Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,144 +0,0 @@
1
- import itertools
2
- import importlib
3
-
4
- import pytest
5
-
6
- import quimb as qu
7
- import quimb.tensor as qtn
8
-
9
- found_torch = importlib.util.find_spec("torch") is not None
10
-
11
- pytorch_case = pytest.param(
12
- "torch",
13
- marks=pytest.mark.skipif(not found_torch, reason="pytorch not installed"),
14
- )
15
-
16
-
17
- class TestLocalHam2DConstruct:
18
- @pytest.mark.parametrize("H2_type", ["default", "manual"])
19
- @pytest.mark.parametrize("H1_type", [None, "default", "manual"])
20
- @pytest.mark.parametrize("Lx", [3, 4])
21
- @pytest.mark.parametrize("Ly", [3, 4])
22
- def test_construct(self, Lx, Ly, H2_type, H1_type):
23
- import matplotlib
24
- from matplotlib import pyplot as plt
25
-
26
- matplotlib.use("Template")
27
-
28
- if H2_type == "default":
29
- H2 = qu.rand_herm(4)
30
- elif H2_type == "manual":
31
- H2 = dict()
32
- for i, j in itertools.product(range(Lx), range(Ly)):
33
- if i + 1 < Lx:
34
- H2[(i, j), (i + 1, j)] = qu.rand_herm(4)
35
- if j + 1 < Ly:
36
- H2[(i, j), (i, j + 1)] = qu.rand_herm(4)
37
-
38
- if H1_type is None:
39
- H1 = None
40
- elif H1_type == "default":
41
- H1 = qu.rand_herm(2)
42
- elif H1_type == "manual":
43
- H1 = dict()
44
- for i, j in itertools.product(range(Lx), range(Ly)):
45
- H1[i, j] = qu.rand_herm(2)
46
-
47
- ham = qtn.LocalHam2D(Lx, Ly, H2, H1)
48
- assert len(ham.terms) == 2 * Lx * Ly - Lx - Ly
49
-
50
- # check that terms are being cached if possible
51
- if (H2_type == "default") and (H1_type is None):
52
- assert len({id(x) for x in ham.terms.values()}) == 1
53
-
54
- print(ham)
55
- fig, ax = ham.draw()
56
- plt.close(fig)
57
-
58
- @pytest.mark.parametrize("Lx", [4, 5])
59
- @pytest.mark.parametrize("Ly", [4, 5])
60
- @pytest.mark.parametrize(
61
- "order", [None, "sort", "random", "smallest_last"]
62
- )
63
- def test_ordering(self, Lx, Ly, order):
64
- ham = qtn.ham_2d_j1j2(Lx, Ly)
65
- assert len(ham.terms) == 2 * Lx * Ly - Lx - Ly + 2 * (Lx - 1) * (
66
- Ly - 1
67
- )
68
- ordering = ham.get_auto_ordering(order)
69
- assert len(ordering) == len(ham.terms)
70
- assert set(ordering) == set(ham.terms)
71
- assert tuple(ordering) != tuple(ham.terms)
72
-
73
- # make sure first four pairs are in same commuting group at least
74
- first_four_pairs = tuple(itertools.chain(*ordering[:4]))
75
- assert len(first_four_pairs) == len(set(first_four_pairs))
76
-
77
-
78
- class TestSimpleUpdate:
79
- @pytest.mark.parametrize("backend", ["numpy", pytorch_case])
80
- def test_heis_small(self, backend):
81
- Lx = 3
82
- Ly = 4
83
- D = 2
84
-
85
- ham = qtn.ham_2d_heis(Lx, Ly)
86
- psi0 = qtn.PEPS.rand(Lx, Ly, D)
87
-
88
- def to_backend(x):
89
- import autoray
90
-
91
- return autoray.do("array", x, like=backend)
92
-
93
- psi0.apply_to_arrays(to_backend)
94
- ham.apply_to_arrays(to_backend)
95
-
96
- su = qtn.SimpleUpdate(
97
- psi0,
98
- ham,
99
- progbar=True,
100
- keep_best=True,
101
- compute_energy_every=10,
102
- ordering="largest_first",
103
- )
104
-
105
- su.evolve(33, tau=0.3)
106
- su.state = su.best["state"]
107
- su.evolve(33, tau=0.1)
108
- su.state = su.best["state"]
109
- su.evolve(33, tau=0.03)
110
- su.state = su.best["state"]
111
-
112
- assert su.best["energy"] < -6.25
113
-
114
-
115
- class TestFullUpdate:
116
- @pytest.mark.parametrize("backend", ["numpy", pytorch_case])
117
- def test_heis_small(self, backend):
118
- Lx = 3
119
- Ly = 4
120
- D = 2
121
-
122
- psi0 = qtn.PEPS.rand(Lx, Ly, D)
123
- ham = qtn.ham_2d_heis(Lx, Ly)
124
-
125
- def to_backend(x):
126
- import autoray
127
-
128
- return autoray.do("array", x, like=backend)
129
-
130
- psi0.apply_to_arrays(to_backend)
131
- ham.apply_to_arrays(to_backend)
132
-
133
- su = qtn.FullUpdate(
134
- psi0, ham, progbar=True, keep_best=True, compute_energy_every=1
135
- )
136
-
137
- su.evolve(33, tau=0.3)
138
- su.state = su.best["state"]
139
- su.evolve(33, tau=0.1)
140
- su.state = su.best["state"]
141
- su.evolve(33, tau=0.03)
142
- su.state = su.best["state"]
143
-
144
- assert su.best["energy"] < -6.30
@@ -1,123 +0,0 @@
1
- import pytest
2
- import autoray as ar
3
-
4
- import quimb as qu
5
- import quimb.tensor as qtn
6
-
7
-
8
- class TestTensorNetwork3D:
9
- def test_cyclic_basic(self):
10
- tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=True)
11
- assert tn.is_cyclic_x()
12
- assert tn.is_cyclic_y()
13
- assert tn.is_cyclic_z()
14
- assert tn.num_indices == 3 * tn.nsites
15
- tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(False, False, True))
16
- assert not tn.is_cyclic_x()
17
- assert not tn.is_cyclic_y()
18
- assert tn.is_cyclic_z()
19
- assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Lz) - (
20
- tn.Ly * tn.Lz
21
- )
22
- tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(False, True, False))
23
- assert not tn.is_cyclic_x()
24
- assert tn.is_cyclic_y()
25
- assert not tn.is_cyclic_z()
26
- assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Ly) - (
27
- tn.Ly * tn.Lz
28
- )
29
- tn = qtn.TN3D_empty(Lx=3, Ly=4, Lz=5, D=2, cyclic=(True, False, False))
30
- assert tn.is_cyclic_x()
31
- assert not tn.is_cyclic_y()
32
- assert not tn.is_cyclic_z()
33
- assert tn.num_indices == 3 * tn.nsites - (tn.Lx * tn.Ly) - (
34
- tn.Lx * tn.Lz
35
- )
36
-
37
-
38
- class Test3DManualContract:
39
- @pytest.mark.parametrize("canonize", [False, True])
40
- def test_contract_boundary_ising_model(self, canonize):
41
- L = 5
42
- beta = 0.3
43
- fex = -2.7654417752878
44
- tn = qtn.TN3D_classical_ising_partition_function(L, L, L, beta=beta)
45
- Z = tn.contract_boundary(max_bond=8, canonize=canonize)
46
- f = -qu.log(Z) / (L**3 * beta)
47
- assert f == pytest.approx(fex, rel=1e-3)
48
-
49
- @pytest.mark.parametrize("dims", [(10, 4, 3), (4, 3, 10), (3, 10, 4)])
50
- def test_contract_boundary_stopping_criterion(self, dims):
51
- tn = qtn.TN3D_from_fill_fn(
52
- lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
53
- *dims,
54
- D=2,
55
- )
56
- tn.contract_boundary_(
57
- 4, cutoff=0.0, final_contract=False, progbar=True
58
- )
59
- assert tn.max_bond() == 4
60
- assert 32 <= tn.num_tensors <= 40
61
-
62
- @pytest.mark.parametrize("lazy", [False, True])
63
- def test_coarse_grain_basics(self, lazy):
64
- tn = qtn.TN3D_from_fill_fn(
65
- lambda shape: ar.lazy.Variable(shape, backend="numpy"),
66
- Lx=6,
67
- Ly=7,
68
- Lz=8,
69
- D=2,
70
- )
71
- tncg = tn.coarse_grain_hotrg("x", max_bond=3, cutoff=0.0, lazy=lazy)
72
- assert (tncg.Lx, tncg.Ly, tncg.Lz) == (3, 7, 8)
73
- assert not tncg.outer_inds()
74
- assert tncg.max_bond() == 3
75
- assert "I4,0,0" not in tncg.tag_map
76
- assert "X3" not in tncg.tag_map
77
-
78
- tncg = tn.coarse_grain_hotrg("y", max_bond=3, cutoff=0.0, lazy=lazy)
79
- assert (tncg.Lx, tncg.Ly, tncg.Lz) == (6, 4, 8)
80
- assert not tncg.outer_inds()
81
- assert tncg.max_bond() == 3
82
- assert "I0,5,0" not in tncg.tag_map
83
- assert "Y4" not in tncg.tag_map
84
-
85
- tncg = tn.coarse_grain_hotrg("z", max_bond=3, cutoff=0.0, lazy=lazy)
86
- assert (tncg.Lx, tncg.Ly, tncg.Lz) == (6, 7, 4)
87
- assert "I0,0,5" not in tncg.tag_map
88
- assert "Z4" not in tncg.tag_map
89
-
90
- def test_contract_hotrg_ising_model(self):
91
- L = 5
92
- beta = 0.3
93
- fex = -2.7654417752878
94
- tn = qtn.TN3D_classical_ising_partition_function(L, L, L, beta=beta)
95
- tn.contract_hotrg_(max_bond=4, progbar=True, equalize_norms=1.0)
96
- Z = tn.item() * 10**tn.exponent
97
- f = -qu.log(Z) / (L**3 * beta)
98
- assert f == pytest.approx(fex, rel=1e-2)
99
-
100
- @pytest.mark.parametrize("cyclicx", [False, True])
101
- @pytest.mark.parametrize("cyclicy", [False, True])
102
- @pytest.mark.parametrize("cyclicz", [False, True])
103
- @pytest.mark.parametrize("mode", ["hotrg", "ctmrg"])
104
- def test_contract_cyclic(self, cyclicx, cyclicy, cyclicz, mode):
105
- Lx, Ly, Lz = 3, 4, 5
106
- chi = 3
107
- tn = qtn.TN3D_from_fill_fn(
108
- lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
109
- Lx,
110
- Ly,
111
- Lz,
112
- D=2,
113
- cyclic=(cyclicx, cyclicy, cyclicz),
114
- )
115
- if mode == "hotrg":
116
- lZ = tn.contract_hotrg(max_bond=chi, cutoff=0.0)
117
- elif mode == "ctmrg":
118
- lZ = tn.contract_ctmrg(max_bond=chi, cutoff=0.0)
119
-
120
- if any((cyclicx, cyclicy, cyclicz)):
121
- assert lZ.history_max_size() < 2**16
122
- else:
123
- assert lZ.history_max_size() < 2**13
@@ -1,226 +0,0 @@
1
- import pytest
2
- from numpy.testing import assert_allclose
3
-
4
- import quimb.tensor as qtn
5
-
6
-
7
- @pytest.mark.parametrize("which_A", ["upper", "lower"])
8
- @pytest.mark.parametrize("contract", [True, False])
9
- @pytest.mark.parametrize("inplace", [True, False])
10
- def test_tensor_network_apply_op_vec(which_A, contract, inplace):
11
- A = qtn.TN_from_edges_rand(
12
- qtn.edges_2d_square(3, 2),
13
- D=2,
14
- phys_dim=2,
15
- site_ind_id=("k{}", "b{}"),
16
- dtype=complex,
17
- )
18
- x = qtn.TN_from_edges_rand(
19
- qtn.edges_2d_square(3, 2),
20
- D=3,
21
- phys_dim=2,
22
- site_ind_id="x{}",
23
- dtype=complex,
24
- )
25
-
26
- Ad = A.to_dense()
27
- if which_A == "upper":
28
- Ad = Ad.T
29
- xd = x.to_dense()
30
- C = Ad @ xd
31
-
32
- Ax = qtn.tensor_network_apply_op_vec(
33
- A,
34
- x,
35
- which_A,
36
- inplace=inplace,
37
- contract=contract,
38
- )
39
-
40
- if contract:
41
- # checks fusing
42
- assert Ax.num_indices == x.num_indices
43
-
44
- if inplace:
45
- assert Ax is x
46
- else:
47
- assert isinstance(Ax, x.__class__)
48
- assert Ax.site_ind_id == x.site_ind_id
49
-
50
- assert_allclose(Ax.to_dense(), C)
51
-
52
-
53
- @pytest.mark.parametrize("which_A", ["upper", "lower"])
54
- @pytest.mark.parametrize("which_B", ["upper", "lower"])
55
- @pytest.mark.parametrize("contract", [True, False])
56
- @pytest.mark.parametrize("inplace", [True, False])
57
- def test_tensor_network_apply_op_op(which_A, which_B, contract, inplace):
58
- A = qtn.TN_from_edges_rand(
59
- qtn.edges_2d_square(3, 2),
60
- D=2,
61
- phys_dim=2,
62
- site_ind_id=("k{}", "b{}"),
63
- dtype=complex,
64
- )
65
- B = qtn.TN_from_edges_rand(
66
- qtn.edges_2d_square(3, 2),
67
- D=3,
68
- phys_dim=2,
69
- site_ind_id=("x{}", "y{}"),
70
- dtype=complex,
71
- )
72
- Ad = A.to_dense()
73
- if which_A == "upper":
74
- Ad = Ad.T
75
- Bd = B.to_dense()
76
- if which_B == "lower":
77
- Bd = Bd.T
78
- C = Ad @ Bd
79
- if which_B == "lower":
80
- C = C.T
81
-
82
- AB = qtn.tensor_network_apply_op_op(
83
- A,
84
- B,
85
- which_A,
86
- which_B,
87
- inplace=inplace,
88
- contract=contract,
89
- )
90
-
91
- if contract:
92
- # checks fusing
93
- assert AB.num_indices == B.num_indices
94
-
95
- if inplace:
96
- assert AB is B
97
- else:
98
- assert isinstance(AB, B.__class__)
99
- assert AB.upper_ind_id == B.upper_ind_id
100
- assert AB.lower_ind_id == B.lower_ind_id
101
-
102
- assert_allclose(AB.to_dense(), C)
103
-
104
-
105
- def test_gate_with_op():
106
- A = qtn.MPO_rand(5, 3, dtype=complex)
107
- x = qtn.MPS_rand_state(5, 3, dtype=complex)
108
- y = A.to_dense() @ x.to_dense()
109
- x.gate_with_op_lazy_(A)
110
- assert_allclose(x.to_dense(), y)
111
-
112
-
113
- def test_gate_sandwich_with_op():
114
- B = qtn.MPO_rand(5, 3, dtype=complex)
115
- A = qtn.MPO_rand(5, 3, dtype=complex)
116
- y = A.to_dense() @ B.to_dense() @ A.to_dense().conj().T
117
- B.gate_sandwich_with_op_lazy_(A)
118
- assert_allclose(B.to_dense(), y)
119
-
120
-
121
- def test_normalize_simple():
122
- psi = qtn.PEPS.rand(3, 3, 2, dtype=complex)
123
- gauges = {}
124
- psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
125
- psi.normalize_simple(gauges)
126
-
127
- for where in [
128
- [(0, 0)],
129
- [(1, 1), (1, 2)],
130
- [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 1)],
131
- ]:
132
- tags = [psi.site_tag(w) for w in where]
133
- k = psi.select_any(tags, virtual=False)
134
- k.gauge_simple_insert(gauges)
135
-
136
- assert k.H @ k == pytest.approx(1.0)
137
-
138
-
139
- def test_local_expectation_loop_expansions():
140
- import quimb as qu
141
-
142
- edges = [(0, 1), (0, 2), (2, 3), (1, 3), (2, 4), (3, 5), (4, 5)]
143
- psi = qtn.TN_from_edges_rand(
144
- edges,
145
- D=3,
146
- phys_dim=2,
147
- seed=42,
148
- dist="uniform",
149
- loc=-0.1,
150
- )
151
- G = qu.rand_herm(4)
152
- where = (0, 2)
153
- o_ex = psi.local_expectation_exact(G, where)
154
-
155
- gauges = {}
156
- psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
157
- psi.normalize_simple(gauges)
158
-
159
- # test loop generation per term
160
- o_c0 = psi.local_expectation_loop_expansion(
161
- G, where, loops=0, gauges=gauges
162
- )
163
- assert o_c0 == pytest.approx(
164
- psi.local_expectation_cluster(G, where, gauges=gauges)
165
- )
166
- assert o_ex == pytest.approx(o_c0, rel=0.5, abs=0.01)
167
- o_c1 = psi.local_expectation_loop_expansion(
168
- G, where, loops=4, gauges=gauges
169
- )
170
- assert o_ex == pytest.approx(o_c1, rel=0.5, abs=0.01)
171
- o_c2 = psi.local_expectation_loop_expansion(
172
- G, where, loops=6, gauges=gauges
173
- )
174
- assert o_ex == pytest.approx(o_c2, rel=0.4, abs=0.01)
175
-
176
- # test manual loops supply
177
- loops = tuple(psi.gen_paths_loops(6))
178
- o_cl = psi.local_expectation_loop_expansion(
179
- G, where, loops=loops, gauges=gauges
180
- )
181
- assert o_ex == pytest.approx(o_cl, rel=0.4, abs=0.01)
182
-
183
-
184
- def test_local_expectation_cluster_expansions():
185
- import quimb as qu
186
-
187
- edges = [(0, 1), (0, 2), (2, 3), (1, 3), (2, 4), (3, 5), (4, 5)]
188
- psi = qtn.TN_from_edges_rand(
189
- edges,
190
- D=3,
191
- phys_dim=2,
192
- seed=42,
193
- dist="uniform",
194
- loc=-0.1,
195
- )
196
- G = qu.rand_herm(4)
197
- where = (0, 2)
198
- o_ex = psi.local_expectation_exact(G, where)
199
-
200
- gauges = {}
201
- psi.gauge_all_simple_(100, 5e-6, gauges=gauges)
202
- psi.normalize_simple(gauges)
203
-
204
- # test cluster generation per term
205
- o_c0 = psi.local_expectation_cluster_expansion(
206
- G, where, clusters=0, gauges=gauges
207
- )
208
- assert o_c0 == pytest.approx(
209
- psi.local_expectation_cluster(G, where, gauges=gauges)
210
- )
211
- assert o_ex == pytest.approx(o_c0, rel=0.5, abs=0.01)
212
- o_c1 = psi.local_expectation_cluster_expansion(
213
- G, where, clusters=4, gauges=gauges
214
- )
215
- assert o_ex == pytest.approx(o_c1, rel=0.5, abs=0.01)
216
- o_c2 = psi.local_expectation_cluster_expansion(
217
- G, where, clusters=6, gauges=gauges
218
- )
219
- assert o_ex == pytest.approx(o_c2, rel=0.4, abs=0.01)
220
-
221
- # test manual clusters supply
222
- clusters = tuple(psi.gen_regions(4))
223
- o_cl = psi.local_expectation_cluster_expansion(
224
- G, where, clusters=clusters, gauges=gauges
225
- )
226
- assert o_ex == pytest.approx(o_cl, rel=0.4, abs=0.01)