Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,816 +0,0 @@
1
- import math
2
- import itertools
3
-
4
- import pytest
5
- import numpy as np
6
- from numpy.testing import assert_allclose
7
-
8
- import quimb as qu
9
- import quimb.tensor as qtn
10
-
11
-
12
- def rand_reg_graph(reg, n, seed=None):
13
- import networkx as nx
14
-
15
- G = nx.random_regular_graph(reg, n, seed=seed)
16
- return G
17
-
18
-
19
- def graph_to_qsim(G, gamma0=-0.743043, beta0=0.754082):
20
- n = G.number_of_nodes()
21
-
22
- # add all the gates
23
- circ = f"{n}\n"
24
- for i in range(n):
25
- circ += f"H {i}\n"
26
- for i, j in G.edges:
27
- circ += f"Rzz {gamma0} {i} {j}\n"
28
- for i in range(n):
29
- circ += f"Rx {beta0} {i}\n"
30
-
31
- return circ
32
-
33
-
34
- def random_a2a_circ(L, depth, seed=42):
35
- rng = np.random.default_rng(seed)
36
-
37
- qubits = np.arange(L)
38
- gates = []
39
-
40
- for i in range(L):
41
- gates.append((0, "h", i))
42
-
43
- for d in range(depth):
44
- rng.shuffle(qubits)
45
-
46
- for i in range(0, L - 1, 2):
47
- g = rng.choice(["cx", "cy", "cz", "iswap"])
48
- gates.append((d, g, qubits[i], qubits[i + 1]))
49
-
50
- for q in qubits:
51
- g = rng.choice(["rx", "ry", "rz"])
52
- gates.append((d, g, rng.normal(1.0, 0.5), q))
53
-
54
- circ = qtn.Circuit(L)
55
- circ.apply_gates(gates)
56
-
57
- return circ
58
-
59
-
60
- def qft_circ(n, swaps=True, **circuit_opts):
61
- circ = qtn.Circuit(n, **circuit_opts)
62
-
63
- for i in range(n):
64
- circ.h(i)
65
- for j, m in zip(range(i + 1, n), itertools.count(2)):
66
- circ.cu1(2 * math.pi / 2**m, j, i)
67
-
68
- if swaps:
69
- for i in range(n // 2):
70
- circ.swap(i, n - i - 1)
71
-
72
- return circ
73
-
74
-
75
- def swappy_circ(n, depth):
76
- circ = qtn.Circuit(n)
77
-
78
- for d in range(depth):
79
- pairs = np.random.permutation(np.arange(n))
80
-
81
- for i in range(n // 2):
82
- qi = pairs[2 * i]
83
- qj = pairs[2 * i + 1]
84
-
85
- gate = np.random.choice(["FSIM", "SWAP"])
86
- if gate == "FSIM":
87
- params = np.random.randn(2)
88
- elif gate == "FSIMG":
89
- params = np.random.randn(5)
90
- else:
91
- params = ()
92
-
93
- circ.apply_gate(gate, *params, qi, qj)
94
-
95
- return circ
96
-
97
-
98
- def example_openqasm2_qft():
99
- return """
100
- // quantum Fourier transform
101
-
102
- OPENQASM 2.0;
103
- include "qelib1.inc";
104
-
105
- qreg q[4];
106
- creg c[4];
107
- x q[0];
108
- x q[2];
109
- barrier q;
110
- h q[0];
111
- cu1(pi/2) q[1],q[0];
112
- h q[1];
113
- cu1(pi/4) q[2],q[0];
114
- cu1(pi/2) q[2],q[1];
115
- /*
116
- This is a multi line comment.
117
- */
118
- h q[2];
119
- cu1(pi/8) q[3],q[0];
120
- cu1(pi/4) q[3],q[1];
121
- cu1(pi/2) q[3],q[2];
122
- h q[3];
123
-
124
- measure q -> c;
125
- """
126
-
127
-
128
- class TestCircuit:
129
- def test_prepare_GHZ(self):
130
- qc = qtn.Circuit(3)
131
- gates = [
132
- ("H", 0),
133
- ("H", 1),
134
- ("CNOT", 1, 2),
135
- ("CNOT", 0, 2),
136
- ("H", 0),
137
- ("H", 1),
138
- ("H", 2),
139
- ]
140
- qc.apply_gates(gates)
141
- assert qu.expec(qc.psi.to_dense(), qu.ghz_state(3)) == pytest.approx(1)
142
- counts = qc.simulate_counts(1024)
143
- assert len(counts) == 2
144
- assert "000" in counts
145
- assert "111" in counts
146
- assert counts["000"] + counts["111"] == 1024
147
-
148
- def test_from_qsim(self):
149
- G = rand_reg_graph(reg=3, n=18, seed=42)
150
- qsim = graph_to_qsim(G)
151
- qc = qtn.Circuit.from_qsim_str(qsim)
152
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
153
-
154
- def test_from_openqasm2(self):
155
- qc = qtn.Circuit.from_openqasm2_str(example_openqasm2_qft())
156
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
157
-
158
- def test_openqasm2_custom_gates(self):
159
- circ = qtn.Circuit.from_openqasm2_str(
160
- """
161
- OPENQASM 2.0;
162
- include "qelib1.inc";
163
- qreg q[3];
164
-
165
- gate hello a, b {
166
- h a;
167
- cx a, b;
168
- u3(0.1, 0.2, 0.3) b;
169
- }
170
-
171
- gate world(param1, θ) q
172
- {
173
- u2(θ / 2, param1) q;
174
- u2(param1, θ / 2) q;
175
- }
176
-
177
- hello q[0], q[1];
178
- world(0.1, 0.2) q[2];
179
- hello q[2], q[1];
180
- """
181
- )
182
- assert [g.label for g in circ.gates] == [
183
- "H",
184
- "CX",
185
- "U3",
186
- "U2",
187
- "U2",
188
- "H",
189
- "CX",
190
- "U3",
191
- ]
192
-
193
- def test_openqasm2_custom_nested_gates(self):
194
- circ = qtn.Circuit.from_openqasm2_str(
195
- """
196
- OPENQASM 2.0;
197
- include "qelib1.inc";
198
- qreg q[3];
199
-
200
- gate cphase(θ) a, b
201
- {
202
- U3(0, 0, θ / 2) a;
203
- CX a, b;
204
- U3(0, 0, -θ / 2) b;
205
- CX a, b;
206
- U3(0, 0, θ / 2) b;
207
- }
208
-
209
- gate doublecphase(θ) a, b, c {
210
- cphase(θ) a, b;
211
- cphase(θ) b, c;
212
- }
213
-
214
- doublecphase(0.1) q[0], q[1], q[2];
215
- doublecphase(0.2) q[2], q[0], q[1];
216
- """
217
- )
218
- assert [g.label for g in circ.gates] == [
219
- "U3",
220
- "CX",
221
- "U3",
222
- "CX",
223
- "U3",
224
- ] * 4
225
-
226
- @pytest.mark.parametrize(
227
- "Circ", [qtn.Circuit, qtn.CircuitMPS, qtn.CircuitDense]
228
- )
229
- def test_all_gate_methods(self, Circ):
230
- import random
231
-
232
- g_nq_np = [
233
- # single qubit
234
- ("x", 1, 0),
235
- ("y", 1, 0),
236
- ("z", 1, 0),
237
- ("s", 1, 0),
238
- ("t", 1, 0),
239
- ("h", 1, 0),
240
- ("iden", 1, 0),
241
- ("x_1_2", 1, 0),
242
- ("y_1_2", 1, 0),
243
- ("z_1_2", 1, 0),
244
- ("w_1_2", 1, 0),
245
- ("hz_1_2", 1, 0),
246
- # single qubit parametrizable
247
- ("rx", 1, 1),
248
- ("ry", 1, 1),
249
- ("rz", 1, 1),
250
- ("u3", 1, 3),
251
- ("u2", 1, 2),
252
- ("u1", 1, 1),
253
- ("phase", 1, 1),
254
- # two qubit
255
- ("cx", 2, 0),
256
- ("cy", 2, 0),
257
- ("cz", 2, 0),
258
- ("cnot", 2, 0),
259
- ("swap", 2, 0),
260
- ("iswap", 2, 0),
261
- # two qubit parametrizable
262
- ("rxx", 2, 1),
263
- ("ryy", 2, 1),
264
- ("rzz", 2, 1),
265
- ("crx", 2, 1),
266
- ("cry", 2, 1),
267
- ("crz", 2, 1),
268
- ("cu3", 2, 3),
269
- ("cu2", 2, 2),
270
- ("cu1", 2, 1),
271
- ("cphase", 2, 1),
272
- ("fsim", 2, 2),
273
- ("fsimg", 2, 5),
274
- ("givens", 2, 1),
275
- ("givens2", 2, 2),
276
- ("su4", 2, 15),
277
- ]
278
- random.shuffle(g_nq_np)
279
-
280
- psi0 = qtn.MPS_rand_state(2, 2)
281
- circ = Circ(2, psi0=psi0, tags="PSI0")
282
-
283
- for g, n_q, n_p in g_nq_np:
284
- args = [
285
- *np.random.uniform(0, 2 * np.pi, size=n_p),
286
- *np.random.choice([0, 1], replace=False, size=n_q),
287
- ]
288
- getattr(circ, g)(*args)
289
-
290
- assert circ.psi.H @ circ.psi == pytest.approx(1.0)
291
- assert abs((circ.psi.H & psi0) ^ all) < 0.99999999
292
-
293
- def test_su4(self):
294
- psi0 = qtn.MPS_rand_state(2, 2)
295
- circ_a = qtn.Circuit(psi0=psi0)
296
- params = qu.randn(15)
297
-
298
- circ_a.su4(*params, 0, 1)
299
- psi_a = circ_a.to_dense()
300
-
301
- circ_b = qtn.Circuit(psi0=psi0)
302
- (
303
- theta1,
304
- phi1,
305
- lamda1,
306
- theta2,
307
- phi2,
308
- lamda2,
309
- theta3,
310
- phi3,
311
- lamda3,
312
- theta4,
313
- phi4,
314
- lamda4,
315
- t1,
316
- t2,
317
- t3,
318
- ) = params
319
- circ_b.u3(theta1, phi1, lamda1, 0)
320
- circ_b.u3(theta2, phi2, lamda2, 1)
321
- circ_b.cnot(1, 0)
322
- circ_b.rz(t1, 0)
323
- circ_b.ry(t2, 1)
324
- circ_b.cnot(0, 1)
325
- circ_b.ry(t3, 1)
326
- circ_b.cnot(1, 0)
327
- circ_b.u3(theta3, phi3, lamda3, 0)
328
- circ_b.u3(theta4, phi4, lamda4, 1)
329
- psi_b = circ_b.to_dense()
330
-
331
- assert qu.fidelity(psi_a, psi_b) == pytest.approx(1.0)
332
-
333
- def test_three_qubit_gates(self):
334
- psi0 = qtn.MPS_rand_state(3, 2)
335
- circ = qtn.Circuit(psi0=psi0)
336
- circ.ccx(0, 1, 2)
337
- circ.cswap(2, 1, 0)
338
- circ.toffoli(0, 1, 2)
339
- circ.ccy(1, 0, 2)
340
- circ.ccz(1, 2, 0)
341
- circ.fredkin(2, 1, 0)
342
- psi = circ.psi.to_dense()
343
- assert qu.expec(psi, psi) == pytest.approx(1.0)
344
-
345
- def test_auto_split_gate(self):
346
- n = 3
347
- ops = [
348
- ("u3", 1.0, 2.0, 3.0, 0),
349
- ("u3", 2.0, 3.0, 1.0, 1),
350
- ("u3", 3.0, 1.0, 2.0, 2),
351
- ("cz", 0, 1),
352
- ("iswap", 1, 2),
353
- ("cx", 2, 0),
354
- ("iswap", 2, 1),
355
- ("h", 0),
356
- ("h", 1),
357
- ("h", 2),
358
- ]
359
- cnorm = qtn.Circuit(n, gate_opts=dict(contract="split-gate"))
360
- cnorm.apply_gates(ops)
361
- assert cnorm.psi.max_bond() == 4
362
-
363
- cswap = qtn.Circuit(n, gate_opts=dict(contract="swap-split-gate"))
364
- cswap.apply_gates(ops)
365
- assert cswap.psi.max_bond() == 4
366
-
367
- cauto = qtn.Circuit(n, gate_opts=dict(contract="auto-split-gate"))
368
- cauto.apply_gates(ops)
369
- assert cauto.psi.max_bond() == 2
370
-
371
- assert qu.fidelity(
372
- cnorm.psi.to_dense(), cswap.psi.to_dense()
373
- ) == pytest.approx(1.0)
374
- assert qu.fidelity(
375
- cswap.psi.to_dense(), cauto.psi.to_dense()
376
- ) == pytest.approx(1.0)
377
-
378
- @pytest.mark.parametrize("gate2", ["cx", "iswap"])
379
- def test_circuit_simplify_tensor_network(self, gate2):
380
- import random
381
- import itertools
382
-
383
- depth = n = 8
384
-
385
- circ = qtn.Circuit(n)
386
-
387
- def random_single_qubit_layer():
388
- return [
389
- (random.choice(["X_1_2", "Y_1_2", "W_1_2"]), i)
390
- for i in range(n)
391
- ]
392
-
393
- def even_two_qubit_layer():
394
- return [(gate2, i, i + 1) for i in range(0, n, 2)]
395
-
396
- def odd_two_qubit_layer():
397
- return [(gate2, i, i + 1) for i in range(1, n - 1, 2)]
398
-
399
- layering = itertools.cycle(
400
- [
401
- random_single_qubit_layer,
402
- even_two_qubit_layer,
403
- random_single_qubit_layer,
404
- odd_two_qubit_layer,
405
- ]
406
- )
407
-
408
- for i, layer_fn in zip(range(depth), layering):
409
- for g in layer_fn():
410
- circ.apply_gate(*g, gate_round=i)
411
-
412
- psif = qtn.MPS_computational_state("0" * n).squeeze_()
413
- tn = circ.psi & psif
414
-
415
- c = tn.contract(all)
416
- cw = tn.contraction_width()
417
-
418
- tn_s = tn.full_simplify()
419
- assert tn_s.num_tensors < tn.num_tensors
420
- assert tn_s.num_indices < tn.num_indices
421
- # need to specify output inds since we now have hyper edges
422
- c_s = tn_s.contract(all, output_inds=[])
423
- assert c_s == pytest.approx(c)
424
- cw_s = tn_s.contraction_width(output_inds=[])
425
- assert cw_s <= cw
426
-
427
- def test_amplitude(self):
428
- L = 5
429
- circ = random_a2a_circ(L, 3)
430
- psi = circ.to_dense()
431
-
432
- for i in range(2**L):
433
- b = f"{i:0>{L}b}"
434
- c = circ.amplitude(b)
435
- assert c == pytest.approx(psi[i, 0])
436
-
437
- def test_partial_trace(self):
438
- L = 5
439
- circ = random_a2a_circ(L, 3)
440
- psi = circ.to_dense()
441
- for i in range(L - 1):
442
- keep = (i, i + 1)
443
- assert_allclose(
444
- qu.partial_trace(psi, [2] * 5, keep=keep),
445
- circ.partial_trace(keep),
446
- atol=1e-12,
447
- )
448
-
449
- @pytest.mark.parametrize("group_size", (1, 2, 6))
450
- def test_sample(self, group_size):
451
- import collections
452
- from scipy.stats import power_divergence
453
-
454
- C = 2**10
455
- L = 5
456
- circ = random_a2a_circ(L, 3)
457
-
458
- psi = circ.to_dense()
459
- p_exp = abs(psi.reshape(-1)) ** 2
460
- f_exp = p_exp * C
461
-
462
- counts = collections.Counter(circ.sample(C, group_size=group_size))
463
- f_obs = np.zeros(2**L)
464
- for b, c in counts.items():
465
- f_obs[int(b, 2)] = c
466
-
467
- assert power_divergence(f_obs, f_exp)[0] < 100
468
-
469
- @pytest.mark.parametrize("group_size", (1, 3))
470
- def test_sample_gate_by_gate(self, group_size):
471
- import collections
472
- from scipy.stats import power_divergence
473
-
474
- C = 2**10
475
- L = 5
476
- circ = random_a2a_circ(L, 3)
477
-
478
- psi = circ.to_dense()
479
- p_exp = abs(psi.reshape(-1)) ** 2
480
- f_exp = p_exp * C
481
-
482
- counts = collections.Counter(
483
- circ.sample_gate_by_gate(C, group_size=group_size)
484
- )
485
- f_obs = np.zeros(2**L)
486
- for b, c in counts.items():
487
- f_obs[int(b, 2)] = c
488
-
489
- assert power_divergence(f_obs, f_exp)[0] < 100
490
-
491
- def test_sample_chaotic(self):
492
- import collections
493
- from scipy.stats import power_divergence
494
-
495
- C = 2**12
496
- L = 5
497
- reps = 3
498
- depth = 2
499
- goodnesses = [0] * 5
500
-
501
- for _ in range(reps):
502
- circ = random_a2a_circ(L, depth)
503
-
504
- psi = circ.to_dense()
505
- p_exp = abs(psi.reshape(-1)) ** 2
506
- f_exp = p_exp * C
507
-
508
- for num_marginal in [3, 4, 5]:
509
- counts = collections.Counter(
510
- circ.sample_chaotic(C, num_marginal, seed=666)
511
- )
512
- f_obs = np.zeros(2**L)
513
- for b, c in counts.items():
514
- f_obs[int(b, 2)] = c
515
-
516
- goodness = power_divergence(f_obs, f_exp)[0]
517
- goodnesses[num_marginal - 1] += goodness
518
-
519
- # assert average sampling goodness gets better with larger marginal
520
- assert sum(goodnesses[i] < goodnesses[i - 1] for i in range(1, L)) == 2
521
-
522
- def test_local_expectation(self):
523
- import random
524
-
525
- L = 5
526
- depth = 3
527
- circ = random_a2a_circ(L, depth)
528
- psi = circ.to_dense()
529
- for _ in range(10):
530
- G = qu.rand_matrix(4)
531
- i = random.randint(0, L - 2)
532
- where = (i, i + 1)
533
- x1 = qu.expec(qu.ikron(G, [2] * L, where), psi)
534
- x2 = circ.local_expectation(G, where)
535
- assert x1 == pytest.approx(x2)
536
-
537
- def test_local_expectation_multigate(self):
538
- circ = qtn.Circuit(2)
539
- circ.h(0)
540
- circ.cnot(0, 1)
541
- circ.y(1)
542
- Gs = [qu.kronpow(qu.pauli(s), 2) for s in "xyz"]
543
- exps = circ.local_expectation(Gs, [0, 1])
544
- assert exps[0] == pytest.approx(-1)
545
- assert exps[1] == pytest.approx(-1)
546
- assert exps[2] == pytest.approx(-1)
547
-
548
- def test_local_expectation_len1(self):
549
- circ = qtn.Circuit(1)
550
- circ.apply_gate("H", 0, gate_round=0)
551
- circ.local_expectation([qu.pauli("X")], (0,))
552
-
553
- def test_uni_to_dense(self):
554
- import cmath
555
-
556
- circ = qft_circ(3)
557
- U = circ.uni.to_dense()
558
- w = cmath.exp(2j * math.pi / 2**3)
559
- ex = 2 ** (-3 / 2) * np.array(
560
- [
561
- [w**0, w**0, w**0, w**0, w**0, w**0, w**0, w**0],
562
- [w**0, w**1, w**2, w**3, w**4, w**5, w**6, w**7],
563
- [w**0, w**2, w**4, w**6, w**0, w**2, w**4, w**6],
564
- [w**0, w**3, w**6, w**1, w**4, w**7, w**2, w**5],
565
- [w**0, w**4, w**0, w**4, w**0, w**4, w**0, w**4],
566
- [w**0, w**5, w**2, w**7, w**4, w**1, w**6, w**3],
567
- [w**0, w**6, w**4, w**2, w**0, w**6, w**4, w**2],
568
- [w**0, w**7, w**6, w**5, w**4, w**3, w**2, w**1],
569
- ]
570
- )
571
- assert_allclose(U, ex)
572
-
573
- def test_swap_lighcones(self):
574
- circ = qtn.Circuit(3)
575
- circ.x(0) # 0
576
- circ.x(1) # 1
577
- circ.x(2) # 2
578
- circ.swap(0, 1) # 3
579
- circ.cx(1, 2) # 4
580
- circ.cx(0, 1) # 5
581
- assert circ.get_reverse_lightcone_tags((2,)) == (
582
- "PSI0",
583
- "GATE_0",
584
- "GATE_2",
585
- "GATE_4",
586
- )
587
-
588
- def test_swappy_local_expecs(self):
589
- circ = swappy_circ(4, 4)
590
- Gs = [qu.rand_matrix(4) for _ in range(3)]
591
- pairs = [(0, 1), (1, 2), (2, 3)]
592
-
593
- psi = circ.to_dense()
594
- dims = [2] * 4
595
-
596
- exs = [
597
- qu.expec(qu.ikron(G, dims, pair), psi)
598
- for G, pair in zip(Gs, pairs)
599
- ]
600
- aps = [circ.local_expectation(G, pair) for G, pair in zip(Gs, pairs)]
601
-
602
- assert_allclose(exs, aps)
603
-
604
- @pytest.mark.parametrize(
605
- "name, densefn, nparam, nqubit",
606
- [
607
- ("rx", qu.Rx, 1, 1),
608
- ("ry", qu.Ry, 1, 1),
609
- ("rz", qu.Rz, 1, 1),
610
- ("u3", qu.U_gate, 3, 1),
611
- ("fsim", qu.fsim, 2, 2),
612
- ("fsimg", qu.fsimg, 5, 2),
613
- ],
614
- )
615
- def test_parametrized_gates_rx(self, name, densefn, nparam, nqubit):
616
- k0 = qu.rand_ket(2**nqubit)
617
- params = qu.randn(nparam)
618
- kf = densefn(*params) @ k0
619
- k0mps = qtn.MatrixProductState.from_dense(k0, [2] * nqubit)
620
- circ = qtn.Circuit(psi0=k0mps, gate_opts={"contract": False})
621
- getattr(circ, name)(*params, *range(nqubit), parametrize=True)
622
- tn = circ.psi
623
- assert isinstance(tn["GATE_0"], qtn.PTensor)
624
- assert_allclose(circ.to_dense(), kf)
625
-
626
- def test_apply_raw_gate(self):
627
- k0 = qu.rand_ket(4)
628
- psi0 = qtn.MatrixProductState.from_dense(k0, [2] * 2)
629
- circ = qtn.Circuit(psi0=psi0)
630
- U = qu.rand_uni(4)
631
- circ.apply_gate_raw(U, [0, 1], tags="UCUSTOM")
632
- assert len(circ.gates) == 1
633
- assert "UCUSTOM" in circ.psi.tags
634
- assert qu.fidelity(circ.to_dense(), U @ k0) == pytest.approx(1)
635
-
636
- def test_apply_controlled_gate_basic_equiv(self):
637
- circ = qtn.Circuit(3)
638
- circ.apply_gate("x", qubits=(2,), controls=(0, 1))
639
- U = circ.get_uni().to_dense()
640
- assert_allclose(U, qu.toffoli())
641
-
642
- circ = qtn.Circuit(3)
643
- circ.apply_gate("swap", qubits=(1, 2), controls=(0,))
644
- U = circ.get_uni().to_dense()
645
- assert_allclose(U, qu.fredkin())
646
-
647
- def test_multi_controlled_circuit(self):
648
- import random
649
-
650
- N = 10
651
- circ = qtn.Circuit(N)
652
- regs = list(range(N))
653
- random.shuffle(regs)
654
- circ.apply_gate("H", regs[0])
655
- for i in range(N - 1):
656
- circ.apply_gate("CNOT", regs[i], regs[i + 1])
657
- circ.apply_gate("X", N - 1, controls=range(N - 1))
658
- circ.apply_gate("SWAP", qubits=(N - 2, N - 1), controls=range(N - 2))
659
- (b,) = circ.sample(1, group_size=3)
660
- assert b[N - 2] == "0"
661
-
662
-
663
- class TestCircuitMPS:
664
- def test_from_qsim_mps_swapsplit(self):
665
- G = rand_reg_graph(reg=3, n=18, seed=42)
666
- qsim = graph_to_qsim(G)
667
- qc = qtn.CircuitMPS.from_qsim_str(qsim)
668
- assert len(qc.psi.tensors) == 18
669
- assert (qc.psi.H & qc.psi) ^ all == pytest.approx(1.0)
670
-
671
- def test_multi_controlled_mps_circuit(self):
672
- N = 10
673
- rng = np.random.default_rng(42)
674
-
675
- gates = []
676
- for i in range(N):
677
- gates.append(
678
- qtn.Gate(
679
- "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
680
- )
681
- )
682
- gates.append(
683
- qtn.Gate(
684
- "SU4",
685
- params=rng.uniform(0, 2 * np.pi, size=15),
686
- qubits=[6, 2],
687
- controls=[8, 3, 4, 0],
688
- )
689
- )
690
- for i in range(N):
691
- gates.append(
692
- qtn.Gate(
693
- "U3", params=rng.uniform(0, 2 * np.pi, size=3), qubits=[i]
694
- )
695
- )
696
- gates.append(
697
- qtn.Gate.from_raw(
698
- qu.rand_uni(2**3), qubits=[0, 9, 5], controls=[1, 2, 7]
699
- )
700
- )
701
-
702
- circ = qtn.Circuit(N=10)
703
- circ.apply_gates(gates)
704
- psi_lazy = circ.psi
705
- circ = qtn.CircuitMPS(N=10)
706
- circ.apply_gates(gates)
707
- mps = circ.psi
708
- assert mps.norm() == pytest.approx(1.0)
709
- assert mps.distance_normalized(psi_lazy) < 1e-6
710
-
711
- def test_mps_sampling(self):
712
- N = 6
713
- circ = qtn.CircuitMPS(N)
714
- circ.h(3)
715
- circ.cx(3, 2)
716
- circ.cx(2, 1)
717
- circ.cx(1, 0)
718
- circ.cx(0, 5)
719
- circ.cx(5, 4)
720
- circ.x(4)
721
- for x in circ.sample(10):
722
- assert x in {"000010", "111101"}
723
-
724
- def test_mps_sampling_seed(self):
725
- N = 1
726
- circ = qtn.CircuitMPS(N)
727
- circ.h(0)
728
- samples = list(circ.sample(10, seed=1234))
729
- assert len(set(samples)) == 2
730
-
731
- def test_permmps_sampling(self):
732
- N = 6
733
- circ = qtn.CircuitPermMPS(N)
734
- circ.h(3)
735
- circ.cx(3, 2)
736
- circ.cx(2, 1)
737
- circ.cx(1, 0)
738
- circ.cx(0, 5)
739
- circ.cx(5, 4)
740
- circ.x(4)
741
- assert circ.qubits != tuple(range(N))
742
- for x in circ.sample(10):
743
- assert x in {"000010", "111101"}
744
-
745
- def test_permmps_sampling_seed(self):
746
- N = 1
747
- circ = qtn.CircuitPermMPS(N)
748
- circ.h(0)
749
- samples = list(circ.sample(10, seed=1234))
750
- assert len(set(samples)) == 2
751
-
752
-
753
- class TestCircuitGen:
754
- @pytest.mark.parametrize(
755
- "ansatz,cyclic",
756
- [
757
- ("zigzag", False),
758
- ("brickwork", False),
759
- ("brickwork", True),
760
- ("rand", False),
761
- ("rand", True),
762
- ],
763
- )
764
- @pytest.mark.parametrize("n", [4, 5])
765
- def test_1D_ansatzes(self, ansatz, cyclic, n):
766
- depth = 3
767
- num_pairs = n if cyclic else n - 1
768
-
769
- fn = {
770
- "zigzag": qtn.circ_ansatz_1D_zigzag,
771
- "brickwork": qtn.circ_ansatz_1D_brickwork,
772
- "rand": qtn.circ_ansatz_1D_rand,
773
- }[ansatz]
774
-
775
- opts = dict(
776
- n=n,
777
- depth=3,
778
- gate_opts=dict(contract=False),
779
- )
780
- if cyclic:
781
- opts["cyclic"] = True
782
- if ansatz == "rand":
783
- opts["seed"] = 42
784
-
785
- circ = fn(**opts)
786
- tn = circ.uni
787
-
788
- # total number of entangling gates
789
- assert len(tn["CZ"]) == num_pairs * depth
790
-
791
- # number of entangling gates per pair
792
- for i in range(num_pairs):
793
- assert len(tn["CZ", f"I{i}", f"I{(i + 1) % n}"]) == depth
794
-
795
- assert all(isinstance(t, qtn.PTensor) for t in tn["U3"])
796
-
797
- def test_qaoa(self):
798
- G = rand_reg_graph(3, 10, seed=666)
799
- terms = {(i, j): 1.0 for i, j in G.edges}
800
- ZZ = qu.pauli("Z") & qu.pauli("Z")
801
-
802
- gammas = [-0.6]
803
- betas = [-0.4]
804
-
805
- circ1 = qtn.circ_qaoa(terms, 1, gammas, betas)
806
-
807
- energy1 = sum(circ1.local_expectation(ZZ, edge) for edge in terms)
808
- assert energy1 < -4
809
-
810
- gammas = [-0.4]
811
- betas = [0.3]
812
-
813
- circ2 = qtn.circ_qaoa(terms, 1, gammas, betas)
814
-
815
- energy2 = sum(circ2.local_expectation(ZZ, edge) for edge in terms)
816
- assert energy2 > 4