@fugood/llama.node 1.3.0 → 1.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (143) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +8 -8
  3. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  4. package/src/llama.cpp/common/arg.cpp +44 -999
  5. package/src/llama.cpp/common/arg.h +2 -2
  6. package/src/llama.cpp/common/chat.cpp +17 -2
  7. package/src/llama.cpp/common/common.cpp +33 -0
  8. package/src/llama.cpp/common/common.h +15 -1
  9. package/src/llama.cpp/common/download.cpp +1054 -0
  10. package/src/llama.cpp/common/download.h +55 -0
  11. package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
  12. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
  15. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
  16. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  17. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  18. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
  21. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
  23. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  24. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  25. package/src/llama.cpp/include/llama.h +7 -3
  26. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  28. package/src/llama.cpp/src/llama-arch.h +11 -0
  29. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  30. package/src/llama.cpp/src/llama-batch.h +12 -1
  31. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  32. package/src/llama.cpp/src/llama-chat.h +1 -0
  33. package/src/llama.cpp/src/llama-context.cpp +36 -13
  34. package/src/llama.cpp/src/llama-context.h +5 -5
  35. package/src/llama.cpp/src/llama-cparams.h +1 -0
  36. package/src/llama.cpp/src/llama-graph.cpp +3 -3
  37. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  38. package/src/llama.cpp/src/llama-hparams.h +6 -0
  39. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  40. package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
  41. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  42. package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
  43. package/src/llama.cpp/src/llama-model.cpp +320 -13171
  44. package/src/llama.cpp/src/llama-model.h +8 -0
  45. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  46. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  47. package/src/llama.cpp/src/llama-vocab.h +1 -0
  48. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  49. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  50. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  51. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  52. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  53. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  54. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  55. package/src/llama.cpp/src/models/bert.cpp +176 -0
  56. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  57. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  58. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  59. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  60. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  61. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  62. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  63. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  64. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  65. package/src/llama.cpp/src/models/deci.cpp +135 -0
  66. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  67. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  68. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  69. package/src/llama.cpp/src/models/dream.cpp +105 -0
  70. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  71. package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
  72. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  73. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  74. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  75. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  76. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  77. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  78. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  79. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  80. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  81. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  82. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  83. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  84. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  85. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  86. package/src/llama.cpp/src/models/granite.cpp +211 -0
  87. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  88. package/src/llama.cpp/src/models/grok.cpp +159 -0
  89. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  90. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  91. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  92. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  93. package/src/llama.cpp/src/models/jais.cpp +86 -0
  94. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  95. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  96. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  97. package/src/llama.cpp/src/models/llada.cpp +99 -0
  98. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  99. package/src/llama.cpp/src/models/llama.cpp +155 -0
  100. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  101. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  102. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  103. package/src/llama.cpp/src/models/models.h +481 -0
  104. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  105. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  106. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  107. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  108. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  109. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  110. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  111. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
  112. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  113. package/src/llama.cpp/src/models/orion.cpp +123 -0
  114. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  115. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  116. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  117. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  118. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  119. package/src/llama.cpp/src/models/plm.cpp +168 -0
  120. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  121. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  122. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  123. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  124. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  125. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  126. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  127. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  128. package/src/llama.cpp/src/models/refact.cpp +94 -0
  129. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  130. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  131. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  132. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  133. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  134. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  135. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  136. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  137. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  138. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  139. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  140. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  141. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  142. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  143. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -114,6 +114,7 @@ enum llm_type {
114
114
  LLM_TYPE_30B_A3B,
115
115
  LLM_TYPE_100B_A6B,
116
116
  LLM_TYPE_106B_A12B, // GLM-4.5-Air
117
+ LLM_TYPE_230B_A10B, // Minimax M2
117
118
  LLM_TYPE_235B_A22B,
118
119
  LLM_TYPE_300B_A47B, // Ernie MoE big
119
120
  LLM_TYPE_355B_A32B, // GLM-4.5
@@ -384,6 +385,13 @@ struct llama_layer {
384
385
  // openai-moe
385
386
  struct ggml_tensor * attn_sinks = nullptr;
386
387
 
388
+ // cogvlm
389
+ struct ggml_tensor * visexp_attn_wqkv = nullptr;
390
+ struct ggml_tensor * visexp_attn_wo = nullptr;
391
+ struct ggml_tensor * visexp_ffn_gate = nullptr;
392
+ struct ggml_tensor * visexp_ffn_down = nullptr;
393
+ struct ggml_tensor * visexp_ffn_up = nullptr;
394
+
387
395
  // xIELU activation parameters for Apertus
388
396
  struct ggml_tensor * ffn_act_alpha_n = nullptr;
389
397
  struct ggml_tensor * ffn_act_alpha_p = nullptr;
@@ -653,7 +653,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
653
653
  gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
654
654
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
655
655
  // Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
656
- gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
656
+ gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)std::abs(o.val_i64));
657
657
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
658
658
  gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
659
659
  } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
@@ -401,6 +401,7 @@ struct llm_tokenizer_bpe : llm_tokenizer {
401
401
  };
402
402
  break;
403
403
  case LLAMA_VOCAB_PRE_TYPE_GPT4O:
404
+ case LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2:
404
405
  regex_exprs = {
405
406
  // original regex from tokenizer.json
406
407
  // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
@@ -1992,6 +1993,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
1992
1993
  tokenizer_pre == "grok-2") {
1993
1994
  pre_type = LLAMA_VOCAB_PRE_TYPE_GROK_2;
1994
1995
  clean_spaces = false;
1996
+ } else if (
1997
+ tokenizer_pre == "minimax-m2") {
1998
+ pre_type = LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2;
1999
+ clean_spaces = false;
1995
2000
  } else {
1996
2001
  throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
1997
2002
  }
@@ -49,6 +49,7 @@ enum llama_vocab_pre_type {
49
49
  LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE = 38,
50
50
  LLAMA_VOCAB_PRE_TYPE_GROK_2 = 39,
51
51
  LLAMA_VOCAB_PRE_TYPE_GRANITE_DOCLING = 40,
52
+ LLAMA_VOCAB_PRE_TYPE_MINIMAX_M2 = 41,
52
53
  };
53
54
 
54
55
  struct LLM_KV;
@@ -0,0 +1,125 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
+ const int64_t n_embd_head = hparams.n_embd_head_v;
7
+
8
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
10
+
11
+ ggml_tensor * cur;
12
+ ggml_tensor * inpL;
13
+
14
+ inpL = build_inp_embd(model.tok_embd);
15
+
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+ auto * inp_attn = build_attn_inp_kv();
18
+
19
+ const float kq_scale =
20
+ hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ ggml_tensor * inpSA = inpL;
26
+
27
+ cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
33
+
34
+ // compute Q and K and RoPE them
35
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
+ cb(Qcur, "Qcur", il);
37
+
38
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
+ cb(Kcur, "Kcur", il);
40
+
41
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
+ cb(Vcur, "Vcur", il);
43
+
44
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
45
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
46
+ cb(Qcur, "Qcur_normed", il);
47
+
48
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
49
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
50
+ cb(Kcur, "Kcur_normed", il);
51
+
52
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
+
54
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
55
+ ext_factor, attn_factor, beta_fast, beta_slow);
56
+
57
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow);
59
+
60
+ cb(Qcur, "Qcur_pos", il);
61
+ cb(Kcur, "Kcur_pos", il);
62
+ cb(Vcur, "Vcur_pos", il);
63
+
64
+ cur = build_attn(inp_attn,
65
+ model.layers[il].wo, model.layers[il].bo,
66
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
67
+ cb(cur, "attn_out", il);
68
+ }
69
+
70
+ if (il == n_layer - 1 && inp_out_ids) {
71
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
72
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
73
+ }
74
+
75
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
76
+ cb(ffn_inp, "ffn_inp", il);
77
+
78
+ // feed-forward network with xIELU activation
79
+ {
80
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
81
+ cb(cur, "ffn_norm", il);
82
+
83
+ // Up projection
84
+ ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
85
+ cb(up, "ffn_up", il);
86
+
87
+ float alpha_n_val = hparams.xielu_alpha_n[il];
88
+ float alpha_p_val = hparams.xielu_alpha_p[il];
89
+ float beta_val = hparams.xielu_beta[il];
90
+ float eps_val = hparams.xielu_eps[il];
91
+
92
+ // Apply xIELU activation
93
+ ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
94
+ cb(activated, "ffn_xielu", il);
95
+
96
+ // Down projection
97
+ cur = build_lora_mm(model.layers[il].ffn_down, activated);
98
+ cb(cur, "ffn_down", il);
99
+ }
100
+
101
+ cur = ggml_add(ctx0, cur, ffn_inp);
102
+ cb(cur, "ffn_out", il);
103
+
104
+ cur = build_cvec(cur, il);
105
+ cb(cur, "l_out", il);
106
+
107
+ // input for next layer
108
+ inpL = cur;
109
+ }
110
+
111
+ cur = inpL;
112
+
113
+ cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
114
+
115
+ cb(cur, "result_norm", -1);
116
+ res->t_embd = cur;
117
+
118
+ // lm_head
119
+ cur = build_lora_mm(model.output, cur);
120
+
121
+ cb(cur, "result_output", -1);
122
+ res->t_logits = cur;
123
+
124
+ ggml_build_forward_expand(gf, cur);
125
+ }
@@ -0,0 +1,135 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_arcee::llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ ggml_tensor * inpSA = inpL;
26
+
27
+ // norm
28
+ cur = build_norm(inpL,
29
+ model.layers[il].attn_norm, NULL,
30
+ LLM_NORM_RMS, il);
31
+ cb(cur, "attn_norm", il);
32
+
33
+ // self-attention
34
+ {
35
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
36
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
37
+
38
+ // compute Q and K and RoPE them
39
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
40
+ cb(Qcur, "Qcur", il);
41
+ if (model.layers[il].bq) {
42
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
43
+ cb(Qcur, "Qcur", il);
44
+ }
45
+
46
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
47
+ cb(Kcur, "Kcur", il);
48
+ if (model.layers[il].bk) {
49
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
+ cb(Kcur, "Kcur", il);
51
+ }
52
+
53
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
54
+ cb(Vcur, "Vcur", il);
55
+ if (model.layers[il].bv) {
56
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
57
+ cb(Vcur, "Vcur", il);
58
+ }
59
+
60
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
61
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
62
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
63
+
64
+ Qcur = ggml_rope_ext(
65
+ ctx0, Qcur, inp_pos, rope_factors,
66
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
67
+ ext_factor, attn_factor, beta_fast, beta_slow
68
+ );
69
+
70
+ Kcur = ggml_rope_ext(
71
+ ctx0, Kcur, inp_pos, rope_factors,
72
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
73
+ ext_factor, attn_factor, beta_fast, beta_slow
74
+ );
75
+
76
+ cb(Qcur, "Qcur", il);
77
+ cb(Kcur, "Kcur", il);
78
+ cb(Vcur, "Vcur", il);
79
+
80
+ cur = build_attn(inp_attn,
81
+ model.layers[il].wo, model.layers[il].bo,
82
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
83
+ cb(cur, "attn_out", il);
84
+ }
85
+
86
+ if (il == n_layer - 1 && inp_out_ids) {
87
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
88
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
89
+ }
90
+
91
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
92
+ cb(ffn_inp, "ffn_inp", il);
93
+
94
+ // feed-forward network
95
+ // ARCEE uses relu^2 instead of silu
96
+ cur = build_norm(ffn_inp,
97
+ model.layers[il].ffn_norm, NULL,
98
+ LLM_NORM_RMS, il);
99
+ cb(cur, "ffn_norm", il);
100
+
101
+ cur = build_ffn(cur,
102
+ model.layers[il].ffn_up, NULL, NULL,
103
+ NULL, NULL, NULL,
104
+ model.layers[il].ffn_down, NULL, NULL,
105
+ NULL,
106
+ LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
107
+ cb(cur, "ffn_out", il);
108
+
109
+ cur = ggml_add(ctx0, cur, ffn_inp);
110
+ cb(cur, "ffn_out", il);
111
+
112
+ cur = build_cvec(cur, il);
113
+ cb(cur, "l_out", il);
114
+
115
+ // input for next layer
116
+ inpL = cur;
117
+ }
118
+
119
+ cur = inpL;
120
+
121
+ cur = build_norm(cur,
122
+ model.output_norm, NULL,
123
+ LLM_NORM_RMS, -1);
124
+
125
+ cb(cur, "result_norm", -1);
126
+ res->t_embd = cur;
127
+
128
+ // lm_head
129
+ cur = build_lora_mm(model.output, cur);
130
+
131
+ cb(cur, "result_output", -1);
132
+ res->t_logits = cur;
133
+
134
+ ggml_build_forward_expand(gf, cur);
135
+ }
@@ -0,0 +1,138 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_arctic::llm_build_arctic(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ ggml_tensor * inpSA = inpL;
24
+
25
+ // norm
26
+ cur = build_norm(inpL,
27
+ model.layers[il].attn_norm, NULL,
28
+ LLM_NORM_RMS, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self-attention
32
+ {
33
+ // compute Q and K and RoPE them
34
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
+ cb(Qcur, "Qcur", il);
36
+
37
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
38
+ cb(Kcur, "Kcur", il);
39
+
40
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
41
+ cb(Vcur, "Vcur", il);
42
+
43
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
44
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
45
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
46
+
47
+ Qcur = ggml_rope_ext(
48
+ ctx0, Qcur, inp_pos, nullptr,
49
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
50
+ ext_factor, attn_factor, beta_fast, beta_slow
51
+ );
52
+
53
+ Kcur = ggml_rope_ext(
54
+ ctx0, Kcur, inp_pos, nullptr,
55
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
56
+ ext_factor, attn_factor, beta_fast, beta_slow
57
+ );
58
+
59
+ cb(Qcur, "Qcur", il);
60
+ cb(Kcur, "Kcur", il);
61
+ cb(Vcur, "Vcur", il);
62
+
63
+ cur = build_attn(inp_attn,
64
+ model.layers[il].wo, NULL,
65
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
66
+ }
67
+
68
+ if (il == n_layer - 1 && inp_out_ids) {
69
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
70
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
71
+ }
72
+
73
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
74
+ cb(ffn_inp, "ffn_inp", il);
75
+
76
+ // feed-forward network
77
+ cur = build_norm(ffn_inp,
78
+ model.layers[il].ffn_norm, NULL,
79
+ LLM_NORM_RMS, il);
80
+ cb(cur, "ffn_norm", il);
81
+
82
+ cur = build_ffn(cur,
83
+ model.layers[il].ffn_up, NULL, NULL,
84
+ model.layers[il].ffn_gate, NULL, NULL,
85
+ model.layers[il].ffn_down, NULL, NULL,
86
+ NULL,
87
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
88
+ cb(cur, "ffn_out", il);
89
+
90
+ ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
91
+ cb(ffn_out, "ffn_out", il);
92
+
93
+ // MoE
94
+ cur = build_norm(inpSA,
95
+ model.layers[il].ffn_norm_exps, NULL,
96
+ LLM_NORM_RMS, il);
97
+ cb(cur, "ffn_norm_exps", il);
98
+
99
+ cur = build_moe_ffn(cur,
100
+ model.layers[il].ffn_gate_inp,
101
+ model.layers[il].ffn_up_exps,
102
+ model.layers[il].ffn_gate_exps,
103
+ model.layers[il].ffn_down_exps,
104
+ nullptr,
105
+ n_expert, n_expert_used,
106
+ LLM_FFN_SILU, true,
107
+ false, 0.0,
108
+ LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
109
+ il);
110
+ cb(cur, "ffn_moe_out", il);
111
+
112
+ cur = ggml_add(ctx0, cur, ffn_out);
113
+ cb(cur, "ffn_out", il);
114
+
115
+ cur = build_cvec(cur, il);
116
+ cb(cur, "l_out", il);
117
+
118
+ // input for next layer
119
+ inpL = cur;
120
+ }
121
+
122
+ cur = inpL;
123
+
124
+ cur = build_norm(cur,
125
+ model.output_norm, NULL,
126
+ LLM_NORM_RMS, -1);
127
+
128
+ cb(cur, "result_norm", -1);
129
+ res->t_embd = cur;
130
+
131
+ // lm_head
132
+ cur = build_lora_mm(model.output, cur);
133
+
134
+ cb(cur, "result_output", -1);
135
+ res->t_logits = cur;
136
+
137
+ ggml_build_forward_expand(gf, cur);
138
+ }
@@ -0,0 +1,86 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_arwkv7::llm_build_arwkv7(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv7_base(model, params) {
5
+ GGML_ASSERT(n_embd == hparams.n_embd_r());
6
+
7
+ ggml_tensor * cur;
8
+ ggml_tensor * inpL;
9
+ ggml_tensor * v_first = nullptr;
10
+
11
+ inpL = build_inp_embd(model.tok_embd);
12
+
13
+ auto * rs_inp = build_rs_inp();
14
+
15
+ const auto n_embd = hparams.n_embd;
16
+ const auto n_seq_tokens = ubatch.n_seq_tokens;
17
+ const auto n_seqs = ubatch.n_seqs;
18
+
19
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
20
+
21
+ for (int il = 0; il < n_layer; ++il) {
22
+ const llama_layer * layer = &model.layers[il];
23
+ inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
24
+
25
+ ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
26
+
27
+ ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
28
+ cb(att_norm, "attn_norm", il);
29
+
30
+ ggml_tensor * x_prev = ggml_concat(
31
+ ctx0,
32
+ token_shift,
33
+ ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
34
+ 1
35
+ );
36
+
37
+ cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il);
38
+
39
+ token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
40
+ ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
41
+
42
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
43
+ cb(ffn_inp, "ffn_inp", il);
44
+
45
+ cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
46
+ ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
47
+
48
+ if (il == n_layer - 1 && inp_out_ids) {
49
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
50
+ ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
51
+ }
52
+ // feed-forward network
53
+ cur = build_norm(ffn_inp,
54
+ model.layers[il].ffn_norm, NULL,
55
+ LLM_NORM_RMS, il);
56
+ cb(cur, "ffn_norm", il);
57
+
58
+ cur = build_ffn(cur,
59
+ model.layers[il].ffn_up, NULL, NULL,
60
+ model.layers[il].ffn_gate, NULL, NULL,
61
+ model.layers[il].ffn_down, NULL, NULL,
62
+ NULL,
63
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
64
+ cb(cur, "ffn_out", il);
65
+
66
+ cur = ggml_add(ctx0, cur, ffn_inp);
67
+
68
+ cur = build_cvec(cur, il);
69
+ cb(cur, "l_out", il);
70
+
71
+ // input for next layer
72
+ inpL = cur;
73
+ }
74
+ cur = inpL;
75
+ cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
76
+
77
+ cb(cur, "result_norm", -1);
78
+ res->t_embd = cur;
79
+
80
+ cur = build_lora_mm(model.output, cur);
81
+
82
+ cb(cur, "result_output", -1);
83
+ res->t_logits = cur;
84
+
85
+ ggml_build_forward_expand(gf, cur);
86
+ }
@@ -0,0 +1,122 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_baichuan::llm_build_baichuan(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ ggml_tensor * inpSA = inpL;
24
+
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm, NULL,
27
+ LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+
30
+ // self-attention
31
+ {
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ cb(Qcur, "Qcur", il);
34
+
35
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
36
+ cb(Kcur, "Kcur", il);
37
+
38
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
+ cb(Vcur, "Vcur", il);
40
+
41
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
42
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
43
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
44
+
45
+ switch (model.type) {
46
+ case LLM_TYPE_7B:
47
+ Qcur = ggml_rope_ext(
48
+ ctx0, Qcur, inp_pos, nullptr,
49
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
50
+ ext_factor, attn_factor, beta_fast, beta_slow
51
+ );
52
+ Kcur = ggml_rope_ext(
53
+ ctx0, Kcur, inp_pos, nullptr,
54
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
55
+ ext_factor, attn_factor, beta_fast, beta_slow
56
+ );
57
+ break;
58
+ case LLM_TYPE_13B:
59
+ break;
60
+ default:
61
+ GGML_ABORT("fatal error");
62
+ }
63
+
64
+ cb(Qcur, "Qcur", il);
65
+ cb(Kcur, "Kcur", il);
66
+ cb(Vcur, "Vcur", il);
67
+
68
+ cur = build_attn(inp_attn,
69
+ model.layers[il].wo, NULL,
70
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
71
+ }
72
+
73
+ if (il == n_layer - 1 && inp_out_ids) {
74
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
75
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
76
+ }
77
+
78
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
79
+ cb(ffn_inp, "ffn_inp", il);
80
+
81
+ // feed-forward network
82
+ {
83
+ cur = build_norm(ffn_inp,
84
+ model.layers[il].ffn_norm, NULL,
85
+ LLM_NORM_RMS, il);
86
+ cb(cur, "ffn_norm", il);
87
+
88
+ cur = build_ffn(cur,
89
+ model.layers[il].ffn_up, NULL, NULL,
90
+ model.layers[il].ffn_gate, NULL, NULL,
91
+ model.layers[il].ffn_down, NULL, NULL,
92
+ NULL,
93
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
94
+ cb(cur, "ffn_out", il);
95
+ }
96
+
97
+ cur = ggml_add(ctx0, cur, ffn_inp);
98
+
99
+ cur = build_cvec(cur, il);
100
+ cb(cur, "l_out", il);
101
+
102
+ // input for next layer
103
+ inpL = cur;
104
+ }
105
+
106
+ cur = inpL;
107
+
108
+ cur = build_norm(cur,
109
+ model.output_norm, NULL,
110
+ LLM_NORM_RMS, -1);
111
+
112
+ cb(cur, "result_norm", -1);
113
+ res->t_embd = cur;
114
+
115
+ // lm_head
116
+ cur = build_lora_mm(model.output, cur);
117
+
118
+ cb(cur, "result_output", -1);
119
+ res->t_logits = cur;
120
+
121
+ ggml_build_forward_expand(gf, cur);
122
+ }