Trajectree 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (124) hide show
  1. trajectree/__init__.py +0 -3
  2. trajectree/fock_optics/devices.py +1 -1
  3. trajectree/fock_optics/light_sources.py +2 -2
  4. trajectree/fock_optics/measurement.py +9 -9
  5. trajectree/fock_optics/outputs.py +10 -6
  6. trajectree/fock_optics/utils.py +9 -6
  7. trajectree/sequence/swap.py +5 -4
  8. trajectree/trajectory.py +5 -4
  9. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/METADATA +2 -3
  10. trajectree-0.0.3.dist-info/RECORD +16 -0
  11. trajectree/quimb/docs/_pygments/_pygments_dark.py +0 -118
  12. trajectree/quimb/docs/_pygments/_pygments_light.py +0 -118
  13. trajectree/quimb/docs/conf.py +0 -158
  14. trajectree/quimb/docs/examples/ex_mpi_expm_evo.py +0 -62
  15. trajectree/quimb/quimb/__init__.py +0 -507
  16. trajectree/quimb/quimb/calc.py +0 -1491
  17. trajectree/quimb/quimb/core.py +0 -2279
  18. trajectree/quimb/quimb/evo.py +0 -712
  19. trajectree/quimb/quimb/experimental/__init__.py +0 -0
  20. trajectree/quimb/quimb/experimental/autojittn.py +0 -129
  21. trajectree/quimb/quimb/experimental/belief_propagation/__init__.py +0 -109
  22. trajectree/quimb/quimb/experimental/belief_propagation/bp_common.py +0 -397
  23. trajectree/quimb/quimb/experimental/belief_propagation/d1bp.py +0 -316
  24. trajectree/quimb/quimb/experimental/belief_propagation/d2bp.py +0 -653
  25. trajectree/quimb/quimb/experimental/belief_propagation/hd1bp.py +0 -571
  26. trajectree/quimb/quimb/experimental/belief_propagation/hv1bp.py +0 -775
  27. trajectree/quimb/quimb/experimental/belief_propagation/l1bp.py +0 -316
  28. trajectree/quimb/quimb/experimental/belief_propagation/l2bp.py +0 -537
  29. trajectree/quimb/quimb/experimental/belief_propagation/regions.py +0 -194
  30. trajectree/quimb/quimb/experimental/cluster_update.py +0 -286
  31. trajectree/quimb/quimb/experimental/merabuilder.py +0 -865
  32. trajectree/quimb/quimb/experimental/operatorbuilder/__init__.py +0 -15
  33. trajectree/quimb/quimb/experimental/operatorbuilder/operatorbuilder.py +0 -1631
  34. trajectree/quimb/quimb/experimental/schematic.py +0 -7
  35. trajectree/quimb/quimb/experimental/tn_marginals.py +0 -130
  36. trajectree/quimb/quimb/experimental/tnvmc.py +0 -1483
  37. trajectree/quimb/quimb/gates.py +0 -36
  38. trajectree/quimb/quimb/gen/__init__.py +0 -2
  39. trajectree/quimb/quimb/gen/operators.py +0 -1167
  40. trajectree/quimb/quimb/gen/rand.py +0 -713
  41. trajectree/quimb/quimb/gen/states.py +0 -479
  42. trajectree/quimb/quimb/linalg/__init__.py +0 -6
  43. trajectree/quimb/quimb/linalg/approx_spectral.py +0 -1109
  44. trajectree/quimb/quimb/linalg/autoblock.py +0 -258
  45. trajectree/quimb/quimb/linalg/base_linalg.py +0 -719
  46. trajectree/quimb/quimb/linalg/mpi_launcher.py +0 -397
  47. trajectree/quimb/quimb/linalg/numpy_linalg.py +0 -244
  48. trajectree/quimb/quimb/linalg/rand_linalg.py +0 -514
  49. trajectree/quimb/quimb/linalg/scipy_linalg.py +0 -293
  50. trajectree/quimb/quimb/linalg/slepc_linalg.py +0 -892
  51. trajectree/quimb/quimb/schematic.py +0 -1518
  52. trajectree/quimb/quimb/tensor/__init__.py +0 -401
  53. trajectree/quimb/quimb/tensor/array_ops.py +0 -610
  54. trajectree/quimb/quimb/tensor/circuit.py +0 -4824
  55. trajectree/quimb/quimb/tensor/circuit_gen.py +0 -411
  56. trajectree/quimb/quimb/tensor/contraction.py +0 -336
  57. trajectree/quimb/quimb/tensor/decomp.py +0 -1255
  58. trajectree/quimb/quimb/tensor/drawing.py +0 -1646
  59. trajectree/quimb/quimb/tensor/fitting.py +0 -385
  60. trajectree/quimb/quimb/tensor/geometry.py +0 -583
  61. trajectree/quimb/quimb/tensor/interface.py +0 -114
  62. trajectree/quimb/quimb/tensor/networking.py +0 -1058
  63. trajectree/quimb/quimb/tensor/optimize.py +0 -1818
  64. trajectree/quimb/quimb/tensor/tensor_1d.py +0 -4778
  65. trajectree/quimb/quimb/tensor/tensor_1d_compress.py +0 -1854
  66. trajectree/quimb/quimb/tensor/tensor_1d_tebd.py +0 -662
  67. trajectree/quimb/quimb/tensor/tensor_2d.py +0 -5954
  68. trajectree/quimb/quimb/tensor/tensor_2d_compress.py +0 -96
  69. trajectree/quimb/quimb/tensor/tensor_2d_tebd.py +0 -1230
  70. trajectree/quimb/quimb/tensor/tensor_3d.py +0 -2869
  71. trajectree/quimb/quimb/tensor/tensor_3d_tebd.py +0 -46
  72. trajectree/quimb/quimb/tensor/tensor_approx_spectral.py +0 -60
  73. trajectree/quimb/quimb/tensor/tensor_arbgeom.py +0 -3237
  74. trajectree/quimb/quimb/tensor/tensor_arbgeom_compress.py +0 -565
  75. trajectree/quimb/quimb/tensor/tensor_arbgeom_tebd.py +0 -1138
  76. trajectree/quimb/quimb/tensor/tensor_builder.py +0 -5411
  77. trajectree/quimb/quimb/tensor/tensor_core.py +0 -11179
  78. trajectree/quimb/quimb/tensor/tensor_dmrg.py +0 -1472
  79. trajectree/quimb/quimb/tensor/tensor_mera.py +0 -204
  80. trajectree/quimb/quimb/utils.py +0 -892
  81. trajectree/quimb/tests/__init__.py +0 -0
  82. trajectree/quimb/tests/test_accel.py +0 -501
  83. trajectree/quimb/tests/test_calc.py +0 -788
  84. trajectree/quimb/tests/test_core.py +0 -847
  85. trajectree/quimb/tests/test_evo.py +0 -565
  86. trajectree/quimb/tests/test_gen/__init__.py +0 -0
  87. trajectree/quimb/tests/test_gen/test_operators.py +0 -361
  88. trajectree/quimb/tests/test_gen/test_rand.py +0 -296
  89. trajectree/quimb/tests/test_gen/test_states.py +0 -261
  90. trajectree/quimb/tests/test_linalg/__init__.py +0 -0
  91. trajectree/quimb/tests/test_linalg/test_approx_spectral.py +0 -368
  92. trajectree/quimb/tests/test_linalg/test_base_linalg.py +0 -351
  93. trajectree/quimb/tests/test_linalg/test_mpi_linalg.py +0 -127
  94. trajectree/quimb/tests/test_linalg/test_numpy_linalg.py +0 -84
  95. trajectree/quimb/tests/test_linalg/test_rand_linalg.py +0 -134
  96. trajectree/quimb/tests/test_linalg/test_slepc_linalg.py +0 -283
  97. trajectree/quimb/tests/test_tensor/__init__.py +0 -0
  98. trajectree/quimb/tests/test_tensor/test_belief_propagation/__init__.py +0 -0
  99. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d1bp.py +0 -39
  100. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_d2bp.py +0 -67
  101. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hd1bp.py +0 -64
  102. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_hv1bp.py +0 -51
  103. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l1bp.py +0 -142
  104. trajectree/quimb/tests/test_tensor/test_belief_propagation/test_l2bp.py +0 -101
  105. trajectree/quimb/tests/test_tensor/test_circuit.py +0 -816
  106. trajectree/quimb/tests/test_tensor/test_contract.py +0 -67
  107. trajectree/quimb/tests/test_tensor/test_decomp.py +0 -40
  108. trajectree/quimb/tests/test_tensor/test_mera.py +0 -52
  109. trajectree/quimb/tests/test_tensor/test_optimizers.py +0 -488
  110. trajectree/quimb/tests/test_tensor/test_tensor_1d.py +0 -1171
  111. trajectree/quimb/tests/test_tensor/test_tensor_2d.py +0 -606
  112. trajectree/quimb/tests/test_tensor/test_tensor_2d_tebd.py +0 -144
  113. trajectree/quimb/tests/test_tensor/test_tensor_3d.py +0 -123
  114. trajectree/quimb/tests/test_tensor/test_tensor_arbgeom.py +0 -226
  115. trajectree/quimb/tests/test_tensor/test_tensor_builder.py +0 -441
  116. trajectree/quimb/tests/test_tensor/test_tensor_core.py +0 -2066
  117. trajectree/quimb/tests/test_tensor/test_tensor_dmrg.py +0 -388
  118. trajectree/quimb/tests/test_tensor/test_tensor_spectral_approx.py +0 -63
  119. trajectree/quimb/tests/test_tensor/test_tensor_tebd.py +0 -270
  120. trajectree/quimb/tests/test_utils.py +0 -85
  121. trajectree-0.0.1.dist-info/RECORD +0 -126
  122. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/WHEEL +0 -0
  123. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/licenses/LICENSE +0 -0
  124. {trajectree-0.0.1.dist-info → trajectree-0.0.3.dist-info}/top_level.txt +0 -0
@@ -1,351 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- import scipy.sparse as sp
4
- from numpy.testing import assert_allclose
5
-
6
- import quimb as qu
7
- from quimb.linalg import SLEPC4PY_FOUND
8
- from quimb.linalg.base_linalg import _rel_window_to_abs_window
9
-
10
- eigs_backends = ["auto", "numpy", "scipy"]
11
- svds_backends = ["numpy", "scipy"]
12
-
13
- if SLEPC4PY_FOUND:
14
- eigs_backends += ["slepc-nompi", "slepc"]
15
- svds_backends += ["slepc-nompi", "slepc"]
16
-
17
-
18
- # --------------------------------------------------------------------------- #
19
- # Fixtures #
20
- # --------------------------------------------------------------------------- #
21
-
22
-
23
- @pytest.fixture
24
- def mat_herm_dense():
25
- np.random.seed(1)
26
- u = qu.rand_uni(4)
27
- a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
28
- # |--|--|--|--|--|--|--|
29
- # -3 -1 2 4
30
- return u, a
31
-
32
-
33
- @pytest.fixture
34
- def mat_herm_sparse():
35
- np.random.seed(1)
36
- u = qu.rand_uni(4)
37
- a = u @ qu.ldmul(np.array([-1, 2, 4, -3]), u.H)
38
- a = qu.sparse(a)
39
- return u, a
40
-
41
-
42
- @pytest.fixture
43
- def mat_nherm_dense():
44
- np.random.seed(1)
45
- u, v = qu.rand_uni(5), qu.rand_uni(5)
46
- a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
47
- return u, v, a
48
-
49
-
50
- @pytest.fixture
51
- def mat_nherm_sparse():
52
- np.random.seed(1)
53
- u, v = qu.rand_uni(5), qu.rand_uni(5)
54
- a = u @ qu.ldmul(np.array([1, 2, 4, 3, 0.1]), v.H)
55
- a = qu.sparse(a)
56
- return u, v, a
57
-
58
-
59
- @pytest.fixture
60
- def ham1():
61
- u = qu.rand_uni(7)
62
- el = np.array([-3, 0, 1, 2, 3, 4, 7])
63
- return u @ qu.ldmul(el, u.H)
64
-
65
-
66
- @pytest.fixture
67
- def ham2():
68
- u = qu.rand_uni(7)
69
- el = np.array([-3.72, 0, 1, 1.1, 2.1, 2.2, 6.28])
70
- return u @ qu.ldmul(el, u.H)
71
-
72
-
73
- # --------------------------------------------------------------------------- #
74
- # Tests #
75
- # --------------------------------------------------------------------------- #
76
-
77
-
78
- class TestEigh:
79
- def test_eigsys(self, mat_herm_dense):
80
- u, a = mat_herm_dense
81
- evals, v = qu.eigh(a)
82
- assert set(np.rint(evals)) == set((-1, 2, 4, -3))
83
- assert_allclose(evals, [-3, -1, 2, 4])
84
- for i, j in zip([3, 0, 1, 2], range(4)):
85
- o = u[:, [i]].H @ v[:, [j]]
86
- assert_allclose(abs(o), 1.0)
87
-
88
- def test_eigvals(self, mat_herm_dense):
89
- _, a = mat_herm_dense
90
- evals = qu.eigvalsh(a)
91
- assert_allclose(evals, [-3, -1, 2, 4])
92
-
93
- def test_eigvecs(self, mat_herm_dense):
94
- u, a = mat_herm_dense
95
- v = qu.eigvecsh(a)
96
- for i, j in zip([3, 0, 1, 2], range(4)):
97
- o = u[:, [i]].H @ v[:, [j]]
98
- assert_allclose(abs(o), 1.0)
99
-
100
-
101
- class TestSeigs:
102
- @pytest.mark.parametrize("backend", eigs_backends)
103
- def test_eigs_small_dense_wvecs(self, mat_herm_dense, backend):
104
- u, a = mat_herm_dense
105
- assert not qu.issparse(a)
106
- lk, vk = qu.eigh(a, k=2, backend=backend)
107
- assert_allclose(lk, (-3, -1))
108
- for i, j in zip([3, 0], [0, 1]):
109
- o = u[:, [i]].H @ vk[:, [j]]
110
- assert_allclose(abs(o), 1.0)
111
- vk = qu.eigvecsh(a, k=2, backend=backend)
112
- for i, j in zip([3, 0], [0, 1]):
113
- o = u[:, [i]].H @ vk[:, [j]]
114
- assert_allclose(abs(o), 1.0)
115
-
116
- @pytest.mark.parametrize("backend", eigs_backends)
117
- def test_eigs_small_dense_novecs(self, mat_herm_dense, backend):
118
- _, a = mat_herm_dense
119
- assert not qu.issparse(a)
120
- lk = qu.eigvalsh(a, k=2, backend=backend)
121
- assert_allclose(lk, (-3, -1))
122
-
123
- @pytest.mark.parametrize("backend", eigs_backends)
124
- def test_eigs_sparse_wvecs(self, mat_herm_sparse, backend):
125
- u, a = mat_herm_sparse
126
- assert qu.issparse(a)
127
- lk, vk = qu.eigh(a, k=2, backend=backend)
128
- assert_allclose(lk, (-3, -1))
129
- for i, j in zip([3, 0], [0, 1]):
130
- o = u[:, [i]].H @ vk[:, [j]]
131
- assert_allclose(abs(o), 1.0)
132
- vk = qu.eigvecsh(a, k=2, backend=backend)
133
- for i, j in zip([3, 0], [0, 1]):
134
- o = u[:, [i]].H @ vk[:, [j]]
135
- assert_allclose(abs(o), 1.0)
136
-
137
- @pytest.mark.parametrize("backend", eigs_backends)
138
- def test_eigs_small_sparse_novecs(self, mat_herm_sparse, backend):
139
- _, a = mat_herm_sparse
140
- assert qu.issparse(a)
141
- lk = qu.eigvalsh(a, k=2, backend=backend)
142
- assert_allclose(lk, (-3, -1))
143
-
144
- @pytest.mark.parametrize("backend", eigs_backends)
145
- def test_groundstate(self, mat_herm_dense, backend):
146
- u, a = mat_herm_dense
147
- gs = qu.groundstate(a, backend=backend)
148
- assert_allclose(abs(u[:, [3]].H @ gs), 1.0)
149
-
150
- @pytest.mark.parametrize("backend", eigs_backends)
151
- def test_groundenergy(self, mat_herm_dense, backend):
152
- _, a = mat_herm_dense
153
- ge = qu.groundenergy(a, backend=backend)
154
- assert_allclose(ge, -3)
155
-
156
- @pytest.mark.parametrize("which", [None, "SA", "LA", "LM", "SM", "TR"])
157
- @pytest.mark.parametrize("k", [1, 2])
158
- def test_cross_equality(self, mat_herm_sparse, k, which):
159
- _, a = mat_herm_sparse
160
- sigma = 1 if which in {None, "TR"} else None
161
- lks, vks = zip(
162
- *(
163
- qu.eigh(a, k=k, which=which, sigma=sigma, backend=b)
164
- for b in eigs_backends
165
- )
166
- )
167
- lks, vks = tuple(lks), tuple(vks)
168
- for i in range(len(lks) - 1):
169
- assert_allclose(lks[i], lks[i + 1])
170
- assert_allclose(abs(vks[i].H @ vks[i + 1]), qu.eye(k), atol=1e-14)
171
-
172
-
173
- class TestLOBPCG:
174
- def test_against_arpack(self):
175
- A = qu.rand_herm(32, dtype=float)
176
- lk, vk = qu.eigh(A, k=6, backend="lobpcg")
177
- slk, svk = qu.eigh(A, k=6, backend="scipy")
178
- assert_allclose(lk, slk)
179
- assert_allclose(np.eye(6), abs(vk.H @ svk), atol=1e-9, rtol=1e-9)
180
-
181
-
182
- class TestEvalsWindowed:
183
- @pytest.mark.parametrize("backend", eigs_backends)
184
- def test_bound_spectrum(self, ham1, backend):
185
- h = ham1
186
- lmin, lmax = qu.bound_spectrum(h, backend=backend)
187
- assert_allclose((lmin, lmax), (-3, 7), atol=1e-13)
188
-
189
- def test_rel_window_to_abs_window(self):
190
- el0 = _rel_window_to_abs_window(5, 10, 0.5)
191
- assert_allclose(el0, 7.5)
192
- el0, eli, elf = _rel_window_to_abs_window(-20, -10, 0.5, 0.2)
193
- assert_allclose([el0, eli, elf], [-15, -16, -14])
194
-
195
- def test_dense(self, ham2):
196
- h = ham2
197
- el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1)
198
- assert_allclose(el, [1, 1.1])
199
-
200
- def test_dense_cut(self, ham1):
201
- h = ham1
202
- el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
203
- assert_allclose(el, [1, 2, 3])
204
-
205
- @pytest.mark.parametrize("backend", eigs_backends)
206
- def test_sparse(self, ham2, backend):
207
- h = qu.sparse(ham2)
208
- el = qu.eigvalsh_window(h, 0.5, 2, w_sz=0.1, backend=backend)
209
- assert_allclose(el, [1, 1.1])
210
-
211
- def test_sparse_cut(self, ham1):
212
- h = qu.sparse(ham1)
213
- el = qu.eigvalsh_window(h, 0.5, 5, w_sz=0.3)
214
- assert_allclose(el, [1, 2, 3])
215
-
216
- def test_dense_return_vecs(self, mat_herm_dense):
217
- u, a = mat_herm_dense
218
- ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
219
- assert ev.shape == (4, 2)
220
- assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
221
-
222
- def test_sparse_return_vecs(self, mat_herm_sparse):
223
- u, a = mat_herm_sparse
224
- ev = qu.eigvecsh_window(a, w_0=0.5, k=2, w_sz=0.8)
225
- assert ev.shape == (4, 2)
226
- assert_allclose(abs(u[:, :2].H @ ev[:,]), [[1, 0], [0, 1]], atol=1e-14)
227
-
228
-
229
- class TestSVD:
230
- def test_svd_full(self, mat_nherm_dense):
231
- u, v, a = mat_nherm_dense
232
- un, sn, vn = qu.svd(a)
233
- assert_allclose(sn, [4, 3, 2, 1, 0.1], atol=1e-14)
234
- for (
235
- i,
236
- j,
237
- ) in zip((0, 1, 2, 3, 4), (2, 3, 1, 0, 4)):
238
- o = abs(un[:, [i]].H @ u[:, [j]])
239
- assert_allclose(o, 1.0)
240
- o = abs(vn[[i], :] @ v[:, [j]])
241
- assert_allclose(o, 1.0)
242
-
243
-
244
- class TestSVDS:
245
- @pytest.mark.parametrize("backend", svds_backends)
246
- def test_svds_smalldense_wvecs(self, mat_nherm_dense, backend):
247
- u, v, a = mat_nherm_dense
248
- uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
249
- assert_allclose(sk, [4, 3, 2])
250
- for i, j in zip((0, 1, 2), (2, 3, 1)):
251
- o = abs(uk[:, [i]].H @ u[:, [j]])
252
- assert_allclose(o, 1.0)
253
- o = abs(vk[[i], :] @ v[:, [j]])
254
- assert_allclose(o, 1.0)
255
-
256
- @pytest.mark.parametrize("backend", svds_backends)
257
- def test_svds_smalldense_nvecs(self, mat_nherm_dense, backend):
258
- _, _, a = mat_nherm_dense
259
- sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
260
- assert_allclose(sk, [4, 3, 2])
261
-
262
- @pytest.mark.parametrize("backend", svds_backends)
263
- def test_svds_sparse_wvecs(self, mat_nherm_sparse, backend):
264
- u, v, a = mat_nherm_sparse
265
- uk, sk, vk = qu.svds(a, k=3, return_vecs=True, backend=backend)
266
- assert_allclose(sk, [4, 3, 2])
267
- for i, j in zip((0, 1, 2), (2, 3, 1)):
268
- o = abs(uk[:, [i]].H @ u[:, [j]])
269
- assert_allclose(o, 1.0)
270
- o = abs(vk[[i], :] @ v[:, [j]])
271
- assert_allclose(o, 1.0)
272
-
273
- @pytest.mark.parametrize("backend", svds_backends)
274
- def test_svds_sparse_nvecs(self, mat_nherm_sparse, backend):
275
- _, _, a = mat_nherm_sparse
276
- sk = qu.svds(a, k=3, return_vecs=False, backend=backend)
277
- assert_allclose(sk, [4, 3, 2])
278
-
279
-
280
- class TestNorms:
281
- def test_norm_fro_dense(self):
282
- a = qu.quimbify([[1, 2], [3j, 4j]])
283
- assert qu.norm(a, "fro") == (1 + 4 + 9 + 16) ** 0.5
284
-
285
- def test_norm_fro_sparse(self):
286
- a = qu.sparse([[3, 0], [4j, 0]])
287
- assert qu.norm(a, "fro") == (9 + 16) ** 0.5
288
-
289
- @pytest.mark.parametrize("backend", svds_backends)
290
- def test_norm_spectral_dense(self, mat_nherm_dense, backend):
291
- _, _, a = mat_nherm_dense
292
- assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
293
-
294
- @pytest.mark.parametrize("backend", svds_backends)
295
- def test_norm_spectral_sparse(self, mat_nherm_sparse, backend):
296
- _, _, a = mat_nherm_sparse
297
- assert_allclose(qu.norm(a, "spectral", backend=backend), 4.0)
298
-
299
- def test_norm_trace_dense(self):
300
- a = qu.qarray(np.diag([-3, 1, 7]))
301
- assert qu.norm(a, "trace") == 11
302
- a = qu.rand_product_state(1, qtype="dop")
303
- assert_allclose(qu.norm(a, "nuc"), 1)
304
-
305
-
306
- class TestExpm:
307
- @pytest.mark.parametrize("herm", [True, False])
308
- def test_zeros_dense(self, herm):
309
- p = qu.expm(np.zeros((2, 2), dtype=complex), herm=herm)
310
- assert_allclose(p, qu.eye(2))
311
-
312
- @pytest.mark.parametrize("sparse", [True, False])
313
- @pytest.mark.parametrize("herm", [True, False])
314
- def test_eye(self, sparse, herm):
315
- p = qu.expm(qu.eye(2, sparse=sparse), herm=herm)
316
- assert_allclose((p.toarray() if sparse else p) / np.e, qu.eye(2))
317
- if sparse:
318
- assert isinstance(p, sp.csr_matrix)
319
-
320
-
321
- class TestSqrtm:
322
- @pytest.mark.parametrize("sparse", [True, False])
323
- @pytest.mark.parametrize("herm", [True, False])
324
- def test_eye(self, herm, sparse):
325
- if sparse:
326
- with pytest.raises(NotImplementedError):
327
- p = qu.sqrtm(qu.eye(2, sparse=sparse), herm=herm)
328
- else:
329
- p = qu.sqrtm(qu.eye(2), herm=herm)
330
- assert_allclose(p, qu.eye(2))
331
-
332
-
333
- class TestLazy:
334
- @pytest.mark.parametrize("sparse", [False, True])
335
- def test_basic(self, sparse):
336
- ownership = (0, 7)
337
- hl = qu.Lazy(qu.ham_heis, n=4, sparse=sparse, shape=(16, 16))
338
- print(hl)
339
- h = 1 * hl(ownership=ownership)
340
- h_ex = qu.ham_heis(n=4, sparse=sparse)[slice(*ownership), :]
341
- assert_allclose(h.toarray(), h_ex.toarray())
342
-
343
- @pytest.mark.parametrize("backend", ["scipy", "lobpcg"])
344
- def test_project_eig(self, backend):
345
- Hl = qu.Lazy(qu.ham_heis, 4, sparse=True, shape=(16, 16), cyclic=True)
346
- Pl = qu.Lazy(qu.zspin_projector, 4, shape=(16, 6))
347
-
348
- ge, gs = qu.eigh(Hl, P=Pl, k=1, backend=backend)
349
-
350
- assert ge == pytest.approx(-2)
351
- assert qu.expec(gs, gs) == pytest.approx(1.0)
@@ -1,127 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- from numpy.testing import assert_allclose
4
-
5
- from quimb import (
6
- rand_herm,
7
- rand_ket,
8
- eigh,
9
- can_use_mpi_pool,
10
- )
11
-
12
- from quimb.linalg import SLEPC4PY_FOUND
13
- from quimb.linalg.scipy_linalg import eigs_scipy
14
-
15
- if SLEPC4PY_FOUND:
16
- from quimb.linalg.mpi_launcher import (
17
- eigs_slepc_spawn,
18
- svds_slepc_spawn,
19
- mfn_multiply_slepc_spawn,
20
- ALREADY_RUNNING_AS_MPI,
21
- NUM_MPI_WORKERS,
22
- )
23
-
24
- slepc4py_test = pytest.mark.skipif(
25
- not SLEPC4PY_FOUND, reason="No SLEPc4py installation"
26
- )
27
-
28
- mpipooltest = pytest.mark.skipif(
29
- not can_use_mpi_pool(), reason="Not allowed to use MPI pool."
30
- )
31
-
32
- num_workers_to_try = [None, 1, 2, 3]
33
-
34
-
35
- @pytest.fixture
36
- def bigsparsemat():
37
- import numpy as np
38
-
39
- np.random.seed(42)
40
- return rand_herm(100, sparse=True, density=0.1)
41
-
42
-
43
- @pytest.fixture
44
- def big_vec():
45
- import numpy as np
46
-
47
- np.random.seed(2442)
48
- return rand_ket(100)
49
-
50
-
51
- @slepc4py_test
52
- class TestSLEPcMPI:
53
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
54
- def test_eigs(self, num_workers, bigsparsemat):
55
- if (
56
- (num_workers is not None)
57
- and ALREADY_RUNNING_AS_MPI
58
- and num_workers > 1
59
- and num_workers != NUM_MPI_WORKERS
60
- ):
61
- with pytest.raises(ValueError):
62
- eigs_slepc_spawn(bigsparsemat, k=6, num_workers=num_workers)
63
-
64
- else:
65
- el, ev = eigs_slepc_spawn(
66
- bigsparsemat, k=6, num_workers=num_workers
67
- )
68
- elex, evex = eigs_scipy(bigsparsemat, k=6)
69
- assert_allclose(el, elex)
70
- assert_allclose(np.abs(ev.H @ evex), np.eye(6), atol=1e-7)
71
-
72
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
73
- def test_expm_multiply(self, num_workers, bigsparsemat, big_vec):
74
- a = bigsparsemat
75
- k = big_vec
76
-
77
- if (
78
- (num_workers is not None)
79
- and ALREADY_RUNNING_AS_MPI
80
- and num_workers > 1
81
- and num_workers != NUM_MPI_WORKERS
82
- ):
83
- with pytest.raises(ValueError):
84
- mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
85
-
86
- else:
87
- out = mfn_multiply_slepc_spawn(a, k, num_workers=num_workers)
88
- al, av = eigh(a.toarray())
89
- expected = av @ np.diag(np.exp(al)) @ av.conj().T @ k
90
- assert_allclose(out, expected)
91
-
92
- @pytest.mark.parametrize("num_workers", num_workers_to_try)
93
- def test_svds(self, num_workers):
94
- a = np.random.randn(13, 7) + 1.0j * np.random.randn(13, 7)
95
-
96
- if (
97
- (num_workers is not None)
98
- and ALREADY_RUNNING_AS_MPI
99
- and num_workers > 1
100
- and num_workers != NUM_MPI_WORKERS
101
- ):
102
- with pytest.raises(ValueError):
103
- svds_slepc_spawn(a, return_vecs=True, num_workers=num_workers)
104
-
105
- else:
106
- u, s, v = svds_slepc_spawn(
107
- a, return_vecs=True, num_workers=num_workers
108
- )
109
-
110
-
111
- @slepc4py_test
112
- @mpipooltest
113
- class TestMPIPool:
114
- def test_spawning_pool_in_pool(self, bigsparsemat):
115
- from quimb.linalg.mpi_launcher import get_mpi_pool
116
-
117
- l1 = eigs_slepc_spawn(bigsparsemat, k=6, return_vecs=False)
118
- pool = get_mpi_pool()
119
- f = pool.submit(
120
- eigs_slepc_spawn,
121
- bigsparsemat,
122
- k=6,
123
- return_vecs=False,
124
- num_workers=1,
125
- )
126
- l2 = f.result()
127
- assert_allclose(l1, l2)
@@ -1,84 +0,0 @@
1
- from pytest import fixture, mark
2
- import numpy as np
3
- from numpy.testing import assert_equal, assert_allclose
4
-
5
- import quimb as qu
6
- from quimb.linalg.numpy_linalg import (
7
- sort_inds,
8
- eigs_numpy,
9
- )
10
-
11
-
12
- @fixture
13
- def xs():
14
- return np.array([-2.4 - 1j, -1 + 2.2j, 1 - 2.1j, 2.3 + 1j])
15
-
16
-
17
- @fixture
18
- def ham1():
19
- evecs = qu.rand_uni(5)
20
- evals = np.array([-5, -3, 0.1, 2, 4])
21
- return qu.dot(evecs, qu.ldmul(evals, evecs.H))
22
-
23
-
24
- class TestSortInds:
25
- @mark.parametrize(
26
- "method, inds, sigma",
27
- [
28
- ("LM", [0, 3, 1, 2], None),
29
- ("SM", [2, 1, 3, 0], None),
30
- ("SA", [0, 1, 2, 3], None),
31
- ("SR", [0, 1, 2, 3], None),
32
- ("SI", [2, 0, 3, 1], None),
33
- ("LA", [3, 2, 1, 0], None),
34
- ("LR", [3, 2, 1, 0], None),
35
- ("LI", [1, 3, 0, 2], None),
36
- ("TM", [1, 2, 3, 0], 2.41),
37
- ("tm", [1, 2, 3, 0], 2.41),
38
- ("TR", [2, 3, 1, 0], 1.01),
39
- ("TI", [3, 1, 0, 2], 1.01),
40
- ],
41
- )
42
- def test_simple(self, xs, method, inds, sigma):
43
- assert_equal(sort_inds(xs, method, sigma), inds)
44
-
45
-
46
- class TestNumpyEigk:
47
- @mark.parametrize(
48
- "which, k, ls, sigma",
49
- [
50
- ("lm", 3, [-5, 4, -3], None),
51
- ("sm", 3, [0.1, 2, -3], None),
52
- ("tm", 3, [-3, 2, 4], 2.9),
53
- ],
54
- )
55
- def test_evals(self, ham1, which, k, ls, sigma):
56
- lk = eigs_numpy(
57
- ham1, k=k, which=which, return_vecs=False, sigma=sigma, sort=False
58
- )
59
- assert_allclose(lk, ls)
60
-
61
- @mark.parametrize("which, k, sigma", [("sa", 5, None)])
62
- def test_evecs(self, ham1, which, k, sigma):
63
- lk, vk = eigs_numpy(
64
- ham1, k=k, which=which, return_vecs=True, sigma=sigma, sort=False
65
- )
66
- assert isinstance(vk, qu.qarray)
67
- assert_allclose(qu.dot(vk, qu.ldmul(lk, vk.H)), ham1)
68
-
69
-
70
- class TestAutoBlock:
71
- def test_eigh(self):
72
- H = qu.ham_mbl(6, dh=2.5)
73
- a_el, a_ev = qu.eigh(H, autoblock=False)
74
- el, ev = qu.eigh(H, autoblock=True)
75
-
76
- assert qu.norm(ev @ qu.ldmul(el, ev.H) - H, "fro") < 1e-12
77
- assert_allclose(a_el, el)
78
- assert_allclose(ev.H @ ev, np.eye(H.shape[0]), atol=1e-12)
79
-
80
- def test_eigvals(self):
81
- H = qu.ham_hubbard_hardcore(4)
82
- a_el = qu.eigvalsh(H, autoblock=False)
83
- el = qu.eigvalsh(H, autoblock=True)
84
- assert_allclose(a_el, el, atol=1e-12)
@@ -1,134 +0,0 @@
1
- import pytest
2
- import numpy as np
3
- from numpy.testing import assert_allclose
4
-
5
- import quimb as qu
6
- import quimb.tensor as qtn
7
-
8
-
9
- def rand_rect(m, n, sparse=False, dtype=complex):
10
- X = qu.rand_matrix(max(m, n), dtype=dtype, sparse=sparse)
11
- return X[:m, :n]
12
-
13
-
14
- def usv2dense(U, s, VH):
15
- return U @ np.diag(s) @ VH
16
-
17
-
18
- def rand_rank(m, n, k, dtype=complex):
19
- s = np.sort(qu.randn(k) ** 2)[::-1]
20
-
21
- U = qu.gen.rand.rand_iso(m, k, dtype=dtype)
22
- VH = qu.gen.rand.rand_iso(n, k, dtype=dtype).conj().T
23
-
24
- if U.dtype in ("float32", "complex64"):
25
- s = s.astype("float32")
26
-
27
- return usv2dense(U, s, VH)
28
-
29
-
30
- def rand_tn1d_sect(n, bd, dtype=complex):
31
- mps = qtn.MPS_rand_state(n + 2, bd, dtype=dtype)
32
- mpo = qtn.MPO_rand_herm(n + 2, 5, dtype=dtype)
33
-
34
- norm = qtn.TensorNetwork(qtn.tensor_network_align(mps.H, mpo, mps))
35
- norm.view_as_(qtn.TensorNetwork1D, like=mps)
36
-
37
- lix = qtn.bonds(norm[0], norm[1])
38
- rix = qtn.bonds(norm[n], norm[n + 1])
39
-
40
- to = norm[1 : n + 1]
41
-
42
- return qtn.TNLinearOperator1D(to, lix, rix, 1, n + 1)
43
-
44
-
45
- dtypes = ["float32", "float64", "complex64", "complex128"]
46
-
47
-
48
- class TestRSVD:
49
- @pytest.mark.parametrize("dtype", dtypes)
50
- @pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
51
- @pytest.mark.parametrize("sparse", [False, True])
52
- @pytest.mark.parametrize("q", [2, 3])
53
- @pytest.mark.parametrize("p", [0, 5])
54
- def test_rsvd(self, dtype, shape, sparse, q, p):
55
- X = rand_rect(*shape, dtype=dtype, sparse=sparse)
56
-
57
- k = 15
58
- U, s, V = qu.rsvd(X, k, q=q, p=p)
59
-
60
- assert U.shape == (shape[0], k)
61
- assert s.shape == (k,)
62
- assert V.shape == (k, shape[1])
63
-
64
- assert U.dtype == dtype
65
- assert V.dtype == dtype
66
-
67
- assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-5, atol=1e-5)
68
- assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-5, atol=1e-5)
69
-
70
- Ue, se, Ve = qu.svds(X, k)
71
- opt_err = qu.norm(X.toarray() - usv2dense(Ue, se, Ve), "fro")
72
- act_err = qu.norm(X.toarray() - usv2dense(U, s, V), "fro")
73
-
74
- assert act_err < 1.2 * opt_err
75
-
76
- assert_allclose(s[: k // 2], se[: k // 2], rtol=0.05)
77
-
78
- @pytest.mark.parametrize("dtype", dtypes)
79
- @pytest.mark.parametrize("shape", [(41, 31), (31, 41)])
80
- @pytest.mark.parametrize("q", [2, 3])
81
- @pytest.mark.parametrize("p", [0, 5])
82
- def test_rsvd_adaptive(self, dtype, shape, q, p):
83
- X = rand_rank(*shape, 10, dtype=dtype)
84
- U, s, V = qu.rsvd(X, 1e-6, q=q, p=p, k_start=10)
85
-
86
- k = s.size
87
- assert 10 <= k <= 20
88
-
89
- assert U.dtype == dtype
90
- assert V.dtype == dtype
91
-
92
- assert_allclose(U.conj().T @ U, np.eye(k), rtol=1e-6, atol=1e-6)
93
- assert_allclose(V @ V.conj().T, np.eye(k), rtol=1e-6, atol=1e-6)
94
-
95
- Ue, se, Ve = qu.svds(X, k)
96
- act_err = qu.norm(X - usv2dense(U, s, V), "fro")
97
-
98
- assert act_err < 1e-4
99
-
100
- assert_allclose(s[: k // 2], se[: k // 2], rtol=0.1)
101
-
102
- @pytest.mark.parametrize("dtype", dtypes)
103
- @pytest.mark.parametrize("shape", [(410, 310), (310, 410)])
104
- @pytest.mark.parametrize("k_start", [4, 10, 16])
105
- @pytest.mark.parametrize("use_qb", [False, 10, True])
106
- def test_estimate_rank(self, dtype, shape, k_start, use_qb):
107
- rnk = 100
108
- X = rand_rank(*shape, rnk, dtype=dtype)
109
-
110
- Ue, se, VHe = qu.svd(X)
111
- assert_allclose(se[rnk:], 0.0, atol=1e-5)
112
-
113
- k = qu.estimate_rank(
114
- X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
115
- )
116
- assert_allclose(k, 100, rtol=0.3)
117
-
118
- assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=50) == 50
119
-
120
- @pytest.mark.parametrize("dtype", dtypes)
121
- @pytest.mark.parametrize("k_start", [2, 4, 8])
122
- @pytest.mark.parametrize("use_qb", [False, 10, True])
123
- def test_estimate_rank_lo(self, dtype, k_start, use_qb):
124
- X = rand_tn1d_sect(30, 10, dtype=dtype)
125
-
126
- Ue, se, VHe = qu.svd(X.toarray())
127
- actual_rank = sum(se > se[0] * 1e-3)
128
-
129
- k = qu.estimate_rank(
130
- X, 1e-3, k_start=k_start, use_qb=use_qb, use_sli=False
131
- )
132
- assert_allclose(k, actual_rank, rtol=0.3 if use_qb else 0.5)
133
-
134
- assert qu.estimate_rank(X, 1e-3, k_start=k_start, k_max=8) == 8