Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +0 -3
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +9 -9
- trajectree/fock_optics/outputs.py +10 -6
- trajectree/fock_optics/utils.py +9 -6
- trajectree/sequence/swap.py +5 -4
- trajectree/trajectory.py +5 -4
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
- trajectree-0.0.3.dist-info/RECORD +16 -0
- trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
- trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
- trajectree/quimb/docs/conf.py +0 -158
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
- trajectree/quimb/quimb/__init__.py +0 -507
- trajectree/quimb/quimb/calc.py +0 -1491
- trajectree/quimb/quimb/core.py +0 -2279
- trajectree/quimb/quimb/evo.py +0 -712
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +0 -129
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
- trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
- trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
- trajectree/quimb/quimb/experimental/schematic.py +0 -7
- trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
- trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
- trajectree/quimb/quimb/gates.py +0 -36
- trajectree/quimb/quimb/gen/__init__.py +0 -2
- trajectree/quimb/quimb/gen/operators.py +0 -1167
- trajectree/quimb/quimb/gen/rand.py +0 -713
- trajectree/quimb/quimb/gen/states.py +0 -479
- trajectree/quimb/quimb/linalg/__init__.py +0 -6
- trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
- trajectree/quimb/quimb/linalg/autoblock.py +0 -258
- trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
- trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
- trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
- trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
- trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
- trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
- trajectree/quimb/quimb/schematic.py +0 -1518
- trajectree/quimb/quimb/tensor/__init__.py +0 -401
- trajectree/quimb/quimb/tensor/array_ops.py +0 -610
- trajectree/quimb/quimb/tensor/circuit.py +0 -4824
- trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
- trajectree/quimb/quimb/tensor/contraction.py +0 -336
- trajectree/quimb/quimb/tensor/decomp.py +0 -1255
- trajectree/quimb/quimb/tensor/drawing.py +0 -1646
- trajectree/quimb/quimb/tensor/fitting.py +0 -385
- trajectree/quimb/quimb/tensor/geometry.py +0 -583
- trajectree/quimb/quimb/tensor/interface.py +0 -114
- trajectree/quimb/quimb/tensor/networking.py +0 -1058
- trajectree/quimb/quimb/tensor/optimize.py +0 -1818
- trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
- trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
- trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
- trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
- trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
- trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
- trajectree/quimb/quimb/utils.py +0 -892
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +0 -501
- trajectree/quimb/tests/test_calc.py +0 -788
- trajectree/quimb/tests/test_core.py +0 -847
- trajectree/quimb/tests/test_evo.py +0 -565
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +0 -361
- trajectree/quimb/tests/test_gen/test_rand.py +0 -296
- trajectree/quimb/tests/test_gen/test_states.py +0 -261
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
- trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
- trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
- trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
- trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
- trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
- trajectree/quimb/tests/test_utils.py +0 -85
- trajectree-0.0.1.dist-info/RECORD +0 -126
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
|
@@ -1,204 +0,0 @@
|
|
|
1
|
-
"""Tools for building and computing with MERA.
|
|
2
|
-
"""
|
|
3
|
-
|
|
4
|
-
from math import log2
|
|
5
|
-
import itertools
|
|
6
|
-
|
|
7
|
-
import numpy as np
|
|
8
|
-
|
|
9
|
-
import quimb as qu
|
|
10
|
-
from .tensor_core import rand_uuid, IsoTensor, TensorNetwork
|
|
11
|
-
from .tensor_1d import TensorNetwork1D, TensorNetwork1DVector
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
def is_power_of_2(x):
|
|
15
|
-
return ((x & (x - 1)) == 0) and x > 0
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
class MERA(TensorNetwork1DVector,
|
|
19
|
-
TensorNetwork1D,
|
|
20
|
-
TensorNetwork):
|
|
21
|
-
r"""The Multi-scale Entanglement Renormalization Ansatz (MERA) state::
|
|
22
|
-
|
|
23
|
-
... ... ... ... ... ...
|
|
24
|
-
| | | | | | |
|
|
25
|
-
ISO ISO ISO ISO ISO ISO ISO :
|
|
26
|
-
\ / \ / \ / \ / \ / \ / : '_LAYER1'
|
|
27
|
-
UNI UNI UNI UNI UNI UNI :
|
|
28
|
-
/ \ / \ / \ / \ / \ / \
|
|
29
|
-
O ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO ISO I :
|
|
30
|
-
| | | | | | | | | | | | | | | | | | | | | | | | | | : '_LAYER0'
|
|
31
|
-
UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI UNI :
|
|
32
|
-
| | | | | | | | | | | | | | | | | | | | | | | | | | <-- phys_dim
|
|
33
|
-
0 1 2 3 4 .... ... L-2 L-1
|
|
34
|
-
|
|
35
|
-
Parameters
|
|
36
|
-
----------
|
|
37
|
-
L : int
|
|
38
|
-
The number of phyiscal sites. Shoule be a power of 2.
|
|
39
|
-
uni : array or sequence of arrays of shape (d, d, d, d).
|
|
40
|
-
The unitary operator(s). These will be cycled over and placed from
|
|
41
|
-
bottom left to top right in diagram above.
|
|
42
|
-
iso : array or sequence of arrays of shape (d, d, d)
|
|
43
|
-
The isometry operator(s). These will be cycled over and placed from
|
|
44
|
-
bottom left to top right in diagram above.
|
|
45
|
-
phys_dim : int, optional
|
|
46
|
-
The dimension of the local hilbert space.
|
|
47
|
-
dangle : bool, optional
|
|
48
|
-
Whether to leave a dangling index on the final isometry, in order to
|
|
49
|
-
maintain perfect scale invariance, else join the final unitaries just
|
|
50
|
-
with an indentity.
|
|
51
|
-
"""
|
|
52
|
-
|
|
53
|
-
_EXTRA_PROPS = ('_site_ind_id', '_site_tag_id', 'cyclic', '_L')
|
|
54
|
-
_CONTRACT_STRUCTURED = False
|
|
55
|
-
|
|
56
|
-
def __init__(self, L, uni=None, iso=None, phys_dim=2, dangle=False,
|
|
57
|
-
site_ind_id="k{}", site_tag_id="I{}", **tn_opts):
|
|
58
|
-
|
|
59
|
-
# short-circuit for copying MERA
|
|
60
|
-
if isinstance(L, MERA):
|
|
61
|
-
super().__init__(L)
|
|
62
|
-
for ep in MERA._EXTRA_PROPS:
|
|
63
|
-
setattr(self, ep, getattr(L, ep))
|
|
64
|
-
return
|
|
65
|
-
|
|
66
|
-
self._site_ind_id = site_ind_id
|
|
67
|
-
self._site_tag_id = site_tag_id
|
|
68
|
-
self.cyclic = True
|
|
69
|
-
self._L = L
|
|
70
|
-
|
|
71
|
-
if not is_power_of_2(L):
|
|
72
|
-
raise ValueError("``L`` should be a power of 2.")
|
|
73
|
-
|
|
74
|
-
nlayers = round(log2(L))
|
|
75
|
-
|
|
76
|
-
if hasattr(uni, 'shape'):
|
|
77
|
-
uni = (uni,)
|
|
78
|
-
|
|
79
|
-
if hasattr(iso, 'shape'):
|
|
80
|
-
iso = (iso,)
|
|
81
|
-
|
|
82
|
-
unis = itertools.cycle(uni)
|
|
83
|
-
isos = itertools.cycle(iso)
|
|
84
|
-
|
|
85
|
-
def gen_mera_tensors():
|
|
86
|
-
u_ind_id = site_ind_id
|
|
87
|
-
|
|
88
|
-
for i in range(nlayers):
|
|
89
|
-
|
|
90
|
-
# index id connecting to layer below
|
|
91
|
-
l_ind_id = u_ind_id
|
|
92
|
-
# index id connecting to isos to unis
|
|
93
|
-
m_ind_id = rand_uuid() + "_{}"
|
|
94
|
-
# index id connecting to layer above
|
|
95
|
-
u_ind_id = rand_uuid() + "_{}"
|
|
96
|
-
|
|
97
|
-
# number of tensor sites in this layer
|
|
98
|
-
eff_L = L // 2**i
|
|
99
|
-
|
|
100
|
-
for j in range(0, eff_L, 2):
|
|
101
|
-
|
|
102
|
-
# generate the unitary:
|
|
103
|
-
# ul | | ur
|
|
104
|
-
# UNI
|
|
105
|
-
# ll | | lr
|
|
106
|
-
# j j+1
|
|
107
|
-
ll, lr = map(l_ind_id.format, (j, (j + 1) % eff_L))
|
|
108
|
-
ul, ur = map(m_ind_id.format, (j, (j + 1) % eff_L))
|
|
109
|
-
inds = (ll, lr, ul, ur)
|
|
110
|
-
|
|
111
|
-
tags = ("_UNI", f"_LAYER{i}")
|
|
112
|
-
if i == 0:
|
|
113
|
-
tags += (site_tag_id.format(j),
|
|
114
|
-
site_tag_id.format(j + 1))
|
|
115
|
-
|
|
116
|
-
yield IsoTensor(next(unis), inds=inds,
|
|
117
|
-
tags=tags, left_inds=(ll, lr))
|
|
118
|
-
|
|
119
|
-
# generate the isometry (offset by one effective site):
|
|
120
|
-
# | ui
|
|
121
|
-
# ISO
|
|
122
|
-
# ll | | lr
|
|
123
|
-
# j+1 j+2
|
|
124
|
-
ll, lr = map(m_ind_id.format, (j + 1, (j + 2) % eff_L))
|
|
125
|
-
ui = u_ind_id.format(j // 2)
|
|
126
|
-
inds = (ll, lr, ui)
|
|
127
|
-
tags = ("_ISO", f"_LAYER{i}")
|
|
128
|
-
|
|
129
|
-
if i < nlayers - 1 or dangle:
|
|
130
|
-
yield IsoTensor(next(isos), inds=inds,
|
|
131
|
-
tags=tags, left_inds=(ll, lr))
|
|
132
|
-
else:
|
|
133
|
-
# don't leave dangling index at top
|
|
134
|
-
iso_f = next(isos)
|
|
135
|
-
yield IsoTensor(
|
|
136
|
-
np.eye(iso_f.shape[0], dtype=iso_f.dtype) / 2**0.5,
|
|
137
|
-
inds=inds[:-1], tags=tags, left_inds=(ll, lr)
|
|
138
|
-
)
|
|
139
|
-
|
|
140
|
-
super().__init__(gen_mera_tensors(), virtual=True)
|
|
141
|
-
|
|
142
|
-
# tag the MERA with the 'causal-cone' of each site
|
|
143
|
-
for i in range(nlayers):
|
|
144
|
-
for j in range(L):
|
|
145
|
-
# get isometries in the same layer
|
|
146
|
-
for t in self.select_neighbors(j):
|
|
147
|
-
if f'_LAYER{i}' in t.tags:
|
|
148
|
-
t.add_tag(f'I{j}')
|
|
149
|
-
|
|
150
|
-
# get unitaries in layer above
|
|
151
|
-
for t in self.select_neighbors(j):
|
|
152
|
-
if f'_LAYER{i + 1}' in t.tags:
|
|
153
|
-
t.add_tag(f'I{j}')
|
|
154
|
-
|
|
155
|
-
@classmethod
|
|
156
|
-
def rand(cls, L, max_bond=None, phys_dim=2, dtype=float, **mera_opts):
|
|
157
|
-
|
|
158
|
-
d = phys_dim
|
|
159
|
-
if max_bond is None:
|
|
160
|
-
max_bond = d
|
|
161
|
-
|
|
162
|
-
def gen_unis():
|
|
163
|
-
D = d
|
|
164
|
-
m = L // 2
|
|
165
|
-
|
|
166
|
-
while True:
|
|
167
|
-
for _ in range(m):
|
|
168
|
-
uni = qu.rand_iso(D**2, D**2, dtype=dtype)
|
|
169
|
-
uni.shape = (D, D, D, D)
|
|
170
|
-
yield uni
|
|
171
|
-
|
|
172
|
-
D = min(D**2, max_bond)
|
|
173
|
-
m //= 2
|
|
174
|
-
|
|
175
|
-
def gen_isos():
|
|
176
|
-
Dl = d
|
|
177
|
-
Du = min(Dl**2, max_bond)
|
|
178
|
-
m = L // 2
|
|
179
|
-
|
|
180
|
-
while True:
|
|
181
|
-
for _ in range(m):
|
|
182
|
-
iso = qu.rand_iso(Dl**2, Du, dtype=dtype)
|
|
183
|
-
iso.shape = (Dl, Dl, Du)
|
|
184
|
-
yield iso
|
|
185
|
-
|
|
186
|
-
Dl = Du
|
|
187
|
-
Du = min(Dl**2, max_bond)
|
|
188
|
-
m //= 2
|
|
189
|
-
|
|
190
|
-
return cls(L, gen_unis(), gen_isos(), phys_dim=d, **mera_opts)
|
|
191
|
-
|
|
192
|
-
@classmethod
|
|
193
|
-
def rand_invar(cls, L, phys_dim=2, dtype=float, **mera_opts):
|
|
194
|
-
"""Generate a random translational and scale invariant MERA.
|
|
195
|
-
"""
|
|
196
|
-
d = phys_dim
|
|
197
|
-
|
|
198
|
-
iso = qu.rand_iso(d**2, d, dtype=dtype)
|
|
199
|
-
iso.shape = (d, d, d)
|
|
200
|
-
|
|
201
|
-
uni = qu.rand_iso(d**2, d**2, dtype=dtype)
|
|
202
|
-
uni.shape = (d, d, d, d)
|
|
203
|
-
|
|
204
|
-
return cls(L, uni, iso, phys_dim=d, **mera_opts)
|