Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,258 +0,0 @@
1
- """Numba accelerated functions for finding charge sectors and subselecting
2
- submatrices.
3
- """
4
-
5
- import numpy as np
6
- import numba
7
-
8
- from ..core import njit, pnjit, qarray
9
-
10
-
11
- @njit
12
- def get_nz(A): # pragma: no cover
13
- return np.nonzero(A)
14
-
15
-
16
- @njit
17
- def compute_blocks(ix, jx, d): # pragma: no cover
18
- """Find the charge sectors (blocks in matrix terms) given element
19
- coordinates ``ix`` and ``jx`` and total size ``d``.
20
-
21
- Parameters
22
- ----------
23
- ix : array of int
24
- The row coordinates of non-zero elements.
25
- jx : array of int
26
- The column coordinates of non-zero elements.
27
- d : int
28
- The total size of the operator.
29
-
30
- Returns
31
- -------
32
- sectors : list[list[int]]
33
- The list of charge sectors. Each element is itself a sorted list of the
34
- basis numbers that make up that sector. The permutation that would
35
- block diagonalize the operator is then ``np.concatenate(sectors)``.
36
-
37
- Examples
38
- --------
39
-
40
- >>> H = ham_hubbard_hardcore(4, sparse=True)
41
- >>> ix, jx = H.nonzero()
42
- >>> d = H.shape[0]
43
- >>> sectors = compute_blocks(ix, jx, d)
44
- >>> sectors
45
- [[0], [1, 2, 4, 8], [3, 5, 6, 9, 10, 12], [7, 11, 13, 14], [15]]
46
- """
47
- groups = []
48
-
49
- # go through actual nz -> these define edges of a graph and we are
50
- # looking for all connected components (disconnected subgraphs)
51
- for i, j in zip(ix, jx):
52
- merge = []
53
- for g, group in enumerate(groups):
54
- if i in group:
55
- group.add(j)
56
- merge.append(g)
57
- elif j in group:
58
- group.add(i)
59
- merge.append(g)
60
-
61
- if len(merge) == 0:
62
- # new group
63
- groups.append({i, j})
64
-
65
- elif len(merge) > 1:
66
- # merge groups
67
- group0 = groups[merge[0]]
68
- for g in merge[-1:0:-1]:
69
- # XXX: just popping here causes numba big problems?
70
- # so we clear and filter empty groups later
71
- other_group = groups[g]
72
- group0.update(other_group)
73
- other_group.clear()
74
-
75
- # make sure kernel added as subspace
76
- for i in range(d):
77
- for group in groups:
78
- if i in group:
79
- break
80
- else: # no break
81
- groups.append({i})
82
-
83
- # sort indices in each group and groups by first element
84
- return sorted([sorted(g) for g in groups if g])
85
-
86
-
87
- @pnjit
88
- def subselect(A, p): # pragma: no cover
89
- """Select only the intersection of rows and columns of ``A`` matching the
90
- basis indices ``p``. Faster than double numpy slicing.
91
-
92
- Parameters
93
- ----------
94
- A : 2D-array
95
- Dense matrix to select from.
96
- p : sequence of int
97
- The basis indices to select.
98
-
99
- Returns
100
- -------
101
- B : 2D-array
102
- The matrix, of size ``(len(p), len(p))``.
103
-
104
- Examples
105
- --------
106
- >>> A = np.arange(25).reshape(5, 5)
107
- >>> A
108
- array([[ 0, 1, 2, 3, 4],
109
- [ 5, 6, 7, 8, 9],
110
- [10, 11, 12, 13, 14],
111
- [15, 16, 17, 18, 19],
112
- [20, 21, 22, 23, 24]])
113
-
114
- >>> subselect(A, [1, 3])
115
- array([[ 6, 8],
116
- [16, 18]])
117
- """
118
- dp = len(p)
119
- out = np.empty((dp, dp), dtype=A.dtype)
120
-
121
- for i in numba.prange(dp):
122
- for j in numba.prange(dp):
123
- out[i, j] = A[p[i], p[j]]
124
-
125
- return out
126
-
127
-
128
- @pnjit
129
- def subselect_set(A, B, p): # pragma: no cover
130
- """Set only the intersection of rows and colums of ``A`` matching the
131
- basis indices ``p`` to ``B``.
132
-
133
- Parameters
134
- ----------
135
- A : array with shape (d, d)
136
- The matrix to set elements in.
137
- B : array with shape (dp, dp)
138
- The matrix to set elements from.
139
- p : sequence of size dp
140
- The basis indices.
141
-
142
- Examples
143
- --------
144
- >>> A = np.zeros((5, 5))
145
- >>> B = np.random.randn(3, 3)
146
- >>> p = [0, 2, 4]
147
- >>> subselect_set(A, B, p)
148
- array([[-0.31888218, 0. , 0.39293245, 0. , 0.21822712],
149
- [ 0. , 0. , 0. , 0. , 0. ],
150
- [ 0.66674486, 0. , 1.03388035, 0. , 1.7319345 ],
151
- [ 0. , 0. , 0. , 0. , 0. ],
152
- [-0.94542733, 0. , -0.37211882, 0. , 0.51951555]])
153
- """
154
- dp = len(p)
155
-
156
- for i in numba.prange(dp):
157
- for j in numba.prange(dp):
158
- A[p[i], p[j]] = B[i, j]
159
-
160
-
161
- # XXX: want to cache this eventaully -> need parallel+cache numba support?
162
- @njit
163
- def _eigh_autoblocked(A, sort=True): # pragma: no cover
164
- d = A.shape[0]
165
-
166
- # allocate output arrays
167
- el = np.empty(d)
168
- ev = np.zeros_like(A)
169
-
170
- # find non-zero elements and group into charge sectors
171
- ix, jx = get_nz(A)
172
- gs = compute_blocks(ix, jx, d)
173
- gs = [np.array(g) for g in gs]
174
-
175
- # diagonalize each charge sector seperately
176
- for g in gs:
177
- ng = len(g)
178
-
179
- # check if trivial
180
- if ng == 1:
181
- el[g[0]] = A[g[0], g[0]].real
182
- ev[g[0], g[0]] = 1.0
183
- continue
184
-
185
- # else diagonalize just the block
186
- sub_el, sub_ev = np.linalg.eigh(subselect(A, g))
187
-
188
- # set the correct eigenpairs in the output
189
- el[g] = sub_el
190
- subselect_set(ev, sub_ev, g)
191
-
192
- # sort into ascending eigenvalue order
193
- if sort:
194
- so = np.argsort(el)
195
- el[:] = el[so]
196
- ev[:, :] = ev[:, so]
197
-
198
- return el, ev
199
-
200
-
201
- # XXX: want to cache this eventaully -> need parallel+cache numba support?
202
- @njit
203
- def _eigvalsh_autoblocked(A, sort=True): # pragma: no cover
204
- # as above but ignore eigenvector for extra speed
205
- d = A.shape[0]
206
-
207
- el = np.empty(d)
208
-
209
- ix, jx = get_nz(A)
210
- gs = compute_blocks(ix, jx, d)
211
- gs = [np.array(g) for g in gs]
212
-
213
- for _, g in enumerate(gs):
214
- if len(g) == 1:
215
- el[g[0]] = A[g[0], g[0]]
216
- continue
217
-
218
- el[g] = np.linalg.eigvalsh(subselect(A, g))
219
-
220
- if sort:
221
- return np.sort(el)
222
-
223
- return el
224
-
225
-
226
- def eigensystem_autoblocked(A, sort=True, return_vecs=True, isherm=True):
227
- """Perform Hermitian eigen-decomposition, automatically identifying and
228
- exploiting symmetries appearing in the current basis as block diagonals
229
- formed via permutation of rows and columns. The whole process is
230
- accelerated using ``numba``.
231
-
232
- Parameters
233
- ----------
234
- A : array_like
235
- The operator to eigen-decompose.
236
- sort : bool, optional
237
- Whether to sort into ascending order, default True.
238
- isherm : bool, optional
239
- Whether ``A`` is hermitian, default True.
240
- return_vecs : bool, optional
241
- Whether to return the eigenvectors, default True.
242
-
243
- Returns
244
- -------
245
- evals : 1D-array
246
- The eigenvalues.
247
- evecs : qarray
248
- If ``return_vecs=True``, the eigenvectors.
249
- """
250
- if not isherm:
251
- err_msg = "Non-hermitian autoblocking not implemented yet."
252
- raise NotImplementedError(err_msg)
253
-
254
- if not return_vecs:
255
- return _eigvalsh_autoblocked(A, sort=sort)
256
-
257
- el, ev = _eigh_autoblocked(A, sort=sort)
258
- return el, qarray(ev)