- def test_specials(self, var_one, var_two):
45
- K1 = qu.rand_herm(2**1)
46
-
47
- n = 10
48
- HB = qtn.SpinHam1D(S=1 / 2)
49
-
50
- if var_two == "some":
51
- HB += 1, K1, K1
52
- HB[4, 5] += 1, K1, K1
53
- HB[7, 8] += 1, K1, K1
54
- elif var_two == "only":
55
- for i in range(n - 1):
56
- HB[i, i + 1] += 1, K1, K1
57
- else:
58
- HB += 1, K1, K1
59
-
60
- if var_one == "some":
61
- HB += 1, K1
62
- HB[2] += 1, K1
63
- HB[3] += 1, K1
64
- elif var_one == "only":
65
- for i in range(n - 1):
66
- HB[i] += 1, K1
67
- elif var_one == "only-some":
68
- HB[1] += 1, K1
69
- elif var_one == "def-only":
70
- HB += 1, K1
71
-
72
- HB.build_local_ham(n)
73
- H_mpo = HB.build_mpo(n)
74
- H_sps = HB.build_sparse(n)
75
-
76
- assert_allclose(H_mpo.to_dense(), H_sps.toarray())
77
-
78
- def test_no_default_term(self):
79
- N = 10
80
- builder = qtn.SpinHam1D(1 / 2)
81
-
82
- for i in range(N - 1):
83
- builder[i, i + 1] += 1.0, "Z", "Z"
84
-
85
- H = builder.build_mpo(N)
86
-
87
- dmrg = qtn.DMRG2(H)
88
- dmrg.solve(verbosity=1)
89
-
90
- assert dmrg.energy == pytest.approx(-2.25)
91
-
92
-
93
- class TestMPSSpecificStates:
94
- def test_site_varying_phys_dim(self):
95
- k = qtn.MPS_rand_state(5, 4, phys_dim=[2, 3, 3, 2, 5])
96
- assert k.H @ k == pytest.approx(1.0)
97
- assert k.outer_dims_inds() == (
98
- (2, "k0"),
99
- (3, "k1"),
100
- (3, "k2"),
101
- (2, "k3"),
102
- (5, "k4"),
103
- )
104
-
105
- @pytest.mark.parametrize("dtype", ["float32", "complex64"])
106
- def test_ghz_state(self, dtype):
107
- mps = qtn.MPS_ghz_state(5, dtype=dtype)
108
- assert mps.dtype == dtype
109
- psi = qu.ghz_state(5, dtype=dtype)
110
- assert mps.H @ mps == pytest.approx(1.0)
111
- assert mps.bond_sizes() == [2, 2, 2, 2]
112
- assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
113
-
114
- @pytest.mark.parametrize("dtype", ["float32", "complex64"])
115
- def test_w_state(self, dtype):
116
- mps = qtn.MPS_w_state(5, dtype=dtype)
117
- assert mps.dtype == dtype
118
- psi = qu.w_state(5, dtype=dtype)
119
- assert mps.H @ mps == pytest.approx(1.0)
120
- assert mps.bond_sizes() == [2, 2, 2, 2]
121
- assert qu.fidelity(psi, mps.to_dense()) == pytest.approx(1.0)
122
-
123
- def test_computational_state(self):
124
- mps = qtn.MPS_computational_state("01+-")
125
- assert_allclose(
126
- mps.to_dense(), qu.up() & qu.down() & qu.plus() & qu.minus()
127
- )
128
-
129
-
130
- class TestMatrixProductOperatorSpecifics:
131
- def test_MPO_product_operator(self):
132
- psis = [qu.rand_ket(2) for _ in range(5)]
133
- ops = [qu.rand_matrix(2) for _ in range(5)]
134
- psif = qu.kron(*ops) @ qu.kron(*psis)
135
- mps = qtn.MPS_product_state(psis)
136
- mpo = qtn.MPO_product_operator(ops)
137
- assert mpo.bond_sizes() == [1, 1, 1, 1]
138
- mpsf = mpo.apply(mps)
139
- assert_allclose(mpsf.to_dense(), psif)
140
-
141
-
142
- class TestGenericTN:
143
- def test_TN_rand_reg(self):
144
- n = 6
145
- reg = 3
146
- D = 2
147
- tn = qtn.TN_rand_reg(n, reg, D=D)
148
- assert tn.outer_inds() == ()
149
- assert tn.max_bond() == D
150
- assert {t.ndim for t in tn} == {reg}
151
- ket = qtn.TN_rand_reg(n, reg, D=2, phys_dim=2)
152
- assert set(ket.outer_inds()) == {f"k{i}" for i in range(n)}
153
- assert ket.max_bond() == D
154
-
155
- @pytest.mark.parametrize("Lx", [3])
156
- @pytest.mark.parametrize("Ly", [2, 4])
157
- @pytest.mark.parametrize("beta", [0.13, 0.44])
158
- @pytest.mark.parametrize("j", [-1.0, +1.0])
159
- @pytest.mark.parametrize("h", [0.0, 0.1])
160
- @pytest.mark.parametrize(
161
- "cyclic", [False, True, (False, True), (True, False)]
162
- )
163
- def test_2D_classical_ising_model(self, Lx, Ly, beta, j, h, cyclic):
164
- tn = qtn.TN2D_classical_ising_partition_function(
165
- Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
166
- )
167
- htn = qtn.HTN2D_classical_ising_partition_function(
168
- Lx, Ly, beta=beta, j=j, h=h, cyclic=cyclic
169
- )
170
- Z1 = tn.contract(all, output_inds=())
171
- Z2 = htn.contract(all, output_inds=())
172
- assert Z1 == pytest.approx(Z2)
173
-
174
- if not cyclic:
175
- # skip cyclic as nx has no multibonds for L=2
176
- import networkx as nx
177
-
178
- G = nx.lattice.grid_graph((Lx, Ly))
179
- Z3 = qtn.TN_classical_partition_function_from_edges(
180
- G.edges, beta=beta, j=j, h=h
181
- ).contract(all, output_inds=())
182
- assert Z2 == pytest.approx(Z3)
183
- Z4 = qtn.HTN_classical_partition_function_from_edges(
184
- G.edges, beta=beta, j=j, h=h
185
- ).contract(all, output_inds=())
186
- assert Z3 == pytest.approx(Z4)
187
-
188
- @pytest.mark.parametrize("Lx", [2])
189
- @pytest.mark.parametrize("Ly", [3])
190
- @pytest.mark.parametrize("Lz", [4])
191
- @pytest.mark.parametrize("beta", [0.13, 1 / 4.5])
192
- @pytest.mark.parametrize("j", [-1.0, +1.0])
193
- @pytest.mark.parametrize("h", [0.0, 0.1])
194
- @pytest.mark.parametrize(
195
- "cyclic", [False, True, (False, True, False), (True, False, True)]
196
- )
197
- def test_3D_classical_ising_model(self, Lx, Ly, Lz, beta, j, h, cyclic):
198
- tn = qtn.TN3D_classical_ising_partition_function(
199
- Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
200
- )
201
- htn = qtn.HTN3D_classical_ising_partition_function(
202
- Lx, Ly, Lz, beta=beta, j=j, h=h, cyclic=cyclic
203
- )
204
- Z1 = tn.contract(all, output_inds=())
205
- Z2 = htn.contract(all, output_inds=())
206
- assert Z1 == pytest.approx(Z2)
207
-
208
- if not cyclic:
209
- # skip cyclic as nx has no multibonds for L=2
210
- import networkx as nx
211
-
212
- G = nx.lattice.grid_graph((Lx, Ly, Lz))
213
- Z3 = qtn.TN_classical_partition_function_from_edges(
214
- G.edges, beta=beta, j=j, h=h
215
- ).contract(all, output_inds=())
216
- assert Z2 == pytest.approx(Z3)
217
- Z4 = qtn.HTN_classical_partition_function_from_edges(
218
- G.edges, beta=beta, j=j, h=h
219
- ).contract(all, output_inds=())
220
- assert Z3 == pytest.approx(Z4)
221
-
222
- def test_2d_classical_ising_varying_j(self):
223
- L = 5
224
- beta = 0.3
225
- edges = qtn.edges_2d_square(L, L)
226
- np.random.seed(666)
227
- js = {edge: np.random.normal() for edge in edges}
228
- tn = qtn.TN_classical_partition_function_from_edges(
229
- edges, beta=beta, j=lambda i, j: js[i, j]
230
- )
231
- assert tn.dtype == "float64"
232
- x0 = tn.contract(all, output_inds=())
233
- tn = qtn.HTN_classical_partition_function_from_edges(
234
- edges, beta=beta, j=lambda i, j: js[i, j]
235
- )
236
- assert tn.dtype == "float64"
237
- x1 = tn.contract(all, output_inds=())
238
- tn = qtn.TN2D_classical_ising_partition_function(
239
- L, L, beta=beta, j=lambda i, j: js[i, j]
240
- )
241
- assert tn.dtype == "float64"
242
- x2 = tn.contract(all, output_inds=())
243
- tn = qtn.HTN2D_classical_ising_partition_function(
244
- L, L, beta=beta, j=lambda i, j: js[i, j]
245
- )
246
- assert tn.dtype == "float64"
247
- x3 = tn.contract(all, output_inds=())
248
- assert x0 == pytest.approx(x1)
249
- assert x1 == pytest.approx(x2)
250
- assert x2 == pytest.approx(x3)
251
-
252
- def test_3d_classical_ising_varying_j(self):
253
- L = 3
254
- beta = 0.3
255
- edges = qtn.edges_3d_cubic(L, L, L)
256
- np.random.seed(666)
257
- js = {edge: np.random.normal() for edge in edges}
258
- tn = qtn.TN_classical_partition_function_from_edges(
259
- edges, beta=beta, j=lambda i, j: js[i, j]
260
- )
261
- assert tn.dtype == "float64"
262
- x0 = tn.contract(all, output_inds=())
263
- tn = qtn.HTN_classical_partition_function_from_edges(
264
- edges, beta=beta, j=lambda i, j: js[i, j]
265
- )
266
- assert tn.dtype == "float64"
267
- x1 = tn.contract(all, output_inds=())
268
- tn = qtn.TN3D_classical_ising_partition_function(
269
- L, L, L, beta=beta, j=lambda i, j: js[i, j]
270
- )
271
- assert tn.dtype == "float64"
272
- x2 = tn.contract(all, output_inds=())
273
- tn = qtn.HTN3D_classical_ising_partition_function(
274
- L, L, L, beta=beta, j=lambda i, j: js[i, j]
275
- )
276
- assert tn.dtype == "float64"
277
- x3 = tn.contract(all, output_inds=())
278
- assert x0 == pytest.approx(x1)
279
- assert x1 == pytest.approx(x2)
280
- assert x2 == pytest.approx(x3)
281
-
282
- def test_tn_dimer_covering(self):
283
- edges = [(0, 1), (1, 2), (2, 3), (3, 0)]
284
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
285
- assert tn ^ all == pytest.approx(2.0)
286
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=2)
287
- assert tn ^ all == pytest.approx(1.0)
288
- edges = [(0, 1), (1, 2), (2, 0)]
289
- tn = qtn.TN_dimer_covering_from_edges(edges, cover_count=1)
290
- assert tn ^ all == pytest.approx(0.0)
291
-
292
- def test_tn2d_fillers(self):
293
- tn = qtn.TN2D_empty(Lx=2, Ly=2, D=2)
294
- assert isinstance(tn, qtn.TensorNetwork2D)
295
- assert (
296
- qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all
297
- ) == pytest.approx(qtn.TN2D_rand(Lx=2, Ly=2, D=2, seed=42) ^ all)
298
- tn = qtn.TN2D_with_value(1.0, Lx=2, Ly=3, D=4)
299
- assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
300
-
301
- def test_tn3d_fillers(self):
302
- tn = qtn.TN3D_empty(Lx=2, Ly=2, Lz=2, D=2)
303
- assert isinstance(tn, qtn.TensorNetwork3D)
304
- assert (
305
- qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all
306
- ) == pytest.approx(qtn.TN3D_rand(Lx=2, Ly=2, Lz=2, D=2, seed=42) ^ all)
307
- tn = qtn.TN3D_with_value(1.0, Lx=2, Ly=3, Lz=2, D=2)
308
- assert tn ^ all == pytest.approx(qu.prod(tn.ind_sizes().values()))
309
-
310
-
311
- @pytest.mark.parametrize("cyclic", [False, True, (False, True), (True, False)])
312
- def test_tn2d_classical_ising_partition_function(cyclic):
313
- Lx = 4
314
- Ly = 5
315
- coupling = {
316
- (cooa, coob): float(qu.randn())
317
- for cooa, coob in qtn.gen_2d_bonds(Lx, Ly, cyclic=cyclic)
318
- }
319
- h = qu.randn()
320
- tn = qtn.TN2D_classical_ising_partition_function(
321
- Lx,
322
- Ly,
323
- beta=0.44,
324
- j=coupling,
325
- h=h,
326
- outputs=[(1, 2), (3, 4)],
327
- cyclic=cyclic,
328
- )
329
- assert tn.outer_inds() == ("s1,2", "s3,4")
330
- htn = qtn.HTN2D_classical_ising_partition_function(
331
- Lx,
332
- Ly,
333
- beta=0.44,
334
- j=coupling,
335
- h=h,
336
- cyclic=cyclic,
337
- )
338
- assert htn.num_indices == Lx * Ly
339
-
340
- if not isinstance(cyclic, tuple):
341
- cyclic = (cyclic, cyclic)
342
-
343
- assert (tn.is_cyclic_x(), tn.is_cyclic_y()) == cyclic
344
-
345
- assert_allclose(
346
- tn.contract().data,
347
- htn.contract(output_inds=("s1,2", "s3,4")).data,
348
- )
349
-
350
-
351
- @pytest.mark.parametrize("cyclic", [False, (0, 1, 1), (0, 0, 1)])
352
- def test_tn3d_classical_ising_partition_function(cyclic):
353
- Lx, Ly, Lz = 2, 3, 3
354
- coupling = {
355
- (cooa, coob): float(qu.randn())
356
- for cooa, coob in qtn.gen_3d_bonds(Lx, Ly, Lz, cyclic=cyclic)
357
- }
358
- h = qu.randn()
359
- tn = qtn.TN3D_classical_ising_partition_function(
360
- Lx,
361
- Ly,
362
- Lz,
363
- beta=0.44,
364
- j=lambda cooa, coob: coupling[(cooa, coob)],
365
- h=h,
366
- outputs=[(1, 0, 2), (0, 2, 1)],
367
- cyclic=cyclic,
368
- )
369
- assert tn.outer_inds() == ("s0,2,1", "s1,0,2")
370
- htn = qtn.HTN3D_classical_ising_partition_function(
371
- Lx,
372
- Ly,
373
- Lz,
374
- beta=0.44,
375
- j=lambda cooa, coob: coupling[(cooa, coob)],
376
- h=h,
377
- cyclic=cyclic,
378
- )
379
- assert htn.num_indices == Lx * Ly * Lz
380
-
381
- if not isinstance(cyclic, tuple):
382
- cyclic = (cyclic, cyclic, cyclic)
383
-
384
- assert (tn.is_cyclic_x(), tn.is_cyclic_y(), tn.is_cyclic_z()) == cyclic
385
-
386
- assert_allclose(
387
- tn.contract().data,
388
- htn.contract(output_inds=("s0,2,1", "s1,0,2")).data,
389
- )
390
-
391
-
392
- @pytest.mark.parametrize("sites_location", ["side", "diag"])
393
- @pytest.mark.parametrize("outputs", [(), 2, (1, 3)])
394
- def test_all_to_all_classical_partition_functions(sites_location, outputs):
395
- import numpy as np
396
-
397
- N = 5
398
- rng = np.random.default_rng(42)
399
- Jij = {(i, j): rng.normal() for i in range(N) for j in range(i + 1, N)}
400
- htn = qtn.HTN_classical_partition_function_from_edges(
401
- edges=Jij.keys(),
402
- beta=0.179,
403
- j=Jij,
404
- )
405
- Zex = htn.contract(all, output_inds=())
406
-
407
- tn = qtn.TN2D_embedded_classical_ising_partition_function(
408
- Jij,
409
- beta=0.179,
410
- sites_location=sites_location,
411
- outputs=outputs,
412
- )
413
-
414
- sites = tuple(tn.gen_sites_present())
415
- assert len(sites) == N * (N - 1) // 2
416
- for i, j in sites:
417
- assert i > j
418
-
419
- if isinstance(outputs, tuple):
420
- assert set(tn.outer_inds()) == {f"s{i}" for i in outputs}
421
- else:
422
- assert tn.outer_inds() == (f"s{outputs}",)
423
- (t,) = tn._inds_get(f"s{outputs}")
424
- if sites_location == "side":
425
- assert "I2,0" in t.tags
426
- else:
427
- assert "I2,1" in t.tags
428
- assert tn.contract(output_inds=()) == pytest.approx(Zex)
429
-
430
-
431
- def test_tn2d_rand_symm():
432
- import numpy as np
433
-
434
- tn = qtn.TN2D_rand_symmetric(3, 4, 3)
435
- ghash = tn.geometry_hash(strict_index_order=True)
436
- Zex = tn.contract(all, output_inds=())
437
- rng = np.random.default_rng(42)
438
- for t in tn:
439
- t.modify(inds=rng.permutation(t.inds))
440
- assert tn.geometry_hash(strict_index_order=True) != ghash
441
- assert tn.contract(all, output_inds=()) == pytest.approx(Zex)