@fugood/llama.node 1.3.0 → 1.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (143) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +8 -8
  3. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  4. package/src/llama.cpp/common/arg.cpp +44 -999
  5. package/src/llama.cpp/common/arg.h +2 -2
  6. package/src/llama.cpp/common/chat.cpp +17 -2
  7. package/src/llama.cpp/common/common.cpp +33 -0
  8. package/src/llama.cpp/common/common.h +15 -1
  9. package/src/llama.cpp/common/download.cpp +1054 -0
  10. package/src/llama.cpp/common/download.h +55 -0
  11. package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
  12. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
  15. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
  16. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  17. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  18. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
  21. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
  23. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  24. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  25. package/src/llama.cpp/include/llama.h +7 -3
  26. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  28. package/src/llama.cpp/src/llama-arch.h +11 -0
  29. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  30. package/src/llama.cpp/src/llama-batch.h +12 -1
  31. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  32. package/src/llama.cpp/src/llama-chat.h +1 -0
  33. package/src/llama.cpp/src/llama-context.cpp +36 -13
  34. package/src/llama.cpp/src/llama-context.h +5 -5
  35. package/src/llama.cpp/src/llama-cparams.h +1 -0
  36. package/src/llama.cpp/src/llama-graph.cpp +3 -3
  37. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  38. package/src/llama.cpp/src/llama-hparams.h +6 -0
  39. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  40. package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
  41. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  42. package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
  43. package/src/llama.cpp/src/llama-model.cpp +320 -13171
  44. package/src/llama.cpp/src/llama-model.h +8 -0
  45. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  46. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  47. package/src/llama.cpp/src/llama-vocab.h +1 -0
  48. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  49. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  50. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  51. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  52. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  53. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  54. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  55. package/src/llama.cpp/src/models/bert.cpp +176 -0
  56. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  57. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  58. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  59. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  60. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  61. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  62. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  63. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  64. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  65. package/src/llama.cpp/src/models/deci.cpp +135 -0
  66. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  67. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  68. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  69. package/src/llama.cpp/src/models/dream.cpp +105 -0
  70. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  71. package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
  72. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  73. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  74. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  75. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  76. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  77. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  78. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  79. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  80. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  81. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  82. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  83. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  84. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  85. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  86. package/src/llama.cpp/src/models/granite.cpp +211 -0
  87. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  88. package/src/llama.cpp/src/models/grok.cpp +159 -0
  89. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  90. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  91. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  92. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  93. package/src/llama.cpp/src/models/jais.cpp +86 -0
  94. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  95. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  96. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  97. package/src/llama.cpp/src/models/llada.cpp +99 -0
  98. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  99. package/src/llama.cpp/src/models/llama.cpp +155 -0
  100. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  101. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  102. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  103. package/src/llama.cpp/src/models/models.h +481 -0
  104. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  105. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  106. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  107. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  108. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  109. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  110. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  111. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
  112. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  113. package/src/llama.cpp/src/models/orion.cpp +123 -0
  114. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  115. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  116. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  117. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  118. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  119. package/src/llama.cpp/src/models/plm.cpp +168 -0
  120. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  121. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  122. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  123. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  124. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  125. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  126. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  127. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  128. package/src/llama.cpp/src/models/refact.cpp +94 -0
  129. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  130. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  131. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  132. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  133. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  134. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  135. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  136. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  137. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  138. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  139. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  140. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  141. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  142. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  143. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,149 @@
1
+ #include "models.h"
2
+
3
+ llm_build_wavtokenizer_dec::llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ ggml_tensor * cur;
5
+ ggml_tensor * inpL;
6
+
7
+ inpL = build_inp_embd(model.tok_embd);
8
+
9
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
10
+
11
+ cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
12
+ cur = ggml_add(ctx0, cur, model.conv1d_b);
13
+
14
+ // posnet
15
+ for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
16
+ const auto & layer = model.layers[il].posnet;
17
+
18
+ inpL = cur;
19
+
20
+ switch (il) {
21
+ case 0:
22
+ case 1:
23
+ case 3:
24
+ case 4:
25
+ {
26
+ cur = build_norm(cur,
27
+ layer.norm1,
28
+ layer.norm1_b,
29
+ LLM_NORM_GROUP, 0);
30
+
31
+ cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
32
+
33
+ cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
34
+ cur = ggml_add(ctx0, cur, layer.conv1_b);
35
+
36
+ cur = build_norm(cur,
37
+ layer.norm2,
38
+ layer.norm2_b,
39
+ LLM_NORM_GROUP, 0);
40
+
41
+ cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
42
+
43
+ cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
44
+ cur = ggml_add(ctx0, cur, layer.conv2_b);
45
+
46
+ cur = ggml_add(ctx0, cur, inpL);
47
+ } break;
48
+ case 2:
49
+ {
50
+ cur = build_norm(cur,
51
+ layer.attn_norm,
52
+ layer.attn_norm_b,
53
+ LLM_NORM_GROUP, 0);
54
+
55
+ ggml_tensor * q;
56
+ ggml_tensor * k;
57
+ ggml_tensor * v;
58
+
59
+ q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
60
+ k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
61
+ v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
62
+
63
+ q = ggml_add(ctx0, q, layer.attn_q_b);
64
+ k = ggml_add(ctx0, k, layer.attn_k_b);
65
+ v = ggml_add(ctx0, v, layer.attn_v_b);
66
+
67
+ q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
68
+ k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
69
+
70
+ ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
71
+
72
+ kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
73
+
74
+ cur = ggml_mul_mat(ctx0, kq, v);
75
+
76
+ cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
77
+ cur = ggml_add(ctx0, cur, layer.attn_o_b);
78
+
79
+ cur = ggml_add(ctx0, cur, inpL);
80
+ } break;
81
+ case 5:
82
+ {
83
+ cur = build_norm(cur,
84
+ layer.norm,
85
+ layer.norm_b,
86
+ LLM_NORM_GROUP, 0);
87
+ } break;
88
+ default: GGML_ABORT("unknown posnet layer");
89
+ };
90
+ }
91
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
92
+
93
+ cur = build_norm(cur,
94
+ model.tok_norm,
95
+ model.tok_norm_b,
96
+ LLM_NORM, -1);
97
+
98
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
99
+
100
+ inpL = cur;
101
+
102
+ // convnext
103
+ for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
104
+ const auto & layer = model.layers[il].convnext;
105
+
106
+ cur = inpL;
107
+
108
+ cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
109
+ cur = ggml_add(ctx0, cur, layer.dw_b);
110
+
111
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
112
+
113
+ cur = build_norm(cur,
114
+ layer.norm,
115
+ layer.norm_b,
116
+ LLM_NORM, -1);
117
+
118
+ cur = build_ffn(cur,
119
+ layer.pw1, layer.pw1_b, NULL,
120
+ NULL, NULL, NULL,
121
+ layer.pw2, layer.pw2_b, NULL,
122
+ NULL,
123
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
124
+
125
+ cur = ggml_mul(ctx0, cur, layer.gamma);
126
+
127
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
128
+
129
+ inpL = ggml_add(ctx0, cur, inpL);
130
+ }
131
+ cur = inpL;
132
+
133
+ cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
134
+
135
+ cur = build_norm(cur,
136
+ model.output_norm,
137
+ model.output_norm_b,
138
+ LLM_NORM, -1);
139
+
140
+ // lm_head
141
+ cur = build_lora_mm(model.output, cur);
142
+
143
+ cur = ggml_add(ctx0, cur, model.output_b);
144
+
145
+ cb(cur, "result_embd", -1);
146
+ res->t_embd = cur;
147
+
148
+ ggml_build_forward_expand(gf, cur);
149
+ }
@@ -0,0 +1,108 @@
1
+ #include "models.h"
2
+
3
+ llm_build_xverse::llm_build_xverse(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+
6
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ cur = build_norm(inpL,
25
+ model.layers[il].attn_norm, NULL,
26
+ LLM_NORM_RMS, il);
27
+ cb(cur, "attn_norm", il);
28
+
29
+ // self-attention
30
+ {
31
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
32
+ cb(Qcur, "Qcur", il);
33
+
34
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
35
+ cb(Kcur, "Kcur", il);
36
+
37
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
38
+ cb(Vcur, "Vcur", il);
39
+
40
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
41
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
42
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
43
+
44
+ Qcur = ggml_rope_ext(
45
+ ctx0, Qcur, inp_pos, nullptr,
46
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
47
+ ext_factor, attn_factor, beta_fast, beta_slow
48
+ );
49
+
50
+ Kcur = ggml_rope_ext(
51
+ ctx0, Kcur, inp_pos, nullptr,
52
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
53
+ ext_factor, attn_factor, beta_fast, beta_slow
54
+ );
55
+
56
+ cb(Qcur, "Qcur", il);
57
+ cb(Kcur, "Kcur", il);
58
+ cb(Vcur, "Vcur", il);
59
+
60
+ cur = build_attn(inp_attn,
61
+ model.layers[il].wo, NULL,
62
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
63
+ }
64
+ if (il == n_layer - 1 && inp_out_ids) {
65
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
66
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
67
+ }
68
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
69
+ cb(ffn_inp, "ffn_inp", il);
70
+
71
+ // feed-forward network
72
+ {
73
+ cur = build_norm(ffn_inp,
74
+ model.layers[il].ffn_norm, NULL,
75
+ LLM_NORM_RMS, il);
76
+ cb(cur, "ffn_norm", il);
77
+
78
+ cur = build_ffn(cur,
79
+ model.layers[il].ffn_up, NULL, NULL,
80
+ model.layers[il].ffn_gate, NULL, NULL,
81
+ model.layers[il].ffn_down, NULL, NULL,
82
+ NULL,
83
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
84
+ cb(cur, "ffn_out", il);
85
+ }
86
+ cur = ggml_add(ctx0, cur, ffn_inp);
87
+
88
+ cur = build_cvec(cur, il);
89
+ cb(cur, "l_out", il);
90
+
91
+ // input for next layer
92
+ inpL = cur;
93
+ }
94
+ cur = inpL;
95
+
96
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
97
+
98
+ cb(cur, "result_norm", -1);
99
+ res->t_embd = cur;
100
+
101
+ // lm_head
102
+ cur = build_lora_mm(model.output, cur);
103
+
104
+ cb(cur, "result_output", -1);
105
+ res->t_logits = cur;
106
+
107
+ ggml_build_forward_expand(gf, cur);
108
+ }