@fugood/llama.node 1.3.0 → 1.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (143) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +8 -8
  3. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  4. package/src/llama.cpp/common/arg.cpp +44 -999
  5. package/src/llama.cpp/common/arg.h +2 -2
  6. package/src/llama.cpp/common/chat.cpp +17 -2
  7. package/src/llama.cpp/common/common.cpp +33 -0
  8. package/src/llama.cpp/common/common.h +15 -1
  9. package/src/llama.cpp/common/download.cpp +1054 -0
  10. package/src/llama.cpp/common/download.h +55 -0
  11. package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
  12. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
  15. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
  16. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  17. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  18. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
  21. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
  23. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  24. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  25. package/src/llama.cpp/include/llama.h +7 -3
  26. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  28. package/src/llama.cpp/src/llama-arch.h +11 -0
  29. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  30. package/src/llama.cpp/src/llama-batch.h +12 -1
  31. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  32. package/src/llama.cpp/src/llama-chat.h +1 -0
  33. package/src/llama.cpp/src/llama-context.cpp +36 -13
  34. package/src/llama.cpp/src/llama-context.h +5 -5
  35. package/src/llama.cpp/src/llama-cparams.h +1 -0
  36. package/src/llama.cpp/src/llama-graph.cpp +3 -3
  37. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  38. package/src/llama.cpp/src/llama-hparams.h +6 -0
  39. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  40. package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
  41. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  42. package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
  43. package/src/llama.cpp/src/llama-model.cpp +320 -13171
  44. package/src/llama.cpp/src/llama-model.h +8 -0
  45. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  46. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  47. package/src/llama.cpp/src/llama-vocab.h +1 -0
  48. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  49. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  50. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  51. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  52. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  53. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  54. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  55. package/src/llama.cpp/src/models/bert.cpp +176 -0
  56. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  57. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  58. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  59. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  60. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  61. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  62. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  63. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  64. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  65. package/src/llama.cpp/src/models/deci.cpp +135 -0
  66. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  67. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  68. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  69. package/src/llama.cpp/src/models/dream.cpp +105 -0
  70. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  71. package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
  72. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  73. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  74. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  75. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  76. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  77. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  78. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  79. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  80. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  81. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  82. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  83. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  84. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  85. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  86. package/src/llama.cpp/src/models/granite.cpp +211 -0
  87. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  88. package/src/llama.cpp/src/models/grok.cpp +159 -0
  89. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  90. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  91. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  92. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  93. package/src/llama.cpp/src/models/jais.cpp +86 -0
  94. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  95. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  96. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  97. package/src/llama.cpp/src/models/llada.cpp +99 -0
  98. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  99. package/src/llama.cpp/src/models/llama.cpp +155 -0
  100. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  101. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  102. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  103. package/src/llama.cpp/src/models/models.h +481 -0
  104. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  105. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  106. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  107. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  108. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  109. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  110. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  111. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
  112. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  113. package/src/llama.cpp/src/models/orion.cpp +123 -0
  114. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  115. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  116. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  117. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  118. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  119. package/src/llama.cpp/src/models/plm.cpp +168 -0
  120. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  121. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  122. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  123. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  124. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  125. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  126. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  127. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  128. package/src/llama.cpp/src/models/refact.cpp +94 -0
  129. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  130. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  131. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  132. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  133. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  134. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  135. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  136. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  137. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  138. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  139. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  140. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  141. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  142. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  143. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,316 @@
1
+ #include "models.h"
2
+
3
+ llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
4
+ llm_graph_context_mamba(params) {
5
+ ggml_tensor * cur;
6
+ ggml_tensor * inpL;
7
+
8
+ // {n_embd, n_tokens}
9
+ inpL = build_inp_embd(model.tok_embd);
10
+ cb(inpL, "embedding_output", -1);
11
+
12
+ ggml_tensor * inp_pos = build_inp_pos();
13
+
14
+ auto * inp_hybrid = build_inp_mem_hybrid();
15
+
16
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
17
+
18
+ for (int il = 0; il < n_layer; ++il) {
19
+ ggml_tensor * residual = inpL;
20
+
21
+ // ggml_graph_add_node(gf, model.layers[il].attn_norm);
22
+ // cb(model.layers[il].attn_norm, "attn_norm", il);
23
+
24
+ // pre_mixer_norm
25
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
26
+
27
+ // check if this layer is Mamba or Attention
28
+ bool is_mamba_layer = hparams.is_recurrent(il);
29
+
30
+ if (is_mamba_layer) {
31
+ // PLaMo-2 Mamba layer
32
+ cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
33
+ } else {
34
+ // PLaMo-2 Attention layer
35
+ cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
36
+ }
37
+
38
+ // post_mixer_norm
39
+ cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
40
+ cb(cur, "attn_post_norm", il);
41
+
42
+ // residual connection
43
+ cur = ggml_add(ctx0, cur, residual);
44
+ cb(cur, "attn_residual", il);
45
+ residual = cur;
46
+
47
+ // pre-ffn norm
48
+ cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
49
+ cb(cur, "ffn_pre_norm", il);
50
+
51
+ // feed-forward network
52
+ cur = build_ffn(cur,
53
+ model.layers[il].ffn_up, NULL, NULL,
54
+ NULL, NULL, NULL,
55
+ model.layers[il].ffn_down, NULL, NULL,
56
+ NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
57
+ cb(cur, "ffn_out", il);
58
+
59
+ // post ffn norm
60
+ cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
61
+ cb(cur, "ffn_post_norm", il);
62
+
63
+ if (il == n_layer - 1 && inp_out_ids) {
64
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
65
+ residual = ggml_get_rows(ctx0, residual, inp_out_ids);
66
+ }
67
+
68
+ // residual connection
69
+ cur = ggml_add(ctx0, cur, residual);
70
+ cb(cur, "ffn_residual", il);
71
+
72
+ inpL = cur;
73
+ }
74
+
75
+ cur = inpL;
76
+
77
+ // final norm
78
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
79
+ cb(cur, "result_norm", -1);
80
+
81
+ res->t_embd = cur;
82
+
83
+ // lm_head
84
+ cur = build_lora_mm(model.output, cur);
85
+ cb(cur, "result_output", -1);
86
+
87
+ // Explicitly mark as output tensor to ensure proper backend assignment
88
+ ggml_set_output(cur);
89
+
90
+ res->t_logits = cur;
91
+
92
+ ggml_build_forward_expand(gf, cur);
93
+ }
94
+
95
+ ggml_tensor * llm_build_plamo2::build_plamo2_attn_layer(llm_graph_input_attn_kv * inp,
96
+ ggml_tensor * inp_pos,
97
+ ggml_tensor * cur,
98
+ const llama_model & model,
99
+ int il) {
100
+ // self-attention
101
+ {
102
+ // PLaMo-2 uses combined QKV tensor
103
+ ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
104
+ cb(qkv, "wqkv", il);
105
+
106
+ // split QKV tensor into Q, K, V
107
+ const int64_t n_embd_head_q = hparams.n_embd_head_k;
108
+ const int64_t n_embd_head_k = hparams.n_embd_head_k;
109
+ const int64_t n_embd_head_v = hparams.n_embd_head_v;
110
+ int32_t n_head = hparams.n_head(il);
111
+ int32_t n_head_kv = hparams.n_head_kv(il);
112
+
113
+ const int64_t q_offset = 0;
114
+ const int64_t k_offset = n_embd_head_q * n_head;
115
+ const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
116
+
117
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float),
118
+ qkv->nb[1], q_offset * ggml_element_size(qkv));
119
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float),
120
+ qkv->nb[1], k_offset * ggml_element_size(qkv));
121
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float),
122
+ qkv->nb[1], v_offset * ggml_element_size(qkv));
123
+
124
+ cb(Qcur, "Qcur", il);
125
+ cb(Kcur, "Kcur", il);
126
+ cb(Vcur, "Vcur", il);
127
+
128
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
129
+ cb(Qcur, "Qcur_normed", il);
130
+
131
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
132
+ ext_factor, attn_factor, beta_fast, beta_slow);
133
+
134
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
135
+ cb(Kcur, "Kcur_normed", il);
136
+
137
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
138
+ ext_factor, attn_factor, beta_fast, beta_slow);
139
+
140
+ cur = build_attn(inp,
141
+ model.layers[il].wo, NULL,
142
+ Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f / sqrtf(float(n_embd_head_v)), il);
143
+ }
144
+
145
+ cb(cur, "attn_out", il);
146
+
147
+ return cur;
148
+ }
149
+
150
+ ggml_tensor * llm_build_plamo2::build_plamo2_mamba_layer(llm_graph_input_rs * inp,
151
+ ggml_tensor * cur,
152
+ const llama_model & model,
153
+ const llama_ubatch & ubatch,
154
+ int il) {
155
+ const auto * mctx_cur = inp->mctx;
156
+
157
+ const auto kv_head = mctx_cur->get_head();
158
+
159
+ const int64_t d_conv = hparams.ssm_d_conv;
160
+ const int64_t d_inner = hparams.ssm_d_inner;
161
+ const int64_t d_state = hparams.ssm_d_state;
162
+ const int64_t n_heads = hparams.ssm_dt_rank;
163
+ const int64_t head_dim = d_inner / n_heads;
164
+ const int64_t n_group = hparams.ssm_n_group;
165
+ const int64_t n_seqs = ubatch.n_seqs;
166
+
167
+ const int64_t n_seq_tokens = ubatch.n_seq_tokens;
168
+
169
+ GGML_ASSERT(n_seqs != 0);
170
+ GGML_ASSERT(ubatch.equal_seqs());
171
+ GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
172
+
173
+ ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
174
+ ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
175
+
176
+ ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
177
+ conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
178
+
179
+ // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
180
+ cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
181
+
182
+ // in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
183
+ ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
184
+ cb(zx, "mamba_in_proj", il);
185
+ // {8192, 5, 1, 1} -> {8192, 1, 5, 1}
186
+ zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
187
+ zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
188
+ cb(zx, "mamba_in_proj_out", il);
189
+
190
+ // split into z and x
191
+ // => {head_dim * n_heads, n_seq_tokens, n_seqs}
192
+ ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3],
193
+ head_dim * ggml_element_size(zx));
194
+ x = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
195
+ // x = ggml_permute(ctx0, x, 0, 2, 1, 3);
196
+ cb(x, "mamba_x_split", il);
197
+
198
+ ggml_tensor * z =
199
+ ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
200
+ cb(z, "mamba_z_split", il);
201
+
202
+ // conv1d
203
+ {
204
+ // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
205
+ ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
206
+ cb(conv_x, "mamba_conv1d_input", il);
207
+
208
+ // copy last (d_conv - 1) columns back into the state cache
209
+ ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
210
+ n_seq_tokens * (conv_x->nb[0]));
211
+
212
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
213
+ ggml_view_1d(ctx0, conv_states_all,
214
+ (d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
215
+ kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
216
+ ggml_element_size(conv_states_all))));
217
+ cb(conv_states_all, "mamba_conv1d_state", il);
218
+
219
+ // 1D convolution
220
+ x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
221
+ cb(x, "mamba_conv1d", il);
222
+
223
+ x = ggml_silu(ctx0, x);
224
+ cb(x, "mamba_conv1d_silu", il);
225
+ }
226
+
227
+ // SSM
228
+ {
229
+ // bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
230
+ ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
231
+ cb(x_bcdt, "mamba_bcdt_proj", il);
232
+
233
+ // split into dt, B, C
234
+ const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
235
+ ggml_tensor * B = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
236
+ ggml_tensor * C = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
237
+ ggml_element_size(x_bcdt) * d_state);
238
+ ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
239
+ ggml_element_size(x_bcdt) * (2 * d_state));
240
+ cb(B, "mamba_B_raw", il);
241
+ cb(C, "mamba_C_raw", il);
242
+ cb(dt, "mamba_dt_raw", il);
243
+
244
+ // Apply RMS norm to dt, B, C (PLaMo-2 specific)
245
+ B = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
246
+ C = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
247
+ dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
248
+ cb(B, "mamba_B_normed", il);
249
+ cb(C, "mamba_C_normed", il);
250
+ cb(dt, "mamba_dt_normed", il);
251
+
252
+ // dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
253
+ dt = build_lora_mm(model.layers[il].ssm_dt, dt);
254
+ dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
255
+ cb(dt, "mamba_dt_proj", il);
256
+
257
+ ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
258
+ cb(A, "mamba_A", il);
259
+
260
+ x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x),
261
+ head_dim * n_heads * ggml_element_size(x),
262
+ head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
263
+ B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
264
+ C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
265
+
266
+ // use the states and the indices provided by build_recurrent_state
267
+ // (this is necessary in order to properly use the states before they are overwritten,
268
+ // while avoiding to make unnecessary copies of the states)
269
+ auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
270
+ ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
271
+
272
+ // Custom operator to optimize the parallel associative scan
273
+ // as described in the Annex D of the Mamba paper.
274
+ // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
275
+ return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
276
+ };
277
+
278
+ ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
279
+ cb(y_ssm, "mamba_ssm_scan", il);
280
+
281
+ // store last states
282
+ ggml_build_forward_expand(
283
+ gf, ggml_cpy(
284
+ ctx0,
285
+ ggml_view_1d(ctx0, y_ssm, n_heads * head_dim * d_state * n_seqs,
286
+ n_heads * head_dim * n_seq_tokens * n_seqs * ggml_element_size(y_ssm)),
287
+ ggml_view_1d(ctx0, ssm_states_all, n_heads * head_dim * d_state * n_seqs,
288
+ kv_head * n_seqs * n_heads * head_dim * d_state * ggml_element_size(ssm_states_all))));
289
+ cb(ssm_states_all, "mamba_ssm_states", il);
290
+
291
+ ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs,
292
+ head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x),
293
+ head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
294
+ cb(y, "mamba_y_view", il);
295
+
296
+ // Add D parameter and apply gating with z
297
+ // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
298
+ ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
299
+ y = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
300
+ cb(y, "mamba_y_add_d", il);
301
+
302
+ y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
303
+ cb(y, "mamba_y_swiglu_z", il);
304
+
305
+ // out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
306
+ y = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
307
+ cur = build_lora_mm(model.layers[il].ssm_out, y);
308
+ cb(cur, "mamba_out_proj", il);
309
+ }
310
+
311
+ // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
312
+ cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
313
+ cb(cur, "mamba_out", il);
314
+
315
+ return cur;
316
+ }
@@ -0,0 +1,168 @@
1
+ #include "models.h"
2
+
3
+ llm_build_plm::llm_build_plm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
5
+
6
+ const uint32_t n_embd_head_qk_rope = hparams.n_rot;
7
+ const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
8
+ const uint32_t kv_lora_rank = hparams.n_lora_kv;
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ // {n_embd, n_tokens}
14
+ inpL = build_inp_embd(model.tok_embd);
15
+
16
+ // inp_pos - contains the positions
17
+ ggml_tensor * inp_pos = build_inp_pos();
18
+
19
+ auto * inp_attn = build_attn_inp_kv();
20
+
21
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
22
+
23
+ for (int il = 0; il < n_layer; ++il) {
24
+ ggml_tensor * inpSA = inpL;
25
+
26
+ // norm
27
+ cur = build_norm(inpL,
28
+ model.layers[il].attn_norm, NULL,
29
+ LLM_NORM_RMS, il);
30
+ cb(cur, "attn_norm", il);
31
+
32
+ // self_attention
33
+ {
34
+ ggml_tensor * q = NULL;
35
+ q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
36
+ cb(q, "q", il);
37
+
38
+ // split into {n_head * n_embd_head_qk_nope, n_tokens}
39
+ ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
40
+ ggml_row_size(q->type, hparams.n_embd_head_k),
41
+ ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
42
+ 0);
43
+ cb(q_nope, "q_nope", il);
44
+
45
+ // and {n_head * n_embd_head_qk_rope, n_tokens}
46
+ ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
47
+ ggml_row_size(q->type, hparams.n_embd_head_k),
48
+ ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
49
+ ggml_row_size(q->type, n_embd_head_qk_nope));
50
+ cb(q_pe, "q_pe", il);
51
+
52
+ // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
53
+ ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
54
+ cb(kv_pe_compresseed, "kv_pe_compresseed", il);
55
+
56
+ // split into {kv_lora_rank, n_tokens}
57
+ ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
58
+ kv_pe_compresseed->nb[1],
59
+ 0);
60
+ cb(kv_compressed, "kv_compressed", il);
61
+
62
+ // and {n_embd_head_qk_rope, n_tokens}
63
+ ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
64
+ kv_pe_compresseed->nb[1],
65
+ kv_pe_compresseed->nb[1],
66
+ ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
67
+ cb(k_pe, "k_pe", il);
68
+
69
+ kv_compressed = build_norm(kv_compressed,
70
+ model.layers[il].attn_kv_a_norm, NULL,
71
+ LLM_NORM_RMS, il);
72
+ cb(kv_compressed, "kv_compressed", il);
73
+
74
+ // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
75
+ ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
76
+ cb(kv, "kv", il);
77
+
78
+ // split into {n_head * n_embd_head_qk_nope, n_tokens}
79
+ ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
80
+ ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
81
+ ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
82
+ 0);
83
+ cb(k_nope, "k_nope", il);
84
+
85
+ // and {n_head * n_embd_head_v, n_tokens}
86
+ ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
87
+ ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
88
+ ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
89
+ ggml_row_size(kv->type, (n_embd_head_qk_nope)));
90
+ cb(v_states, "v_states", il);
91
+
92
+ v_states = ggml_cont(ctx0, v_states);
93
+ cb(v_states, "v_states", il);
94
+
95
+ v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
96
+ ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
97
+ 0);
98
+ cb(v_states, "v_states", il);
99
+
100
+ q_pe = ggml_rope_ext(
101
+ ctx0, q_pe, inp_pos, nullptr,
102
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
103
+ ext_factor, attn_factor, beta_fast, beta_slow
104
+ );
105
+ cb(q_pe, "q_pe", il);
106
+
107
+ // shared RoPE key
108
+ k_pe = ggml_rope_ext(
109
+ ctx0, k_pe, inp_pos, nullptr,
110
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
111
+ ext_factor, attn_factor, beta_fast, beta_slow
112
+ );
113
+ cb(k_pe, "k_pe", il);
114
+
115
+ ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
116
+ cb(q_states, "q_states", il);
117
+
118
+ ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
119
+ cb(k_states, "k_states", il);
120
+
121
+ cur = build_attn(inp_attn,
122
+ model.layers[il].wo, NULL,
123
+ q_states, k_states, v_states, nullptr, nullptr, nullptr, kq_scale, il);
124
+ }
125
+ if (il == n_layer - 1 && inp_out_ids) {
126
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
127
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
128
+ }
129
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
130
+ cb(ffn_inp, "ffn_inp", il);
131
+
132
+ cur = build_norm(ffn_inp,
133
+ model.layers[il].ffn_norm, NULL,
134
+ LLM_NORM_RMS, il);
135
+ cb(cur, "ffn_norm", il);
136
+
137
+ cur = build_ffn(cur,
138
+ model.layers[il].ffn_up, NULL, NULL,
139
+ NULL, NULL, NULL,
140
+ model.layers[il].ffn_down, NULL, NULL,
141
+ NULL,
142
+ LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
143
+ cb(cur, "ffn_out", il);
144
+
145
+ cur = ggml_add(ctx0, cur, ffn_inp);
146
+
147
+ cur = build_cvec(cur, il);
148
+ cb(cur, "l_out", il);
149
+
150
+ // input for next layer
151
+ inpL = cur;
152
+ }
153
+ cur = inpL;
154
+
155
+ cur = build_norm(cur,
156
+ model.output_norm, NULL,
157
+ LLM_NORM_RMS, -1);
158
+
159
+ cb(cur, "result_norm", -1);
160
+ res->t_embd = cur;
161
+
162
+ cur = build_lora_mm(model.output, cur);
163
+
164
+ cb(cur, "result_output", -1);
165
+ res->t_logits = cur;
166
+
167
+ ggml_build_forward_expand(gf, cur);
168
+ }
@@ -0,0 +1,108 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_qwen::llm_build_qwen(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ ggml_tensor * inpSA = inpL;
23
+
24
+ cur = build_norm(inpL,
25
+ model.layers[il].attn_norm, NULL,
26
+ LLM_NORM_RMS, il);
27
+ cb(cur, "attn_norm", il);
28
+
29
+ // self-attention
30
+ {
31
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
32
+ cb(cur, "wqkv", il);
33
+
34
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
35
+ cb(cur, "bqkv", il);
36
+
37
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
38
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
39
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 2*sizeof(float)*(n_embd));
40
+
41
+ // using mode = 2 for neox mode
42
+ Qcur = ggml_rope_ext(
43
+ ctx0, Qcur, inp_pos, nullptr,
44
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
45
+ ext_factor, attn_factor, beta_fast, beta_slow
46
+ );
47
+
48
+ Kcur = ggml_rope_ext(
49
+ ctx0, Kcur, inp_pos, nullptr,
50
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
51
+ ext_factor, attn_factor, beta_fast, beta_slow
52
+ );
53
+
54
+ cb(Qcur, "Qcur", il);
55
+ cb(Kcur, "Kcur", il);
56
+ cb(Vcur, "Vcur", il);
57
+
58
+ cur = build_attn(inp_attn,
59
+ model.layers[il].wo, NULL,
60
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
61
+ }
62
+ if (il == n_layer - 1 && inp_out_ids) {
63
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
64
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
65
+ }
66
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
67
+ cb(ffn_inp, "ffn_inp", il);
68
+
69
+ // feed-forward forward
70
+ {
71
+ cur = build_norm(ffn_inp,
72
+ model.layers[il].ffn_norm, NULL,
73
+ LLM_NORM_RMS, il);
74
+ cb(cur, "ffn_norm", il);
75
+
76
+ cur = build_ffn(cur,
77
+ model.layers[il].ffn_up, NULL, NULL,
78
+ model.layers[il].ffn_gate, NULL, NULL,
79
+ model.layers[il].ffn_down, NULL, NULL,
80
+ NULL,
81
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
82
+ cb(cur, "ffn_out", il);
83
+ }
84
+ cur = ggml_add(ctx0, cur, ffn_inp);
85
+
86
+ cur = build_cvec(cur, il);
87
+ cb(cur, "l_out", il);
88
+
89
+ // input for next layer
90
+ inpL = cur;
91
+ }
92
+ cur = inpL;
93
+
94
+ cur = build_norm(cur,
95
+ model.output_norm, NULL,
96
+ LLM_NORM_RMS, -1);
97
+
98
+ cb(cur, "result_norm", -1);
99
+ res->t_embd = cur;
100
+
101
+ // lm_head
102
+ cur = build_lora_mm(model.output, cur);
103
+
104
+ cb(cur, "result_output", -1);
105
+ res->t_logits = cur;
106
+
107
+ ggml_build_forward_expand(gf, cur);
108
+ }