Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,788 +0,0 @@
1
- import pytest
2
- import itertools
3
- import math
4
- import numpy as np
5
- from numpy.testing import assert_allclose
6
- import quimb as qu
7
-
8
-
9
- @pytest.fixture
10
- def p1():
11
- return qu.rand_rho(3)
12
-
13
-
14
- @pytest.fixture
15
- def p2():
16
- return qu.rand_rho(3)
17
-
18
-
19
- @pytest.fixture
20
- def k1():
21
- return qu.rand_ket(3)
22
-
23
-
24
- @pytest.fixture
25
- def k2():
26
- return qu.rand_ket(3)
27
-
28
-
29
- @pytest.fixture
30
- def orthog_ks():
31
- p = qu.rand_rho(3)
32
- v = qu.eigvecsh(p)
33
- return (v[:, [0]], v[:, [1]], v[:, [2]])
34
-
35
-
36
- # --------------------------------------------------------------------------- #
37
- # TESTS #
38
- # --------------------------------------------------------------------------- #
39
-
40
-
41
- class TestFidelity:
42
- def test_both_pure(self, k1, k2):
43
- f = qu.fidelity(k1, k1)
44
- assert_allclose(f, 1.0)
45
- f = qu.fidelity(k1, k2)
46
- assert f > 0 and f < 1
47
-
48
- def test_both_mixed(self, p1, p2):
49
- f = qu.fidelity(qu.eye(3) / 3, qu.eye(3) / 3)
50
- assert_allclose(f, 1.0)
51
- f = qu.fidelity(p1, p1)
52
- assert_allclose(f, 1.0)
53
- f = qu.fidelity(p1, p2)
54
- assert f > 0 and f < 1
55
-
56
- def test_orthog_pure(self, orthog_ks):
57
- k1, k2, k3 = orthog_ks
58
- for (
59
- s1,
60
- s2,
61
- ) in (
62
- [k1, k2],
63
- [k2, k3],
64
- [k3, k1],
65
- [k1 @ k1.H, k2],
66
- [k1, k2 @ k2.H],
67
- [k3 @ k3.H, k2],
68
- [k3, k2 @ k2.H],
69
- [k1 @ k1.H, k3],
70
- [k1, k3 @ k3.H],
71
- [k1 @ k1.H, k2 @ k2.H],
72
- [k2 @ k2.H, k3 @ k3.H],
73
- [k1 @ k1.H, k3 @ k3.H],
74
- ):
75
- f = qu.fidelity(s1, s2)
76
- assert_allclose(f, 0.0, atol=1e-6)
77
-
78
-
79
- class TestPurify:
80
- def test_d2(self):
81
- rho = qu.eye(2) / 2
82
- psi = qu.purify(rho)
83
- assert qu.expec(psi, qu.bell_state("phi+")) > 1 - 1e-14
84
-
85
- def test_pure(self):
86
- rho = qu.up(qtype="dop")
87
- psi = qu.purify(rho)
88
- assert abs(qu.concurrence(psi)) < 1e-14
89
-
90
-
91
- class TestDephase:
92
- @pytest.mark.parametrize("rand_rank", [None, 0.3, 2])
93
- def test_basic(self, rand_rank):
94
- rho = qu.rand_rho(9)
95
- ln = qu.logneg(rho, [3, 3])
96
- for p in (0.2, 0.5, 0.8, 1.0):
97
- rho_d = qu.dephase(rho, p, rand_rank=rand_rank)
98
- assert qu.logneg(rho_d, [3, 3]) <= ln
99
- assert rho_d.tr() == pytest.approx(1.0)
100
-
101
-
102
- class TestKrausOp:
103
- @pytest.mark.parametrize("stack", [False, True])
104
- def test_depolarize(self, stack):
105
- rho = qu.rand_rho(2)
106
- I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
107
- es = [qu.expec(rho, A) for A in (X, Y, Z)]
108
- p = 0.1
109
- Ek = [
110
- (1 - p) ** 0.5 * I,
111
- (p / 3) ** 0.5 * X,
112
- (p / 3) ** 0.5 * Y,
113
- (p / 3) ** 0.5 * Z,
114
- ]
115
- if stack:
116
- Ek = np.stack(Ek, axis=0)
117
- sigma = qu.kraus_op(rho, Ek, check=True)
118
- es2 = [qu.expec(sigma, A) for A in (X, Y, Z)]
119
- assert qu.tr(sigma) == pytest.approx(1.0)
120
- assert all(abs(e2) < abs(e) for e, e2 in zip(es, es2))
121
- sig_exp = sum(E @ rho @ qu.dag(E) for E in Ek)
122
- assert_allclose(sig_exp, sigma)
123
-
124
- def test_subsystem(self):
125
- rho = qu.rand_rho(6)
126
- dims = [3, 2]
127
- I, X, Y, Z = (qu.pauli(s) for s in "IXYZ")
128
- mi_i = qu.mutual_information(rho, dims)
129
- p = 0.1
130
- Ek = [
131
- (1 - p) ** 0.5 * I,
132
- (p / 3) ** 0.5 * X,
133
- (p / 3) ** 0.5 * Y,
134
- (p / 3) ** 0.5 * Z,
135
- ]
136
-
137
- with pytest.raises(ValueError):
138
- qu.kraus_op(
139
- rho, qu.randn((3, 2, 2)), check=True, dims=dims, where=1
140
- )
141
-
142
- sigma = qu.kraus_op(rho, Ek, check=True, dims=dims, where=1)
143
- mi_f = qu.mutual_information(sigma, dims)
144
- assert mi_f < mi_i
145
- assert qu.tr(sigma) == pytest.approx(1.0)
146
- sig_exp = sum(
147
- (qu.eye(3) & E) @ rho @ qu.dag(qu.eye(3) & E) for E in Ek
148
- )
149
- assert_allclose(sig_exp, sigma)
150
-
151
- def test_multisubsystem(self):
152
- qu.seed_rand(42)
153
- dims = [2, 2, 2]
154
- IIX = qu.ikron(qu.rand_matrix(2), dims, 2)
155
- dcmp = qu.pauli_decomp(IIX, mode="c")
156
- for p, x in dcmp.items():
157
- if abs(x) < 1e-12:
158
- assert (p[0] != "I") or (p[1] != "I")
159
- else:
160
- assert p[0] == p[1] == "I"
161
- K = qu.rand_iso(3 * 4, 4).reshape(3, 4, 4)
162
- KIIXK = qu.kraus_op(IIX, K, dims=dims, where=[0, 2], check=True)
163
- dcmp = qu.pauli_decomp(KIIXK, mode="c")
164
- for p, x in dcmp.items():
165
- if abs(x) > 1e-12:
166
- assert (p == "III") or p[1] == "I"
167
-
168
- @pytest.mark.parametrize("subsystem", [(0, 1), (1, 2), (2, 0)])
169
- def test_multisubsytem_kraus_identity(self, subsystem):
170
- n = 3
171
- qu.seed_rand(7)
172
- rho = qu.rand_rho(2**n)
173
- Ek = np.array([qu.eye(2 ** len(subsystem))])
174
- sigma = qu.kraus_op(rho, Ek, dims=[2] * n, where=[0, 1], check=True)
175
- assert qu.fidelity(rho, sigma) == pytest.approx(1.0)
176
-
177
-
178
- class TestProjector:
179
- def test_simple(self):
180
- Z = qu.pauli("Z")
181
- P = qu.projector(Z & Z)
182
- uu = qu.dop(qu.up()) & qu.dop(qu.up())
183
- dd = qu.dop(qu.down()) & qu.dop(qu.down())
184
- assert_allclose(P, uu + dd)
185
- assert qu.expec(P, qu.bell_state("phi+")) == pytest.approx(1.0)
186
- assert qu.expec(P, qu.bell_state("psi+")) == pytest.approx(0.0)
187
-
188
-
189
- class TestMeasure:
190
- def test_pure(self):
191
- psi = qu.bell_state("psi-")
192
- IZ = qu.pauli("I") & qu.pauli("Z")
193
- ZI = qu.pauli("Z") & qu.pauli("I")
194
- res, psi_after = qu.measure(psi, IZ)
195
- # normalized
196
- assert qu.expectation(psi_after, psi_after) == pytest.approx(1.0)
197
- # anticorrelated
198
- assert qu.expectation(psi_after, IZ) == pytest.approx(res)
199
- assert qu.expectation(psi_after, ZI) == pytest.approx(-res)
200
- assert isinstance(psi_after, qu.qarray)
201
-
202
- def test_bigger(self):
203
- psi = qu.rand_ket(2**5)
204
- assert np.sum(abs(psi) < 1e-12) == 0
205
- A = qu.kronpow(qu.pauli("Z"), 5)
206
- res, psi_after = qu.measure(psi, A, eigenvalue=-1.0)
207
- # should have projected to half subspace
208
- assert np.sum(abs(psi_after) < 1e-12) == 2**4
209
- assert res == -1.0
210
-
211
- def test_mixed(self):
212
- rho = qu.dop(qu.bell_state("psi-"))
213
- IZ = qu.pauli("I") & qu.pauli("Z")
214
- ZI = qu.pauli("Z") & qu.pauli("I")
215
- res, rho_after = qu.measure(rho, IZ)
216
- # normalized
217
- assert qu.tr(rho_after) == pytest.approx(1.0)
218
- # anticorrelated
219
- assert qu.expectation(rho_after, IZ) == pytest.approx(res)
220
- assert qu.expectation(rho_after, ZI) == pytest.approx(-res)
221
- assert isinstance(rho_after, qu.qarray)
222
-
223
-
224
- class TestSimulateCounts:
225
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
226
- def test_ghz(self, qtype):
227
- psi = qu.ghz_state(3, qtype=qtype)
228
- results = qu.simulate_counts(psi, 1024)
229
- assert len(results) == 2
230
- assert "000" in results
231
- assert "111" in results
232
-
233
-
234
- class TestCPrint:
235
- def test_basic(self):
236
- psi = qu.ghz_state(2)
237
- qu.cprint(psi)
238
-
239
-
240
- class TestEntropy:
241
- def test_entropy_pure(self):
242
- a = qu.bell_state(1, qtype="dop")
243
- assert_allclose(0.0, qu.entropy(a), atol=1e-12)
244
-
245
- def test_entropy_mixed(self):
246
- a = 0.5 * (
247
- qu.bell_state(1, qtype="dop") + qu.bell_state(2, qtype="dop")
248
- )
249
- assert_allclose(1.0, qu.entropy(a), atol=1e-12)
250
-
251
- @pytest.mark.parametrize(
252
- "evals, e",
253
- [
254
- ([0, 1, 0, 0], 0),
255
- ([0, 0.5, 0, 0.5], 1),
256
- ([0.25, 0.25, 0.25, 0.25], 2),
257
- ],
258
- )
259
- def test_list(self, evals, e):
260
- assert_allclose(qu.entropy(evals), e)
261
-
262
- @pytest.mark.parametrize(
263
- "evals, e",
264
- [
265
- ([0, 1, 0, 0], 0),
266
- ([0, 0.5, 0, 0.5], 1),
267
- ([0.25, 0.25, 0.25, 0.25], 2),
268
- ],
269
- )
270
- def test_1darray(self, evals, e):
271
- assert_allclose(qu.entropy(np.asarray(evals)), e)
272
-
273
- @pytest.mark.parametrize("m", [1, 2, 3])
274
- def test_rank(self, m):
275
- k = qu.rand_ket(2**4)
276
- pab = qu.ptr(k, [2, 2, 2, 2], range(m))
277
- ef = qu.entropy(pab)
278
- er = qu.entropy(pab, rank=2**m)
279
- assert_allclose(ef, er)
280
-
281
- def test_entropy_subsystem(self):
282
- p = qu.rand_ket(2**9)
283
- # exact
284
- e1 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1e30)
285
- # approx
286
- e2 = qu.entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1)
287
- assert e1 != e2
288
- assert_allclose(e1, e2, rtol=0.2)
289
-
290
- assert (
291
- qu.entropy_subsys(p, (2**5, 2**4), [0, 1], approx_thresh=1) == 0.0
292
- )
293
-
294
-
295
- class TestMutualInformation:
296
- def test_mutual_information_pure(self):
297
- a = qu.bell_state(0)
298
- assert_allclose(qu.mutual_information(a), 2.0)
299
- a = qu.rand_product_state(2)
300
- assert_allclose(qu.mutual_information(a), 0.0, atol=1e-12)
301
-
302
- def test_mutual_information_pure_sub(self):
303
- a = qu.up() & qu.bell_state(1)
304
- ixy = qu.mutual_information(a, [2, 2, 2], 0, 1)
305
- assert_allclose(0.0, ixy, atol=1e-12)
306
- ixy = qu.mutual_information(a, [2, 2, 2], 0, 2)
307
- assert_allclose(0.0, ixy, atol=1e-12)
308
- ixy = qu.mutual_information(a, [2, 2, 2], 2, 1)
309
- assert_allclose(2.0, ixy, atol=1e-12)
310
-
311
- @pytest.mark.parametrize("inds", [(0, 1), (1, 2), (0, 2)])
312
- def test_mixed_sub(self, inds):
313
- a = qu.rand_rho(2**3)
314
- rho_ab = qu.ptr(a, [2, 2, 2], inds)
315
- ixy = qu.mutual_information(rho_ab, (2, 2))
316
- assert 0 <= ixy <= 2.0
317
-
318
- def test_mutinf_interleave(self):
319
- p = qu.dop(qu.singlet() & qu.singlet())
320
- ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
321
- assert_allclose(ixy, 4)
322
-
323
- def test_mutinf_interleave_pure(self):
324
- p = qu.singlet() & qu.singlet()
325
- ixy = qu.mutual_information(p, [2] * 4, sysa=(0, 2))
326
- assert_allclose(ixy, 4)
327
-
328
- def test_mutinf_subsys(self):
329
- p = qu.rand_ket(2**9)
330
- dims = (2**3, 2**2, 2**4)
331
- # exact
332
- rho_ab = qu.ptr(p, dims, [0, 2])
333
- mi0 = qu.mutual_information(rho_ab, [8, 16])
334
- mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1e30)
335
- assert_allclose(mi1, mi0)
336
- # approx
337
- mi2 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1)
338
- assert_allclose(mi1, mi2, rtol=0.1)
339
-
340
- def test_mutinf_subsys_pure(self):
341
- p = qu.rand_ket(2**7)
342
- dims = (2**3, 2**4)
343
- # exact
344
- mi0 = qu.mutual_information(p, dims, sysa=0)
345
- mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=1, approx_thresh=1e30)
346
- assert_allclose(mi1, mi0)
347
- # approx
348
- mi2 = qu.mutinf_subsys(
349
- p, dims, sysa=0, sysb=1, approx_thresh=1, tol=5e-3
350
- )
351
- assert_allclose(mi1, mi2, rtol=0.1)
352
-
353
-
354
- class TestSchmidtGap:
355
- def test_bell_state(self):
356
- p = qu.bell_state("psi-")
357
- assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 0.0)
358
- p = qu.up() & qu.down()
359
- assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 1.0)
360
- p = qu.rand_ket(2**3)
361
- assert 0 < qu.schmidt_gap(p, [2] * 3, sysa=[0, 1]) < 1.0
362
-
363
-
364
- class TestPartialTranspose:
365
- def test_partial_transpose(self):
366
- a = qu.bell_state(0, qtype="dop")
367
- b = qu.partial_transpose(a)
368
- assert isinstance(b, qu.qarray)
369
- assert_allclose(
370
- b,
371
- np.array(
372
- [
373
- [0, 0, 0, -0.5],
374
- [0, 0.5, 0, 0],
375
- [0, 0, 0.5, 0],
376
- [-0.5, 0, 0, 0],
377
- ]
378
- ),
379
- )
380
-
381
- def test_tr_sqrt_rank(self):
382
- psi = qu.rand_ket(2**5)
383
- rhoa = psi.ptr([2] * 5, range(4))
384
- assert_allclose(qu.tr_sqrt(rhoa), qu.tr_sqrt(rhoa, rank=2))
385
-
386
-
387
- class TestNegativity:
388
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
389
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
390
- def test_simple(self, qtype, bs):
391
- p = qu.bell_state(bs, qtype=qtype)
392
- assert qu.negativity(p) > 0.5 - 1e-14
393
-
394
- def test_subsystem(self):
395
- p = qu.singlet_pairs(4)
396
- rhoab = p.ptr([2, 2, 2, 2], [0, 1])
397
- assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
398
- rhoab = p.ptr([2, 2, 2, 2], [1, 2])
399
- assert qu.negativity(rhoab, [2] * 2) < 1e-14
400
- rhoab = p.ptr([2, 2, 2, 2], [2, 3])
401
- assert qu.negativity(rhoab, [2] * 2) > 0.5 - 1e-14
402
-
403
-
404
- class TestLogarithmicNegativity:
405
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
406
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
407
- def test_bell_states(self, qtype, bs):
408
- p = qu.bell_state(bs, qtype=qtype)
409
- assert qu.logneg(p) > 1.0 - 1e-14
410
-
411
- def test_subsystem(self):
412
- p = qu.singlet_pairs(4)
413
- rhoab = p.ptr([2, 2, 2, 2], [0, 1])
414
- assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
415
- rhoab = p.ptr([2, 2, 2, 2], [1, 2])
416
- assert qu.logneg(rhoab, [2] * 2) < 1e-14
417
- rhoab = p.ptr([2, 2, 2, 2], [2, 3])
418
- assert qu.logneg(rhoab, [2] * 2) > 1 - 1e-14
419
-
420
- def test_interleaving(self):
421
- p = qu.permute(qu.singlet() & qu.singlet(), [2, 2, 2, 2], [0, 2, 1, 3])
422
- assert qu.logneg(p, [2] * 4, sysa=[0, 3]) > 2 - 1e-13
423
-
424
- def test_logneg_subsys(self):
425
- p = qu.rand_ket(2 ** (2 + 3 + 1 + 2))
426
- dims = (2**2, 2**3, 2**1, 2**2)
427
- sysa = [0, 3]
428
- sysb = 1
429
- # exact 1
430
- ln0 = qu.logneg(qu.ptr(p, dims, [0, 1, 3]), [4, 8, 4], [0, 2])
431
- # exact 2
432
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
433
- assert_allclose(ln0, ln1)
434
- # approx
435
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1)
436
- assert ln1 != ln2
437
- assert_allclose(ln1, ln2, rtol=5e-2)
438
-
439
- def test_logneg_subsys_pure(self):
440
- p = qu.rand_ket(2 ** (3 + 4))
441
- dims = (2**3, 2**4)
442
- sysa = 0
443
- sysb = 1
444
- # exact 1
445
- ln0 = qu.logneg(p, dims, 0)
446
- # exact 2
447
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
448
- assert_allclose(ln0, ln1)
449
- # approx
450
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=5e-3)
451
- assert ln1 != ln2
452
- assert_allclose(ln1, ln2, rtol=1e-1)
453
-
454
- def test_logneg_subsys_pure_should_swap_subsys(self):
455
- p = qu.rand_ket(2 ** (5 + 2))
456
- dims = (2**5, 2**2)
457
- sysa = 0
458
- sysb = 1
459
- # exact 1
460
- ln0 = qu.logneg(p, dims, 0)
461
- # exact 2
462
- ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
463
- assert_allclose(ln0, ln1)
464
- # approx
465
- ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=0.005)
466
- assert ln1 != ln2
467
- assert_allclose(ln1, ln2, rtol=0.2)
468
-
469
-
470
- class TestConcurrence:
471
- @pytest.mark.parametrize("bs", ["psi-", "phi-", "psi+", "phi+"])
472
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
473
- def test_bell_states(self, qtype, bs):
474
- p = qu.bell_state(bs, qtype=qtype)
475
- assert qu.concurrence(p) > 1.0 - 1e-14
476
-
477
- def test_subsystem(self):
478
- p = qu.rand_rho(2**4)
479
- e = qu.concurrence(p, [2, 2, 2, 2], 1, 2)
480
- assert 0 <= e <= 1
481
-
482
-
483
- class TestQuantumDiscord:
484
- def test_owci(self):
485
- a = qu.qu([1, 0], qtype="op")
486
- b = qu.qu([0, 1], qtype="op")
487
- for _ in (0, 1, 2, 3):
488
- p = qu.rand_product_state(2)
489
- ci = qu.one_way_classical_information(p @ p.H, [a, b])
490
- assert_allclose(ci, 0.0, atol=1e-12)
491
- for i in (0, 1, 2, 3):
492
- p = qu.bell_state(i)
493
- ci = qu.one_way_classical_information(p @ p.H, [a, b])
494
- assert_allclose(ci, 1.0, atol=1e-12)
495
-
496
- def test_quantum_discord_sep(self):
497
- for _ in range(10):
498
- p = qu.rand_product_state(2)
499
- p = p @ p.H
500
- qd = qu.quantum_discord(p)
501
- assert_allclose(0.0, qd, atol=1e-12)
502
-
503
- def test_quantum_discord_pure(self):
504
- for _ in range(10):
505
- p = qu.rand_ket(4)
506
- p = p @ p.H
507
- iab = qu.mutual_information(p)
508
- qd = qu.quantum_discord(p)
509
- assert_allclose(iab / 2, qd)
510
-
511
- def test_quantum_discord_mixed(self):
512
- for _ in range(10):
513
- p = qu.rand_mix(4)
514
- p = p @ p.H
515
- qd = qu.quantum_discord(p)
516
- assert 0 <= qd and qd <= 1
517
-
518
- def test_auto_trace_out(self):
519
- p = qu.rand_rho(2**3)
520
- qd = qu.quantum_discord(p, [2, 2, 2], 0, 2)
521
- assert 0 <= qd and qd <= 1
522
-
523
- @pytest.mark.parametrize("seed", range(10))
524
- def test_qu_discord_diagonal(self, seed):
525
- rng = np.random.RandomState(seed)
526
- p = rng.random(size=4)
527
- p /= np.sum(p)
528
- rho = np.diag(p)
529
- assert qu.quantum_discord(rho) < 1e-10
530
-
531
-
532
- class TestTraceDistance:
533
- def test_types(self, k1, k2):
534
- td1 = qu.trace_distance(k1, k2)
535
- td2 = qu.trace_distance(qu.dop(k1), k2)
536
- td3 = qu.trace_distance(k1, qu.dop(k2))
537
- td4 = qu.trace_distance(qu.dop(k1), qu.dop(k2))
538
- assert_allclose([td1] * 3, [td2, td3, td4])
539
-
540
- def test_same(self, p1):
541
- assert abs(qu.trace_distance(p1, p1)) < 1e-14
542
-
543
- @pytest.mark.parametrize("uqtype", ["ket", "dop"])
544
- @pytest.mark.parametrize("dqtype", ["ket", "dop"])
545
- def test_distinguishable(self, uqtype, dqtype):
546
- assert (
547
- qu.trace_distance(qu.up(qtype=uqtype), qu.down(qtype=dqtype))
548
- > 1 - 1e-10
549
- )
550
-
551
-
552
- class TestDecomp:
553
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
554
- def test_pauli_decomp_singlet(self, qtype):
555
- p = qu.singlet(qtype=qtype)
556
- names_cffs = qu.pauli_decomp(p, mode="cp")
557
- assert_allclose(names_cffs["II"], 0.25)
558
- assert_allclose(names_cffs["ZZ"], -0.25)
559
- assert_allclose(names_cffs["YY"], -0.25)
560
- assert_allclose(names_cffs["ZZ"], -0.25)
561
- for name in itertools.permutations("IXYZ", 2):
562
- assert_allclose(names_cffs["".join(name)], 0.0)
563
-
564
- def test_pauli_reconstruct(self):
565
- p1 = qu.rand_rho(4)
566
- names_cffs = qu.pauli_decomp(p1, mode="c")
567
- pr = sum(
568
- qu.kron(*(qu.pauli(s) for s in name)) * names_cffs["".join(name)]
569
- for name in itertools.product("IXYZ", repeat=2)
570
- )
571
- assert_allclose(pr, p1)
572
-
573
- @pytest.mark.parametrize(
574
- "state, out",
575
- [
576
- (qu.up() & qu.down(), {0: 0.5, 1: 0.5, 2: 0, 3: 0}),
577
- (qu.down() & qu.down(), {0: 0, 1: 0, 2: 0.5, 3: 0.5}),
578
- (qu.singlet() & qu.singlet(), {"00": 1.0, "23": 0.0}),
579
- ],
580
- )
581
- def test_bell_decomp(self, state, out):
582
- names_cffs = qu.bell_decomp(state, mode="c")
583
- for key in out:
584
- assert_allclose(names_cffs[str(key)], out[key])
585
-
586
-
587
- class TestCorrelation:
588
- @pytest.mark.parametrize("pre_c", [False, True])
589
- @pytest.mark.parametrize("p_sps", [True, False])
590
- @pytest.mark.parametrize("op_sps", [True, False])
591
- @pytest.mark.parametrize("dims", (None, [2, 2]))
592
- def test_types(self, dims, op_sps, p_sps, pre_c):
593
- p = qu.rand_rho(4, sparse=p_sps)
594
- c = qu.correlation(
595
- p,
596
- qu.pauli("x", sparse=op_sps),
597
- qu.pauli("z", sparse=op_sps),
598
- 0,
599
- 1,
600
- dims=dims,
601
- precomp_func=pre_c,
602
- )
603
- c = c(p) if pre_c else c
604
- assert c >= -1.0
605
- assert c <= 1.0
606
-
607
- @pytest.mark.parametrize("pre_c", [False, True])
608
- @pytest.mark.parametrize("qtype", ["ket", "dop"])
609
- @pytest.mark.parametrize("s", ["x", "y", "z"])
610
- def test_classically_no_correlated(self, s, qtype, pre_c):
611
- p = qu.up(qtype=qtype) & qu.up(qtype=qtype)
612
- c = qu.correlation(
613
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
614
- )
615
- c = c(p) if pre_c else c
616
- assert_allclose(c, 0.0)
617
-
618
- @pytest.mark.parametrize("pre_c", [False, True])
619
- @pytest.mark.parametrize("s, ct", [("x", 0), ("y", 0), ("z", 1)])
620
- def test_classically_correlated(self, s, ct, pre_c):
621
- p = 0.5 * (
622
- (qu.up(qtype="dop") & qu.up(qtype="dop"))
623
- + (qu.down(qtype="dop") & qu.down(qtype="dop"))
624
- )
625
- c = qu.correlation(
626
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
627
- )
628
- c = c(p) if pre_c else c
629
- assert_allclose(c, ct)
630
-
631
- @pytest.mark.parametrize("pre_c", [False, True])
632
- @pytest.mark.parametrize("s, ct", [("x", -1), ("y", -1), ("z", -1)])
633
- def test_entangled(self, s, ct, pre_c):
634
- p = qu.bell_state("psi-")
635
- c = qu.correlation(
636
- p, qu.pauli(s), qu.pauli(s), 0, 1, precomp_func=pre_c
637
- )
638
- c = c(p) if pre_c else c
639
- assert_allclose(c, ct)
640
-
641
- def test_reuse_precomp(self):
642
- cfn = qu.correlation(
643
- None,
644
- qu.pauli("z"),
645
- qu.pauli("z"),
646
- 0,
647
- 1,
648
- dims=[2, 2],
649
- precomp_func=True,
650
- )
651
- assert_allclose(cfn(qu.bell_state("psi-")), -1.0)
652
- assert_allclose(cfn(qu.bell_state("phi+")), 1.0)
653
-
654
- @pytest.mark.parametrize("pre_c", [False, True])
655
- def test_pauli_correlations_sum_abs(self, pre_c):
656
- p = qu.bell_state("psi-")
657
- ct = qu.pauli_correlations(p, sum_abs=True, precomp_func=pre_c)
658
- ct = ct(p) if pre_c else ct
659
- assert_allclose(ct, 3.0)
660
-
661
- @pytest.mark.parametrize("pre_c", [False, True])
662
- def test_pauli_correlations_no_sum_abs(self, pre_c):
663
- p = qu.bell_state("psi-")
664
- ct = qu.pauli_correlations(p, sum_abs=False, precomp_func=pre_c)
665
- assert_allclose(list(c(p) for c in ct) if pre_c else ct, (-1, -1, -1))
666
-
667
-
668
- class TestEntCrossMatrix:
669
- def test_bell_state(self):
670
- p = qu.bell_state("phi+")
671
- ecm = qu.ent_cross_matrix(p, ent_fn=qu.concurrence, calc_self_ent=True)
672
- assert_allclose(ecm, [[1, 1], [1, 1]])
673
-
674
- def test_bell_state_no_self_ent(self):
675
- p = qu.bell_state("phi+")
676
- ecm = qu.ent_cross_matrix(
677
- p, ent_fn=qu.concurrence, calc_self_ent=False
678
- )
679
- assert_allclose(ecm, [[np.nan, 1], [1, np.nan]])
680
-
681
- def test_block2(self):
682
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
683
- ecm = qu.ent_cross_matrix(p, ent_fn=qu.logneg, sz_blc=2)
684
- assert_allclose(ecm[1, 1], 0)
685
- assert_allclose(ecm[0, 1], 0)
686
- assert_allclose(ecm[1, 0], 0)
687
-
688
- def test_block2_no_self_ent(self):
689
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
690
- ecm = qu.ent_cross_matrix(
691
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
692
- )
693
- assert_allclose(ecm[0, 1], 0)
694
- assert_allclose(ecm[0, 0], np.nan)
695
- assert_allclose(ecm[1, 0], 0)
696
-
697
- def test_block2_upscale(self):
698
- p = qu.bell_state("phi+") & qu.bell_state("phi+")
699
- ecm = qu.ent_cross_matrix(
700
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2
701
- )
702
- assert ecm.shape == (2, 2)
703
- ecm = qu.ent_cross_matrix(
704
- p, ent_fn=qu.logneg, calc_self_ent=False, sz_blc=2, upscale=True
705
- )
706
- assert ecm.shape == (4, 4)
707
-
708
-
709
- class TestEntCrossMatrixBlocked:
710
- @pytest.mark.parametrize("sz_p", [2**2 for i in [2, 3, 4, 5, 6, 9, 12]])
711
- @pytest.mark.parametrize("sz_blc", [1, 2, 3, 4, 5])
712
- @pytest.mark.parametrize("calc_self_ent", [True, False])
713
- def test_shapes_and_blocks(self, sz_blc, sz_p, calc_self_ent):
714
- if sz_p // sz_blc > 0:
715
- p = qu.rand_rho(2**sz_p)
716
- n = sz_p // sz_blc
717
- ecm = qu.ent_cross_matrix(p, sz_blc, calc_self_ent=calc_self_ent)
718
- assert ecm.shape[0] == n
719
- if not calc_self_ent:
720
- assert_allclose(np.diag(ecm), [np.nan] * n, equal_nan=True)
721
-
722
-
723
- class TestQID:
724
- @pytest.mark.parametrize("bs", [0, 1, 2, 3])
725
- @pytest.mark.parametrize("pre_c", [False, True])
726
- def test_bell_state(self, bs, pre_c):
727
- p = qu.bell_state(bs)
728
- qids = qu.qid(p, dims=[2, 2], inds=[0, 1], precomp_func=pre_c)
729
- assert_allclose(qids(p) if pre_c else qids, [3, 3])
730
-
731
- @pytest.mark.parametrize("pre_c", [False, True])
732
- def test_random_product_state(self, pre_c):
733
- p = qu.rand_product_state(3)
734
- qids = qu.qid(p, dims=[2, 2, 2], inds=[0, 1, 2], precomp_func=pre_c)
735
- assert_allclose(qids(p) if pre_c else qids, [2, 2, 2])
736
-
737
-
738
- class TestIsDegenerate:
739
- def test_known_degenerate(self):
740
- h = qu.ham_heis(2)
741
- assert qu.is_degenerate(h) == 2
742
-
743
- def test_known_nondegen(self):
744
- h = qu.ham_heis(2, b=0.3)
745
- assert qu.is_degenerate(h) == 0
746
-
747
- def test_supply_list(self):
748
- evals = [0, 1, 2, 2.0, 3]
749
- assert qu.is_degenerate(evals)
750
-
751
- def test_tol(self):
752
- evals = [0, 1, 1.001, 3, 4, 5, 6, 7, 8, 9]
753
- assert not qu.is_degenerate(evals)
754
- assert qu.is_degenerate(evals, tol=1e-2)
755
-
756
-
757
- class TestPageEntropy:
758
- def test_known_qubit_qubit(self):
759
- assert abs(qu.page_entropy(2, 4) - 0.4808983469629878) < 1e-12
760
-
761
- def test_large_m_approx(self):
762
- pe = qu.page_entropy(2**10, 2**20)
763
- ae = 0.5 * (20 - math.log2(math.e))
764
-
765
- assert abs(pe - ae) < 1e-5
766
-
767
- def test_bigger_than_half(self):
768
- assert_allclose(qu.page_entropy(4, 24), qu.page_entropy(6, 24))
769
-
770
-
771
- class TestIsEigenvector:
772
- def test_dense_true(self):
773
- a = qu.rand_herm(10)
774
- v = qu.eigvecsh(a)
775
- for i in range(10):
776
- assert qu.is_eigenvector(v[:, [i]], a)
777
-
778
- def test_dense_false(self):
779
- a = qu.rand_herm(10)
780
- v = qu.rand_ket(10)
781
- assert not qu.is_eigenvector(v, a)
782
-
783
- def test_sparse(self):
784
- a = qu.rand_herm(10, sparse=True, density=0.9)
785
- vt = qu.eigvecsh(a, sigma=0, k=1)
786
- assert qu.is_eigenvector(vt, a)
787
- vf = qu.rand_ket(10)
788
- assert not qu.is_eigenvector(vf, a)