Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,606 +0,0 @@
1
- import itertools
2
-
3
- import pytest
4
- import autoray as ar
5
- import numpy as np
6
- from numpy.testing import assert_allclose
7
-
8
- import quimb as qu
9
- import quimb.tensor as qtn
10
-
11
-
12
- class TestPEPSConstruct:
13
- @pytest.mark.parametrize("Lx", [3, 4, 5])
14
- @pytest.mark.parametrize("Ly", [3, 4, 5])
15
- def test_basic_rand(self, Lx, Ly):
16
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=4)
17
-
18
- assert psi.max_bond() == 4
19
- assert psi.Lx == Lx
20
- assert psi.Ly == Ly
21
- assert len(psi.tensor_map) == Lx * Ly
22
- assert psi.site_inds == tuple(
23
- f"k{i},{j}" for i in range(Lx) for j in range(Ly)
24
- )
25
- assert psi.site_tags == tuple(
26
- f"I{i},{j}" for i in range(Lx) for j in range(Ly)
27
- )
28
-
29
- assert psi.bond_size((1, 1), (1, 2)) == (4)
30
-
31
- for i in range(Lx):
32
- assert len(psi.select(f"X{i}").tensor_map) == Ly
33
- for j in range(Ly):
34
- assert len(psi.select(f"Y{j}").tensor_map) == Lx
35
-
36
- for i in range(Lx):
37
- for j in range(Ly):
38
- assert psi.phys_dim(i, j) == 2
39
- assert isinstance(psi[i, j], qtn.Tensor)
40
- assert isinstance(psi[f"I{i},{j}"], qtn.Tensor)
41
-
42
- if Lx == Ly == 3:
43
- psi_dense = psi.to_qarray(optimize="auto-hq")
44
- assert psi_dense.shape == (512, 1)
45
-
46
- psi.show()
47
- assert f"Lx={Lx}" in psi.__str__()
48
- assert f"Lx={Lx}" in psi.__repr__()
49
-
50
- def test_cyclic_edge_cases(self):
51
- peps = qtn.PEPS.rand(3, 3, bond_dim=1, cyclic=True)
52
- assert peps.is_cyclic_x()
53
- assert peps.is_cyclic_y()
54
- assert peps.num_indices == peps.num_tensors * 3
55
-
56
- def test_zeros(self):
57
- peps = qtn.PEPS.zeros(3, 3, cyclic=True, bond_dim=1)
58
- assert peps.num_tensors == 9
59
- assert peps.num_indices == 27
60
- assert_allclose(peps.to_dense(), np.zeros([512, 1]))
61
-
62
- def test_flatten(self):
63
- psi = qtn.PEPS.rand(3, 5, 3, seed=42)
64
- norm = psi.H & psi
65
- assert len(norm.tensors) == 30
66
- norm.flatten_()
67
- assert len(norm.tensors) == 15
68
- assert norm.max_bond() == 9
69
-
70
- def test_add_peps(self):
71
- pa = qtn.PEPS.rand(3, 4, 2)
72
- pb = qtn.PEPS.rand(3, 4, 3)
73
- pc = qtn.PEPS.rand(3, 4, 4)
74
- pab = pa + pb
75
- assert pab.max_bond() == 5
76
- assert pab @ pc == pytest.approx(pa @ pc + pb @ pc)
77
-
78
- @pytest.mark.parametrize("Lx", [3, 4, 5])
79
- @pytest.mark.parametrize("Ly", [3, 4, 5])
80
- def test_bond_coordinates(self, Lx, Ly):
81
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=1)
82
- all_bonds = tuple(psi.gen_bond_coos())
83
- assert len(all_bonds) == 2 * Lx * Ly - Lx - Ly
84
- he = tuple(psi.gen_horizontal_even_bond_coos())
85
- ho = tuple(psi.gen_horizontal_odd_bond_coos())
86
- ve = tuple(psi.gen_vertical_even_bond_coos())
87
- vo = tuple(psi.gen_vertical_odd_bond_coos())
88
- for p in (he, ho, ve, vo):
89
- assert len(set(p)) == len(p)
90
- # check there is no overlap at all
91
- sites = tuple(itertools.chain.from_iterable(he))
92
- assert len(set(sites)) == len(sites)
93
- # check all coordinates are generated
94
- assert set(itertools.chain(he, ho, ve, vo)) == set(all_bonds)
95
-
96
- @pytest.mark.parametrize(
97
- "where",
98
- [
99
- [(0, 0)],
100
- [(0, 1)],
101
- [(0, 2)],
102
- [(2, 2)],
103
- [(3, 2)],
104
- [(3, 1)],
105
- [(3, 0)],
106
- [(2, 0)],
107
- [(1, 1)],
108
- ],
109
- )
110
- @pytest.mark.parametrize("contract", [False, True])
111
- def test_gate_2d_single_site(self, where, contract):
112
- Lx = 4
113
- Ly = 3
114
- D = 2
115
-
116
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=D, seed=42, dtype=complex)
117
- psi_d = psi.to_qarray()
118
- G = qu.rand_matrix(2)
119
-
120
- # compute the exact dense reference
121
- dims = [[2] * Ly] * Lx
122
- IGI = qu.ikron(G, dims, where, sparse=True)
123
- xe = (psi_d.H @ IGI @ psi_d).item()
124
-
125
- tn = psi.H & psi.gate(G, where, contract=contract)
126
- assert len(tn.tensors) == 2 * Lx * Ly + int(not contract)
127
-
128
- assert tn ^ all == pytest.approx(xe)
129
-
130
- @pytest.mark.parametrize(
131
- "contract", [False, True, "split", "reduce-split"]
132
- )
133
- @pytest.mark.parametrize(
134
- "where",
135
- [
136
- [(1, 1), (2, 1)],
137
- [(3, 2), (2, 2)],
138
- [(0, 0), (1, 1)],
139
- [(3, 1), (1, 2)],
140
- ],
141
- )
142
- def test_gate_2d_two_site(self, where, contract):
143
- Lx = 4
144
- Ly = 3
145
- D = 2
146
-
147
- psi = qtn.PEPS.rand(Lx, Ly, bond_dim=D, seed=42, dtype=complex)
148
- psi_d = psi.to_qarray()
149
-
150
- # ikron can't tensor operators across non-adjacent subsytems
151
- # so we explicitly construct the gate as a sum of tensor components
152
- G_comps = [(qu.rand_matrix(2), qu.rand_matrix(2)) for _ in range(4)]
153
- G = sum(A & B for A, B in G_comps)
154
-
155
- # compute the exact dense reference
156
- dims = [[2] * Ly] * Lx
157
- IGI = sum(
158
- qu.ikron([A, B], dims, where, sparse=True) for A, B in G_comps
159
- )
160
-
161
- xe = (psi_d.H @ IGI @ psi_d).item()
162
-
163
- tn = psi.H & psi.gate(G, where, contract=contract)
164
- change = {False: 1, True: -1, "split": 0, "reduce-split": 0}[contract]
165
- assert len(tn.tensors) == 2 * Lx * Ly + change
166
-
167
- assert tn ^ all == pytest.approx(xe)
168
-
169
- @pytest.mark.parametrize(
170
- "propagate_tags", [False, True, "sites", "register"]
171
- )
172
- def test_gate_propagate_tags(self, propagate_tags):
173
- Lx = 4
174
- Ly = 3
175
- D = 1
176
- psi = qtn.PEPS.rand(Lx, Ly, D, tags="PSI0")
177
- psi.gate_(
178
- qu.rand_uni(4),
179
- [(1, 1), (1, 2)],
180
- tags="G1",
181
- propagate_tags=propagate_tags,
182
- )
183
- psi.gate_(
184
- qu.rand_uni(4),
185
- [(1, 2), (3, 2)],
186
- tags="G2",
187
- propagate_tags=propagate_tags,
188
- )
189
- if propagate_tags is False:
190
- assert set(psi["G1"].tags) == {"G1"}
191
- assert set(psi["G2"].tags) == {"G2"}
192
- if propagate_tags is True:
193
- tgs1 = {"I1,1", "I1,2", "G1", "PSI0", "Y1", "Y2", "X1"}
194
- assert set(psi["G1"][0].tags) == tgs1
195
- assert set(psi["G2"].tags) == tgs1 | {"G2", "I3,2", "X3", "Y2"}
196
- if propagate_tags == "sites":
197
- assert set(psi["G1"].tags) == {"G1", "I1,1", "I1,2"}
198
- assert set(psi["G2"].tags) == {"G2", "I1,1", "I1,2", "I3,2"}
199
- if propagate_tags == "register":
200
- assert set(psi["G1"].tags) == {"G1", "I1,1", "I1,2"}
201
- assert set(psi["G2"].tags) == {"G2", "I1,2", "I3,2"}
202
-
203
-
204
- class Test2DContract:
205
- @pytest.mark.parametrize("mode", ["mps", "projector", "full-bond"])
206
- def test_contract_boundary(self, mode):
207
- # make a large but cheap and easy (mostly positive) TN
208
- rng = np.random.default_rng(42)
209
- tn = qtn.TN2D_from_fill_fn(
210
- lambda shape: rng.uniform(low=-0.1, size=shape),
211
- Lx=8,
212
- Ly=8,
213
- D=2,
214
- )
215
- Zex = tn.contract(...)
216
- Z = tn.contract_boundary(max_bond=4, mode=mode)
217
- assert Z == pytest.approx(Zex, rel=1e-3)
218
-
219
- def test_contract_2d_one_layer_boundary(self):
220
- psi = qtn.PEPS.rand(4, 4, 3, seed=42)
221
- norm = psi.make_norm()
222
- xe = norm.contract(all, optimize="auto-hq")
223
- xt = norm.contract_boundary(max_bond=9)
224
- assert xt == pytest.approx(xe, rel=1e-2)
225
-
226
- def test_contract_2d_two_layer_boundary(self):
227
- psi = qtn.PEPS.rand(4, 4, 3, seed=42, tags="KET")
228
- norm = psi.make_norm()
229
- xe = norm.contract(all, optimize="auto-hq")
230
- xt = norm.contract_boundary(max_bond=27, layer_tags=["KET", "BRA"])
231
- assert xt == pytest.approx(xe, rel=1e-2)
232
-
233
- def test_contract_2d_full_bond(self):
234
- psi = qtn.PEPS.rand(4, 4, 3, seed=42, tags="KET")
235
- norm = psi.make_norm()
236
- xe = norm.contract(all, optimize="auto-hq")
237
- xt = norm.contract_boundary(max_bond=27, mode="full-bond")
238
- assert xt == pytest.approx(xe, rel=1e-2)
239
-
240
- @pytest.mark.parametrize("dims", [(10, 4), (4, 10)])
241
- def test_contract_boundary_stopping_criterion(self, dims):
242
- tn = qtn.TN2D_from_fill_fn(
243
- lambda shape: ar.lazy.Variable(shape=shape, backend="numpy"),
244
- *dims,
245
- D=2,
246
- )
247
- tn.contract_ctmrg_(4, cutoff=0.0, final_contract=False, progbar=True)
248
- assert tn.max_bond() == 4
249
- assert 16 <= tn.num_tensors <= 20
250
-
251
- @pytest.mark.parametrize("lazy", [False, True])
252
- def test_coarse_grain_basics(self, lazy):
253
- tn = qtn.TN2D_from_fill_fn(
254
- lambda shape: ar.lazy.Variable(shape, backend="numpy"),
255
- Lx=6,
256
- Ly=7,
257
- D=2,
258
- )
259
- tncg = tn.coarse_grain_hotrg("x", max_bond=3, cutoff=0.0, lazy=lazy)
260
- assert (tncg.Lx, tncg.Ly) == (3, 7)
261
- assert not tncg.outer_inds()
262
- assert tncg.max_bond() == 3
263
- assert "I4,0" not in tncg.tag_map
264
- assert "X5" not in tncg.tag_map
265
-
266
- tncg = tn.coarse_grain_hotrg("y", max_bond=3, cutoff=0.0, lazy=lazy)
267
- assert (tncg.Lx, tncg.Ly) == (6, 4)
268
- assert not tncg.outer_inds()
269
- assert tncg.max_bond() == 3
270
- assert "I0,5" not in tncg.tag_map
271
- assert "Y6" not in tncg.tag_map
272
-
273
- def test_contract_hotrg(self):
274
- tn = qtn.TN2D_classical_ising_partition_function(16, 16, 0.44)
275
- tn.contract_hotrg_(max_bond=5, progbar=True, equalize_norms=1.0)
276
- Zap = tn.item() * 10**tn.exponent
277
- assert Zap == pytest.approx(8.459419593253275e100, rel=2e-3)
278
-
279
- def test_contract_hotrg_two_layer_rand_peps(self):
280
- rng = np.random.default_rng(42)
281
- psi = qtn.PEPS.from_fill_fn(
282
- lambda shape: rng.uniform(low=-0.1, size=shape),
283
- Lx=7,
284
- Ly=5,
285
- bond_dim=2,
286
- )
287
- norm = psi.make_norm()
288
- xe = norm.contract(all, optimize="auto-hq")
289
- xt = norm.contract_hotrg(max_bond=5)
290
- assert xt == pytest.approx(xe, rel=1e-4)
291
-
292
- def test_ising_accuracy_regression(self):
293
- tn = qtn.TN2D_classical_ising_partition_function(16, 16, 0.44)
294
- for s in [("xmin",), ("xmax",), ("ymin",), ("ymax",)]:
295
- Zap = tn.contract_boundary(max_bond=8, sequence=s)
296
- assert Zap == pytest.approx(8.459419593253275e100, rel=2.2e-7)
297
- for s in [("xmin", "xmax"), ("ymin", "ymax")]:
298
- Zap = tn.contract_boundary(max_bond=8, sequence=s)
299
- assert Zap == pytest.approx(8.459419593253275e100, rel=3.9e-9)
300
-
301
- @pytest.mark.parametrize("mode", ["mps", "ctmrg", "hotrg"])
302
- def test_cdl_rand_large(self, mode):
303
- tn = qtn.TN2D_rand_hidden_loop(10, 10, seed=42, contract_sites=False)
304
- Zex = tn.contract(...)
305
- tn = qtn.TN2D_rand_hidden_loop(10, 10, seed=42, contract_sites=True)
306
-
307
- if mode == "mps":
308
- Z = tn.contract_boundary(max_bond=16)
309
- elif mode == "ctmrg":
310
- Z = tn.contract_ctmrg(max_bond=16)
311
- elif mode == "hotrg":
312
- Z = tn.contract_hotrg(max_bond=16)
313
-
314
- assert Z == pytest.approx(Zex, rel=1e-1)
315
-
316
- @pytest.mark.parametrize(
317
- "mode,two_layer",
318
- [
319
- ("mps", False),
320
- ("mps", True),
321
- ("full-bond", False),
322
- ],
323
- )
324
- def test_compute_x_envs(self, mode, two_layer):
325
- psi = qtn.PEPS.rand(5, 4, 2, seed=42, tags="KET")
326
- norm = psi.make_norm()
327
- ex = norm.contract(all)
328
-
329
- if two_layer:
330
- compress_opts = {
331
- "cutoff": 1e-6,
332
- "max_bond": 12,
333
- "mode": mode,
334
- "layer_tags": ["KET", "BRA"],
335
- }
336
- else:
337
- compress_opts = {"cutoff": 1e-6, "max_bond": 8, "mode": mode}
338
- row_envs = norm.compute_x_environments(**compress_opts)
339
-
340
- for i in range(norm.Lx):
341
- norm_i = (
342
- row_envs["xmin", i]
343
- & norm.select(norm.x_tag(i))
344
- & row_envs["xmax", i]
345
- )
346
- x = norm_i.contract(all)
347
- assert x == pytest.approx(ex, rel=1e-2)
348
-
349
- @pytest.mark.parametrize(
350
- "mode,two_layer",
351
- [
352
- ("mps", False),
353
- ("mps", True),
354
- ("full-bond", False),
355
- ],
356
- )
357
- def test_compute_y_envs(self, mode, two_layer):
358
- psi = qtn.PEPS.rand(4, 5, 2, seed=42, tags="KET")
359
- norm = psi.retag({"KET": "BRA"}).H | psi
360
- ex = norm.contract(all)
361
-
362
- if two_layer:
363
- compress_opts = {
364
- "cutoff": 1e-6,
365
- "max_bond": 12,
366
- "mode": mode,
367
- "layer_tags": ["KET", "BRA"],
368
- }
369
- else:
370
- compress_opts = {"cutoff": 1e-6, "max_bond": 8, "mode": mode}
371
- col_envs = norm.compute_y_environments(**compress_opts)
372
-
373
- for j in range(norm.Lx):
374
- norm_j = (
375
- col_envs["ymin", j]
376
- & norm.select(norm.y_tag(j))
377
- & col_envs["ymax", j]
378
- )
379
- x = norm_j.contract(all)
380
- assert x == pytest.approx(ex, rel=1e-2)
381
-
382
- def test_normalize(self):
383
- psi = qtn.PEPS.rand(4, 5, 2, seed=42)
384
- norm = (psi.H | psi).contract(all)
385
- assert norm != pytest.approx(1.0)
386
- psi.normalize_(balance_bonds=True, equalize_norms=True, cutoff=2e-3)
387
- norm = (psi.H | psi).contract(all)
388
- assert norm == pytest.approx(1.0, rel=0.01)
389
-
390
- @pytest.mark.parametrize("normalized", [False, True])
391
- @pytest.mark.parametrize("mode", ["mps", "full-bond"])
392
- def test_compute_local_expectation_one_sites(self, mode, normalized):
393
- peps = qtn.PEPS.rand(4, 3, 2, seed=42, dtype="complex")
394
-
395
- # reference
396
- k = peps.to_qarray()
397
- if normalized:
398
- qu.normalize(k)
399
- coos = list(itertools.product([0, 2, 3], [0, 1, 2]))
400
- terms = {coo: qu.rand_matrix(2) for coo in coos}
401
- dims = [[2] * 3] * 4
402
- A = sum(
403
- qu.ikron(A, dims, [coo], sparse=True) for coo, A in terms.items()
404
- )
405
- ex = qu.expec(A, k)
406
-
407
- opts = dict(cutoff=2e-3, max_bond=9, contract_optimize="auto-hq")
408
- e = peps.compute_local_expectation(
409
- terms, mode=mode, normalized=normalized, **opts
410
- )
411
-
412
- assert e == pytest.approx(ex, rel=1e-2)
413
-
414
- @pytest.mark.parametrize("normalized", [False, True])
415
- @pytest.mark.parametrize("mode", ["mps", "full-bond"])
416
- def test_compute_local_expectation_two_sites(self, mode, normalized):
417
- H = qu.ham_heis_2D(4, 3, sparse=True)
418
- Hij = qu.ham_heis(2, cyclic=False)
419
-
420
- peps = qtn.PEPS.rand(4, 3, 2, seed=42)
421
- k = peps.to_qarray()
422
-
423
- if normalized:
424
- qu.normalize(k)
425
- ex = qu.expec(H, k)
426
-
427
- opts = dict(
428
- mode=mode,
429
- normalized=normalized,
430
- cutoff=2e-3,
431
- max_bond=16,
432
- contract_optimize="auto-hq",
433
- )
434
-
435
- # compute 2x1 and 1x2 plaquettes separately
436
- hterms = {coos: Hij for coos in peps.gen_horizontal_bond_coos()}
437
- vterms = {coos: Hij for coos in peps.gen_vertical_bond_coos()}
438
-
439
- he = peps.compute_local_expectation(hterms, **opts)
440
- ve = peps.compute_local_expectation(vterms, **opts)
441
-
442
- assert he + ve == pytest.approx(ex, rel=1e-2)
443
-
444
- # compute all terms in 2x2 plaquettes
445
- terms_all = {**hterms, **vterms}
446
- e = peps.compute_local_expectation(terms_all, autogroup=False, **opts)
447
-
448
- assert e == pytest.approx(ex, rel=1e-2)
449
-
450
- def test_cyclic_basic(self):
451
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=True)
452
- assert tn.is_cyclic_x()
453
- assert tn.is_cyclic_y()
454
- assert tn.num_indices == 2 * 3 * 4
455
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(False, True))
456
- assert not tn.is_cyclic_x()
457
- assert tn.is_cyclic_y()
458
- assert tn.num_indices == 2 * 3 * 4 - 4
459
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(True, False))
460
- assert tn.is_cyclic_x()
461
- assert not tn.is_cyclic_y()
462
- assert tn.num_indices == 2 * 3 * 4 - 3
463
- tn = qtn.TN2D_rand(Lx=3, Ly=4, D=2, cyclic=(False, False))
464
- assert not tn.is_cyclic_x()
465
- assert not tn.is_cyclic_y()
466
- assert tn.num_indices == 2 * 3 * 4 - 7
467
-
468
- @pytest.mark.parametrize("cyclicx", [False, True])
469
- @pytest.mark.parametrize("cyclicy", [False, True])
470
- @pytest.mark.parametrize("mode", ["mps", "hotrg", "ctmrg"])
471
- def test_cyclic_contract(self, cyclicx, cyclicy, mode):
472
- Lx = 5
473
- Ly = 6
474
- D = 2
475
- chi = 3
476
- tn = qtn.TN2D_rand(
477
- Lx,
478
- Ly,
479
- D,
480
- cyclic=(cyclicx, cyclicy),
481
- seed=42,
482
- dist="uniform",
483
- )
484
- Zex = tn.contract(...)
485
- if mode == "hotrg":
486
- Z = tn.contract_hotrg(chi)
487
- elif mode == "ctmrg":
488
- Z = tn.contract_ctmrg(chi)
489
- else:
490
- Z = tn.contract_boundary(chi, mode=mode)
491
- assert abs(1 - Z / Zex) < 1e-3
492
-
493
-
494
- class TestPEPO:
495
- @pytest.mark.parametrize("Lx", [3, 4, 5])
496
- @pytest.mark.parametrize("Ly", [3, 4, 5])
497
- def test_basic_rand(self, Lx, Ly):
498
- X = qtn.PEPO.rand_herm(Lx, Ly, bond_dim=4)
499
-
500
- assert X.max_bond() == 4
501
- assert X.Lx == Lx
502
- assert X.Ly == Ly
503
- assert len(X.tensor_map) == Lx * Ly
504
- assert X.upper_inds == tuple(
505
- f"k{i},{j}" for i in range(Lx) for j in range(Ly)
506
- )
507
- assert X.lower_inds == tuple(
508
- f"b{i},{j}" for i in range(Lx) for j in range(Ly)
509
- )
510
- assert X.site_tags == tuple(
511
- f"I{i},{j}" for i in range(Lx) for j in range(Ly)
512
- )
513
-
514
- assert X.bond_size((1, 1), (1, 2)) == (4)
515
-
516
- for i in range(Lx):
517
- assert len(X.select(f"X{i}").tensor_map) == Ly
518
- for j in range(Ly):
519
- assert len(X.select(f"Y{j}").tensor_map) == Lx
520
-
521
- for i in range(Lx):
522
- for j in range(Ly):
523
- assert X.phys_dim(i, j) == 2
524
- assert isinstance(X[i, j], qtn.Tensor)
525
- assert isinstance(X[f"I{i},{j}"], qtn.Tensor)
526
-
527
- if Lx == Ly == 3:
528
- X_dense = X.to_qarray(optimize="auto-hq")
529
- assert X_dense.shape == (512, 512)
530
- assert qu.isherm(X_dense)
531
-
532
- X.show()
533
- assert f"Lx={Lx}" in X.__str__()
534
- assert f"Lx={Lx}" in X.__repr__()
535
-
536
- def test_add_pepo(self):
537
- pa = qtn.PEPO.rand(3, 4, 2)
538
- pb = qtn.PEPO.rand(3, 4, 3)
539
- pc = qtn.PEPO.rand(3, 4, 4)
540
- pab = pa + pb
541
- assert pab.max_bond() == 5
542
- assert pab @ pc == pytest.approx(pa @ pc + pb @ pc)
543
-
544
- def test_apply_pepo(self):
545
- A = qtn.PEPO.rand(Lx=3, Ly=2, bond_dim=2, seed=1)
546
- x = qtn.PEPS.rand(Lx=3, Ly=2, bond_dim=2, seed=0)
547
- y = A.apply(x)
548
- assert y.num_indices == x.num_indices
549
- Ad = A.to_qarray()
550
- xd = x.to_qarray()
551
- yd = y.to_qarray()
552
- assert_allclose(Ad @ xd, yd)
553
- yc = A.apply(x, compress=True, max_bond=3)
554
- assert yc.max_bond() == 3
555
-
556
-
557
- class TestMisc:
558
- def test_calc_plaquette_sizes(self):
559
- from quimb.tensor.tensor_2d import calc_plaquette_sizes
560
-
561
- H2 = {None: qu.ham_heis(2)}
562
- ham = qtn.LocalHam2D(10, 10, H2)
563
- assert calc_plaquette_sizes(ham.terms.keys()) == ((1, 2), (2, 1))
564
- assert calc_plaquette_sizes(ham.terms.keys(), autogroup=False) == (
565
- (2, 2),
566
- )
567
- H2[(1, 1), (2, 2)] = 0.5 * qu.ham_heis(2)
568
- ham = qtn.LocalHam2D(10, 10, H2)
569
- assert calc_plaquette_sizes(ham.terms.keys()) == ((2, 2),)
570
- H2[(2, 2), (2, 4)] = 0.25 * qu.ham_heis(2)
571
- H2[(2, 4), (4, 4)] = 0.25 * qu.ham_heis(2)
572
- ham = qtn.LocalHam2D(10, 10, H2)
573
- assert calc_plaquette_sizes(ham.terms.keys()) == (
574
- (1, 3),
575
- (2, 2),
576
- (3, 1),
577
- )
578
- assert calc_plaquette_sizes(ham.terms.keys(), autogroup=False) == (
579
- (3, 3),
580
- )
581
-
582
- def test_calc_plaquette_map(self):
583
- from quimb.tensor.tensor_2d import calc_plaquette_map
584
-
585
- plaquettes = [
586
- # 2x2 plaquette covering all sites
587
- ((0, 0), (2, 2)),
588
- # horizontal plaquettes
589
- ((0, 0), (1, 2)),
590
- ((1, 0), (1, 2)),
591
- # vertical plaquettes
592
- ((0, 0), (2, 1)),
593
- ((0, 1), (2, 1)),
594
- ]
595
- assert calc_plaquette_map(plaquettes) == {
596
- (0, 0): ((0, 0), (2, 1)),
597
- (0, 1): ((0, 1), (2, 1)),
598
- (1, 0): ((1, 0), (1, 2)),
599
- (1, 1): ((1, 0), (1, 2)),
600
- ((0, 0), (0, 1)): ((0, 0), (1, 2)),
601
- ((0, 0), (1, 0)): ((0, 0), (2, 1)),
602
- ((0, 0), (1, 1)): ((0, 0), (2, 2)),
603
- ((0, 1), (1, 0)): ((0, 0), (2, 2)),
604
- ((0, 1), (1, 1)): ((0, 1), (2, 1)),
605
- ((1, 0), (1, 1)): ((1, 0), (1, 2)),
606
- }