Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- trajectree/__init__.py +0 -3
- trajectree/fock_optics/devices.py +1 -1
- trajectree/fock_optics/light_sources.py +2 -2
- trajectree/fock_optics/measurement.py +9 -9
- trajectree/fock_optics/outputs.py +10 -6
- trajectree/fock_optics/utils.py +9 -6
- trajectree/sequence/swap.py +5 -4
- trajectree/trajectory.py +5 -4
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
- trajectree-0.0.3.dist-info/RECORD +16 -0
- trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
- trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
- trajectree/quimb/docs/conf.py +0 -158
- trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
- trajectree/quimb/quimb/__init__.py +0 -507
- trajectree/quimb/quimb/calc.py +0 -1491
- trajectree/quimb/quimb/core.py +0 -2279
- trajectree/quimb/quimb/evo.py +0 -712
- trajectree/quimb/quimb/experimental/__init__.py +0 -0
- trajectree/quimb/quimb/experimental/autojittn.py +0 -129
- trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
- trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
- trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
- trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
- trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
- trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
- trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
- trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
- trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
- trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
- trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
- trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
- trajectree/quimb/quimb/experimental/schematic.py +0 -7
- trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
- trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
- trajectree/quimb/quimb/gates.py +0 -36
- trajectree/quimb/quimb/gen/__init__.py +0 -2
- trajectree/quimb/quimb/gen/operators.py +0 -1167
- trajectree/quimb/quimb/gen/rand.py +0 -713
- trajectree/quimb/quimb/gen/states.py +0 -479
- trajectree/quimb/quimb/linalg/__init__.py +0 -6
- trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
- trajectree/quimb/quimb/linalg/autoblock.py +0 -258
- trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
- trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
- trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
- trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
- trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
- trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
- trajectree/quimb/quimb/schematic.py +0 -1518
- trajectree/quimb/quimb/tensor/__init__.py +0 -401
- trajectree/quimb/quimb/tensor/array_ops.py +0 -610
- trajectree/quimb/quimb/tensor/circuit.py +0 -4824
- trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
- trajectree/quimb/quimb/tensor/contraction.py +0 -336
- trajectree/quimb/quimb/tensor/decomp.py +0 -1255
- trajectree/quimb/quimb/tensor/drawing.py +0 -1646
- trajectree/quimb/quimb/tensor/fitting.py +0 -385
- trajectree/quimb/quimb/tensor/geometry.py +0 -583
- trajectree/quimb/quimb/tensor/interface.py +0 -114
- trajectree/quimb/quimb/tensor/networking.py +0 -1058
- trajectree/quimb/quimb/tensor/optimize.py +0 -1818
- trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
- trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
- trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
- trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
- trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
- trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
- trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
- trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
- trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
- trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
- trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
- trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
- trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
- trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
- trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
- trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
- trajectree/quimb/quimb/utils.py +0 -892
- trajectree/quimb/tests/__init__.py +0 -0
- trajectree/quimb/tests/test_accel.py +0 -501
- trajectree/quimb/tests/test_calc.py +0 -788
- trajectree/quimb/tests/test_core.py +0 -847
- trajectree/quimb/tests/test_evo.py +0 -565
- trajectree/quimb/tests/test_gen/__init__.py +0 -0
- trajectree/quimb/tests/test_gen/test_operators.py +0 -361
- trajectree/quimb/tests/test_gen/test_rand.py +0 -296
- trajectree/quimb/tests/test_gen/test_states.py +0 -261
- trajectree/quimb/tests/test_linalg/__init__.py +0 -0
- trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
- trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
- trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
- trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
- trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
- trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
- trajectree/quimb/tests/test_tensor/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
- trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
- trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
- trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
- trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
- trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
- trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
- trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
- trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
- trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
- trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
- trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
- trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
- trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
- trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
- trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
- trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
- trajectree/quimb/tests/test_utils.py +0 -85
- trajectree-0.0.1.dist-info/RECORD +0 -126
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
- {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
|
@@ -1,144 +0,0 @@
|
|
|
1
|
-
import itertools
|
|
2
|
-
import importlib
|
|
3
|
-
|
|
4
|
-
import pytest
|
|
5
|
-
|
|
6
|
-
import quimb as qu
|
|
7
|
-
import quimb.tensor as qtn
|
|
8
|
-
|
|
9
|
-
found_torch = importlib.util.find_spec("torch") is not None
|
|
10
|
-
|
|
11
|
-
pytorch_case = pytest.param(
|
|
12
|
-
"torch",
|
|
13
|
-
marks=pytest.mark.skipif(not found_torch, reason="pytorch not installed"),
|
|
14
|
-
)
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class TestLocalHam2DConstruct:
|
|
18
|
-
@pytest.mark.parametrize("H2_type", ["default", "manual"])
|
|
19
|
-
@pytest.mark.parametrize("H1_type", [None, "default", "manual"])
|
|
20
|
-
@pytest.mark.parametrize("Lx", [3, 4])
|
|
21
|
-
@pytest.mark.parametrize("Ly", [3, 4])
|
|
22
|
-
def test_construct(self, Lx, Ly, H2_type, H1_type):
|
|
23
|
-
import matplotlib
|
|
24
|
-
from matplotlib import pyplot as plt
|
|
25
|
-
|
|
26
|
-
matplotlib.use("Template")
|
|
27
|
-
|
|
28
|
-
if H2_type == "default":
|
|
29
|
-
H2 = qu.rand_herm(4)
|
|
30
|
-
elif H2_type == "manual":
|
|
31
|
-
H2 = dict()
|
|
32
|
-
for i, j in itertools.product(range(Lx), range(Ly)):
|
|
33
|
-
if i + 1 < Lx:
|
|
34
|
-
H2[(i, j), (i + 1, j)] = qu.rand_herm(4)
|
|
35
|
-
if j + 1 < Ly:
|
|
36
|
-
H2[(i, j), (i, j + 1)] = qu.rand_herm(4)
|
|
37
|
-
|
|
38
|
-
if H1_type is None:
|
|
39
|
-
H1 = None
|
|
40
|
-
elif H1_type == "default":
|
|
41
|
-
H1 = qu.rand_herm(2)
|
|
42
|
-
elif H1_type == "manual":
|
|
43
|
-
H1 = dict()
|
|
44
|
-
for i, j in itertools.product(range(Lx), range(Ly)):
|
|
45
|
-
H1[i, j] = qu.rand_herm(2)
|
|
46
|
-
|
|
47
|
-
ham = qtn.LocalHam2D(Lx, Ly, H2, H1)
|
|
48
|
-
assert len(ham.terms) == 2 * Lx * Ly - Lx - Ly
|
|
49
|
-
|
|
50
|
-
# check that terms are being cached if possible
|
|
51
|
-
if (H2_type == "default") and (H1_type is None):
|
|
52
|
-
assert len({id(x) for x in ham.terms.values()}) == 1
|
|
53
|
-
|
|
54
|
-
print(ham)
|
|
55
|
-
fig, ax = ham.draw()
|
|
56
|
-
plt.close(fig)
|
|
57
|
-
|
|
58
|
-
@pytest.mark.parametrize("Lx", [4, 5])
|
|
59
|
-
@pytest.mark.parametrize("Ly", [4, 5])
|
|
60
|
-
@pytest.mark.parametrize(
|
|
61
|
-
"order", [None, "sort", "random", "smallest_last"]
|
|
62
|
-
)
|
|
63
|
-
def test_ordering(self, Lx, Ly, order):
|
|
64
|
-
ham = qtn.ham_2d_j1j2(Lx, Ly)
|
|
65
|
-
assert len(ham.terms) == 2 * Lx * Ly - Lx - Ly + 2 * (Lx - 1) * (
|
|
66
|
-
Ly - 1
|
|
67
|
-
)
|
|
68
|
-
ordering = ham.get_auto_ordering(order)
|
|
69
|
-
assert len(ordering) == len(ham.terms)
|
|
70
|
-
assert set(ordering) == set(ham.terms)
|
|
71
|
-
assert tuple(ordering) != tuple(ham.terms)
|
|
72
|
-
|
|
73
|
-
# make sure first four pairs are in same commuting group at least
|
|
74
|
-
first_four_pairs = tuple(itertools.chain(*ordering[:4]))
|
|
75
|
-
assert len(first_four_pairs) == len(set(first_four_pairs))
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
class TestSimpleUpdate:
|
|
79
|
-
@pytest.mark.parametrize("backend", ["numpy", pytorch_case])
|
|
80
|
-
def test_heis_small(self, backend):
|
|
81
|
-
Lx = 3
|
|
82
|
-
Ly = 4
|
|
83
|
-
D = 2
|
|
84
|
-
|
|
85
|
-
ham = qtn.ham_2d_heis(Lx, Ly)
|
|
86
|
-
psi0 = qtn.PEPS.rand(Lx, Ly, D)
|
|
87
|
-
|
|
88
|
-
def to_backend(x):
|
|
89
|
-
import autoray
|
|
90
|
-
|
|
91
|
-
return autoray.do("array", x, like=backend)
|
|
92
|
-
|
|
93
|
-
psi0.apply_to_arrays(to_backend)
|
|
94
|
-
ham.apply_to_arrays(to_backend)
|
|
95
|
-
|
|
96
|
-
su = qtn.SimpleUpdate(
|
|
97
|
-
psi0,
|
|
98
|
-
ham,
|
|
99
|
-
progbar=True,
|
|
100
|
-
keep_best=True,
|
|
101
|
-
compute_energy_every=10,
|
|
102
|
-
ordering="largest_first",
|
|
103
|
-
)
|
|
104
|
-
|
|
105
|
-
su.evolve(33, tau=0.3)
|
|
106
|
-
su.state = su.best["state"]
|
|
107
|
-
su.evolve(33, tau=0.1)
|
|
108
|
-
su.state = su.best["state"]
|
|
109
|
-
su.evolve(33, tau=0.03)
|
|
110
|
-
su.state = su.best["state"]
|
|
111
|
-
|
|
112
|
-
assert su.best["energy"] < -6.25
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
class TestFullUpdate:
|
|
116
|
-
@pytest.mark.parametrize("backend", ["numpy", pytorch_case])
|
|
117
|
-
def test_heis_small(self, backend):
|
|
118
|
-
Lx = 3
|
|
119
|
-
Ly = 4
|
|
120
|
-
D = 2
|
|
121
|
-
|
|
122
|
-
psi0 = qtn.PEPS.rand(Lx, Ly, D)
|
|
123
|
-
ham = qtn.ham_2d_heis(Lx, Ly)
|
|
124
|
-
|
|
125
|
-
def to_backend(x):
|
|
126
|
-
import autoray
|
|
127
|
-
|
|
128
|
-
return autoray.do("array", x, like=backend)
|
|
129
|
-
|
|
130
|
-
psi0.apply_to_arrays(to_backend)
|
|
131
|
-
ham.apply_to_arrays(to_backend)
|
|
132
|
-
|
|
133
|
-
su = qtn.FullUpdate(
|
|
134
|
-
psi0, ham, progbar=True, keep_best=True, compute_energy_every=1
|
|
135
|
-
)
|
|
136
|
-
|
|
137
|
-
su.evolve(33, tau=0.3)
|
|
138
|
-
su.state = su.best["state"]
|
|
139
|
-
su.evolve(33, tau=0.1)
|
|
140
|
-
su.state = su.best["state"]
|
|
141
|
-
su.evolve(33, tau=0.03)
|
|
142
|
-
su.state = su.best["state"]
|
|
143
|
-
|
|
144
|
-
assert su.best["energy"] < -6.30
|
|
@@ -1,123 +0,0 @@
|
|
|
1
|
-
import pytest
|
|
2
|
-
import autoray as ar
|
|
3
|
-
|
|
4
|
-
import quimb as qu
|
|
5
|
-
import quimb.tensor as qtn
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
class TestTensorNetwork3D:
|
|
9
|
-
def test_cyclic_basic(self):
|
|
10
|
-
tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=True)
|
|
11
|
-
assert tn.is_cyclic_x()
|
|
12
|
-
assert tn.is_cyclic_y()
|
|
13
|
-
assert tn.is_cyclic_z()
|
|
14
|
-
assert tn.num_indices == 3 * tn.nsites
|
|
15
|
-
tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(False, False, True))
|
|
16
|
-
assert not tn.is_cyclic_x()
|
|
17
|
-
assert not tn.is_cyclic_y()
|
|
18
|
-
assert tn.is_cyclic_z()
|
|
19
|
-
assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Lz) - (
|
|
20
|
-
tn.Ly * tn.Lz
|
|
21
|
-
)
|
|
22
|
-
tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(False, True, False))
|
|
23
|
-
assert not tn.is_cyclic_x()
|
|
24
|
-
assert tn.is_cyclic_y()
|
|
25
|
-
assert not tn.is_cyclic_z()
|
|
26
|
-
assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Ly) - (
|
|
27
|
-
tn.Ly * tn.Lz
|
|
28
|
-
)
|
|
29
|
-
tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(True, False, False))
|
|
30
|
-
assert tn.is_cyclic_x()
|
|
31
|
-
assert not tn.is_cyclic_y()
|
|
32
|
-
assert not tn.is_cyclic_z()
|
|
33
|
-
assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Ly) - (
|
|
34
|
-
tn.Lx * tn.Lz
|
|
35
|
-
)
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
class Test3DManualContract:
|
|
39
|
-
@pytest.mark.parametrize("canonize", [False, True])
|
|
40
|
-
def test_contract_boundary_ising_model(self, canonize):
|
|
41
|
-
L = 5
|
|
42
|
-
beta = 0.3
|
|
43
|
-
fex = -2.7654417752878
|
|
44
|
-
tn = qtn.TN3D_classical_ising_partition_function(L, L, L, beta=beta)
|
|
45
|
-
Z = tn.contract_boundary(max_bond=8, canonize=canonize)
|
|
46
|
-
f = -qu.log(Z) / (L**3 * beta)
|
|
47
|
-
assert f == pytest.approx(fex, rel=1e-3)
|
|
48
|
-
|
|
49
|
-
@pytest.mark.parametrize("dims", [(10, 4, 3), (4, 3, 10), (3, 10, 4)])
|
|
50
|
-
def test_contract_boundary_stopping_criterion(self, dims):
|
|
51
|
-
tn = qtn.TN3D_from_fill_fn(
|
|
52
|
-
lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
|
|
53
|
-
*dims,
|
|
54
|
-
D=2,
|
|
55
|
-
)
|
|
56
|
-
tn.contract_boundary_(
|
|
57
|
-
4, cutoff=0.0, final_contract=False, progbar=True
|
|
58
|
-
)
|
|
59
|
-
assert tn.max_bond() == 4
|
|
60
|
-
assert 32 <= tn.num_tensors <= 40
|
|
61
|
-
|
|
62
|
-
@pytest.mark.parametrize("lazy", [False, True])
|
|
63
|
-
def test_coarse_grain_basics(self, lazy):
|
|
64
|
-
tn = qtn.TN3D_from_fill_fn(
|
|
65
|
-
lambda shape: ar.lazy.Variable(shape, backend="numpy"),
|
|
66
|
-
Lx=6,
|
|
67
|
-
Ly=7,
|
|
68
|
-
Lz=8,
|
|
69
|
-
D=2,
|
|
70
|
-
)
|
|
71
|
-
tncg = tn.coarse_grain_hotrg("x", max_bond=3, cutoff=0.0, lazy=lazy)
|
|
72
|
-
assert (tncg.Lx, tncg.Ly, tncg.Lz) == (3, 7, 8)
|
|
73
|
-
assert not tncg.outer_inds()
|
|
74
|
-
assert tncg.max_bond() == 3
|
|
75
|
-
assert "I4,0,0" not in tncg.tag_map
|
|
76
|
-
assert "X3" not in tncg.tag_map
|
|
77
|
-
|
|
78
|
-
tncg = tn.coarse_grain_hotrg("y", max_bond=3, cutoff=0.0, lazy=lazy)
|
|
79
|
-
assert (tncg.Lx, tncg.Ly, tncg.Lz) == (6, 4, 8)
|
|
80
|
-
assert not tncg.outer_inds()
|
|
81
|
-
assert tncg.max_bond() == 3
|
|
82
|
-
assert "I0,5,0" not in tncg.tag_map
|
|
83
|
-
assert "Y4" not in tncg.tag_map
|
|
84
|
-
|
|
85
|
-
tncg = tn.coarse_grain_hotrg("z", max_bond=3, cutoff=0.0, lazy=lazy)
|
|
86
|
-
assert (tncg.Lx, tncg.Ly, tncg.Lz) == (6, 7, 4)
|
|
87
|
-
assert "I0,0,5" not in tncg.tag_map
|
|
88
|
-
assert "Z4" not in tncg.tag_map
|
|
89
|
-
|
|
90
|
-
def test_contract_hotrg_ising_model(self):
|
|
91
|
-
L = 5
|
|
92
|
-
beta = 0.3
|
|
93
|
-
fex = -2.7654417752878
|
|
94
|
-
tn = qtn.TN3D_classical_ising_partition_function(L, L, L, beta=beta)
|
|
95
|
-
tn.contract_hotrg_(max_bond=4, progbar=True, equalize_norms=1.0)
|
|
96
|
-
Z = tn.item() * 10**tn.exponent
|
|
97
|
-
f = -qu.log(Z) / (L**3 * beta)
|
|
98
|
-
assert f == pytest.approx(fex, rel=1e-2)
|
|
99
|
-
|
|
100
|
-
@pytest.mark.parametrize("cyclicx", [False, True])
|
|
101
|
-
@pytest.mark.parametrize("cyclicy", [False, True])
|
|
102
|
-
@pytest.mark.parametrize("cyclicz", [False, True])
|
|
103
|
-
@pytest.mark.parametrize("mode", ["hotrg", "ctmrg"])
|
|
104
|
-
def test_contract_cyclic(self, cyclicx, cyclicy, cyclicz, mode):
|
|
105
|
-
Lx, Ly, Lz = 3, 4, 5
|
|
106
|
-
chi = 3
|
|
107
|
-
tn = qtn.TN3D_from_fill_fn(
|
|
108
|
-
lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
|
|
109
|
-
Lx,
|
|
110
|
-
Ly,
|
|
111
|
-
Lz,
|
|
112
|
-
D=2,
|
|
113
|
-
cyclic=(cyclicx, cyclicy, cyclicz),
|
|
114
|
-
)
|
|
115
|
-
if mode == "hotrg":
|
|
116
|
-
lZ = tn.contract_hotrg(max_bond=chi, cutoff=0.0)
|
|
117
|
-
elif mode == "ctmrg":
|
|
118
|
-
lZ = tn.contract_ctmrg(max_bond=chi, cutoff=0.0)
|
|
119
|
-
|
|
120
|
-
if any((cyclicx, cyclicy, cyclicz)):
|
|
121
|
-
assert lZ.history_max_size() < 2**16
|
|
122
|
-
else:
|
|
123
|
-
assert lZ.history_max_size() < 2**13
|
|
@@ -1,226 +0,0 @@
|
|
|
1
|
-
import pytest
|
|
2
|
-
from numpy.testing import assert_allclose
|
|
3
|
-
|
|
4
|
-
import quimb.tensor as qtn
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
@pytest.mark.parametrize("which_A", ["upper", "lower"])
|
|
8
|
-
@pytest.mark.parametrize("contract", [True, False])
|
|
9
|
-
@pytest.mark.parametrize("inplace", [True, False])
|
|
10
|
-
def test_tensor_network_apply_op_vec(which_A, contract, inplace):
|
|
11
|
-
A = qtn.TN_from_edges_rand(
|
|
12
|
-
qtn.edges_2d_square(3, 2),
|
|
13
|
-
D=2,
|
|
14
|
-
phys_dim=2,
|
|
15
|
-
site_ind_id=("k{}", "b{}"),
|
|
16
|
-
dtype=complex,
|
|
17
|
-
)
|
|
18
|
-
x = qtn.TN_from_edges_rand(
|
|
19
|
-
qtn.edges_2d_square(3, 2),
|
|
20
|
-
D=3,
|
|
21
|
-
phys_dim=2,
|
|
22
|
-
site_ind_id="x{}",
|
|
23
|
-
dtype=complex,
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
Ad = A.to_dense()
|
|
27
|
-
if which_A == "upper":
|
|
28
|
-
Ad = Ad.T
|
|
29
|
-
xd = x.to_dense()
|
|
30
|
-
C = Ad @ xd
|
|
31
|
-
|
|
32
|
-
Ax = qtn.tensor_network_apply_op_vec(
|
|
33
|
-
A,
|
|
34
|
-
x,
|
|
35
|
-
which_A,
|
|
36
|
-
inplace=inplace,
|
|
37
|
-
contract=contract,
|
|
38
|
-
)
|
|
39
|
-
|
|
40
|
-
if contract:
|
|
41
|
-
# checks fusing
|
|
42
|
-
assert Ax.num_indices == x.num_indices
|
|
43
|
-
|
|
44
|
-
if inplace:
|
|
45
|
-
assert Ax is x
|
|
46
|
-
else:
|
|
47
|
-
assert isinstance(Ax, x.__class__)
|
|
48
|
-
assert Ax.site_ind_id == x.site_ind_id
|
|
49
|
-
|
|
50
|
-
assert_allclose(Ax.to_dense(), C)
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
@pytest.mark.parametrize("which_A", ["upper", "lower"])
|
|
54
|
-
@pytest.mark.parametrize("which_B", ["upper", "lower"])
|
|
55
|
-
@pytest.mark.parametrize("contract", [True, False])
|
|
56
|
-
@pytest.mark.parametrize("inplace", [True, False])
|
|
57
|
-
def test_tensor_network_apply_op_op(which_A, which_B, contract, inplace):
|
|
58
|
-
A = qtn.TN_from_edges_rand(
|
|
59
|
-
qtn.edges_2d_square(3, 2),
|
|
60
|
-
D=2,
|
|
61
|
-
phys_dim=2,
|
|
62
|
-
site_ind_id=("k{}", "b{}"),
|
|
63
|
-
dtype=complex,
|
|
64
|
-
)
|
|
65
|
-
B = qtn.TN_from_edges_rand(
|
|
66
|
-
qtn.edges_2d_square(3, 2),
|
|
67
|
-
D=3,
|
|
68
|
-
phys_dim=2,
|
|
69
|
-
site_ind_id=("x{}", "y{}"),
|
|
70
|
-
dtype=complex,
|
|
71
|
-
)
|
|
72
|
-
Ad = A.to_dense()
|
|
73
|
-
if which_A == "upper":
|
|
74
|
-
Ad = Ad.T
|
|
75
|
-
Bd = B.to_dense()
|
|
76
|
-
if which_B == "lower":
|
|
77
|
-
Bd = Bd.T
|
|
78
|
-
C = Ad @ Bd
|
|
79
|
-
if which_B == "lower":
|
|
80
|
-
C = C.T
|
|
81
|
-
|
|
82
|
-
AB = qtn.tensor_network_apply_op_op(
|
|
83
|
-
A,
|
|
84
|
-
B,
|
|
85
|
-
which_A,
|
|
86
|
-
which_B,
|
|
87
|
-
inplace=inplace,
|
|
88
|
-
contract=contract,
|
|
89
|
-
)
|
|
90
|
-
|
|
91
|
-
if contract:
|
|
92
|
-
# checks fusing
|
|
93
|
-
assert AB.num_indices == B.num_indices
|
|
94
|
-
|
|
95
|
-
if inplace:
|
|
96
|
-
assert AB is B
|
|
97
|
-
else:
|
|
98
|
-
assert isinstance(AB, B.__class__)
|
|
99
|
-
assert AB.upper_ind_id == B.upper_ind_id
|
|
100
|
-
assert AB.lower_ind_id == B.lower_ind_id
|
|
101
|
-
|
|
102
|
-
assert_allclose(AB.to_dense(), C)
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
def test_gate_with_op():
|
|
106
|
-
A = qtn.MPO_rand(5, 3, dtype=complex)
|
|
107
|
-
x = qtn.MPS_rand_state(5, 3, dtype=complex)
|
|
108
|
-
y = A.to_dense() @ x.to_dense()
|
|
109
|
-
x.gate_with_op_lazy_(A)
|
|
110
|
-
assert_allclose(x.to_dense(), y)
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
def test_gate_sandwich_with_op():
|
|
114
|
-
B = qtn.MPO_rand(5, 3, dtype=complex)
|
|
115
|
-
A = qtn.MPO_rand(5, 3, dtype=complex)
|
|
116
|
-
y = A.to_dense() @ B.to_dense() @ A.to_dense().conj().T
|
|
117
|
-
B.gate_sandwich_with_op_lazy_(A)
|
|
118
|
-
assert_allclose(B.to_dense(), y)
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
def test_normalize_simple():
|
|
122
|
-
psi = qtn.PEPS.rand(3, 3, 2, dtype=complex)
|
|
123
|
-
gauges = {}
|
|
124
|
-
psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
|
|
125
|
-
psi.normalize_simple(gauges)
|
|
126
|
-
|
|
127
|
-
for where in [
|
|
128
|
-
[(0, 0)],
|
|
129
|
-
[(1, 1), (1, 2)],
|
|
130
|
-
[(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1)],
|
|
131
|
-
]:
|
|
132
|
-
tags = [psi.site_tag(w) for w in where]
|
|
133
|
-
k = psi.select_any(tags, virtual=False)
|
|
134
|
-
k.gauge_simple_insert(gauges)
|
|
135
|
-
|
|
136
|
-
assert k.H @ k == pytest.approx(1.0)
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
def test_local_expectation_loop_expansions():
|
|
140
|
-
import quimb as qu
|
|
141
|
-
|
|
142
|
-
edges = [(0, 1), (0, 2), (2, 3), (1, 3), (2, 4), (3, 5), (4, 5)]
|
|
143
|
-
psi = qtn.TN_from_edges_rand(
|
|
144
|
-
edges,
|
|
145
|
-
D=3,
|
|
146
|
-
phys_dim=2,
|
|
147
|
-
seed=42,
|
|
148
|
-
dist="uniform",
|
|
149
|
-
loc=-0.1,
|
|
150
|
-
)
|
|
151
|
-
G = qu.rand_herm(4)
|
|
152
|
-
where = (0, 2)
|
|
153
|
-
o_ex = psi.local_expectation_exact(G, where)
|
|
154
|
-
|
|
155
|
-
gauges = {}
|
|
156
|
-
psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
|
|
157
|
-
psi.normalize_simple(gauges)
|
|
158
|
-
|
|
159
|
-
# test loop generation per term
|
|
160
|
-
o_c0 = psi.local_expectation_loop_expansion(
|
|
161
|
-
G, where, loops=0, gauges=gauges
|
|
162
|
-
)
|
|
163
|
-
assert o_c0 == pytest.approx(
|
|
164
|
-
psi.local_expectation_cluster(G, where, gauges=gauges)
|
|
165
|
-
)
|
|
166
|
-
assert o_ex == pytest.approx(o_c0, rel=0.5, abs=0.01)
|
|
167
|
-
o_c1 = psi.local_expectation_loop_expansion(
|
|
168
|
-
G, where, loops=4, gauges=gauges
|
|
169
|
-
)
|
|
170
|
-
assert o_ex == pytest.approx(o_c1, rel=0.5, abs=0.01)
|
|
171
|
-
o_c2 = psi.local_expectation_loop_expansion(
|
|
172
|
-
G, where, loops=6, gauges=gauges
|
|
173
|
-
)
|
|
174
|
-
assert o_ex == pytest.approx(o_c2, rel=0.4, abs=0.01)
|
|
175
|
-
|
|
176
|
-
# test manual loops supply
|
|
177
|
-
loops = tuple(psi.gen_paths_loops(6))
|
|
178
|
-
o_cl = psi.local_expectation_loop_expansion(
|
|
179
|
-
G, where, loops=loops, gauges=gauges
|
|
180
|
-
)
|
|
181
|
-
assert o_ex == pytest.approx(o_cl, rel=0.4, abs=0.01)
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
def test_local_expectation_cluster_expansions():
|
|
185
|
-
import quimb as qu
|
|
186
|
-
|
|
187
|
-
edges = [(0, 1), (0, 2), (2, 3), (1, 3), (2, 4), (3, 5), (4, 5)]
|
|
188
|
-
psi = qtn.TN_from_edges_rand(
|
|
189
|
-
edges,
|
|
190
|
-
D=3,
|
|
191
|
-
phys_dim=2,
|
|
192
|
-
seed=42,
|
|
193
|
-
dist="uniform",
|
|
194
|
-
loc=-0.1,
|
|
195
|
-
)
|
|
196
|
-
G = qu.rand_herm(4)
|
|
197
|
-
where = (0, 2)
|
|
198
|
-
o_ex = psi.local_expectation_exact(G, where)
|
|
199
|
-
|
|
200
|
-
gauges = {}
|
|
201
|
-
psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
|
|
202
|
-
psi.normalize_simple(gauges)
|
|
203
|
-
|
|
204
|
-
# test cluster generation per term
|
|
205
|
-
o_c0 = psi.local_expectation_cluster_expansion(
|
|
206
|
-
G, where, clusters=0, gauges=gauges
|
|
207
|
-
)
|
|
208
|
-
assert o_c0 == pytest.approx(
|
|
209
|
-
psi.local_expectation_cluster(G, where, gauges=gauges)
|
|
210
|
-
)
|
|
211
|
-
assert o_ex == pytest.approx(o_c0, rel=0.5, abs=0.01)
|
|
212
|
-
o_c1 = psi.local_expectation_cluster_expansion(
|
|
213
|
-
G, where, clusters=4, gauges=gauges
|
|
214
|
-
)
|
|
215
|
-
assert o_ex == pytest.approx(o_c1, rel=0.5, abs=0.01)
|
|
216
|
-
o_c2 = psi.local_expectation_cluster_expansion(
|
|
217
|
-
G, where, clusters=6, gauges=gauges
|
|
218
|
-
)
|
|
219
|
-
assert o_ex == pytest.approx(o_c2, rel=0.4, abs=0.01)
|
|
220
|
-
|
|
221
|
-
# test manual clusters supply
|
|
222
|
-
clusters = tuple(psi.gen_regions(4))
|
|
223
|
-
o_cl = psi.local_expectation_cluster_expansion(
|
|
224
|
-
G, where, clusters=clusters, gauges=gauges
|
|
225
|
-
)
|
|
226
|
-
assert o_ex == pytest.approx(o_cl, rel=0.4, abs=0.01)
|