@fugood/llama.node 1.3.0 → 1.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +8 -8
- package/src/llama.cpp/common/CMakeLists.txt +2 -0
- package/src/llama.cpp/common/arg.cpp +44 -999
- package/src/llama.cpp/common/arg.h +2 -2
- package/src/llama.cpp/common/chat.cpp +17 -2
- package/src/llama.cpp/common/common.cpp +33 -0
- package/src/llama.cpp/common/common.h +15 -1
- package/src/llama.cpp/common/download.cpp +1054 -0
- package/src/llama.cpp/common/download.h +55 -0
- package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
- package/src/llama.cpp/ggml/include/ggml.h +2 -0
- package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
- package/src/llama.cpp/include/llama.h +7 -3
- package/src/llama.cpp/src/CMakeLists.txt +95 -0
- package/src/llama.cpp/src/llama-arch.cpp +108 -0
- package/src/llama.cpp/src/llama-arch.h +11 -0
- package/src/llama.cpp/src/llama-batch.cpp +63 -31
- package/src/llama.cpp/src/llama-batch.h +12 -1
- package/src/llama.cpp/src/llama-chat.cpp +32 -0
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +36 -13
- package/src/llama.cpp/src/llama-context.h +5 -5
- package/src/llama.cpp/src/llama-cparams.h +1 -0
- package/src/llama.cpp/src/llama-graph.cpp +3 -3
- package/src/llama.cpp/src/llama-hparams.cpp +11 -1
- package/src/llama.cpp/src/llama-hparams.h +6 -0
- package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
- package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
- package/src/llama.cpp/src/llama-kv-cells.h +44 -2
- package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
- package/src/llama.cpp/src/llama-model.cpp +320 -13171
- package/src/llama.cpp/src/llama-model.h +8 -0
- package/src/llama.cpp/src/llama-quant.cpp +1 -1
- package/src/llama.cpp/src/llama-vocab.cpp +5 -0
- package/src/llama.cpp/src/llama-vocab.h +1 -0
- package/src/llama.cpp/src/models/apertus.cpp +125 -0
- package/src/llama.cpp/src/models/arcee.cpp +135 -0
- package/src/llama.cpp/src/models/arctic.cpp +138 -0
- package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
- package/src/llama.cpp/src/models/baichuan.cpp +122 -0
- package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
- package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
- package/src/llama.cpp/src/models/bert.cpp +176 -0
- package/src/llama.cpp/src/models/bitnet.cpp +160 -0
- package/src/llama.cpp/src/models/bloom.cpp +101 -0
- package/src/llama.cpp/src/models/chameleon.cpp +178 -0
- package/src/llama.cpp/src/models/chatglm.cpp +132 -0
- package/src/llama.cpp/src/models/codeshell.cpp +111 -0
- package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
- package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/command-r.cpp +122 -0
- package/src/llama.cpp/src/models/dbrx.cpp +123 -0
- package/src/llama.cpp/src/models/deci.cpp +135 -0
- package/src/llama.cpp/src/models/deepseek.cpp +144 -0
- package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
- package/src/llama.cpp/src/models/dots1.cpp +134 -0
- package/src/llama.cpp/src/models/dream.cpp +105 -0
- package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
- package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
- package/src/llama.cpp/src/models/exaone.cpp +114 -0
- package/src/llama.cpp/src/models/exaone4.cpp +123 -0
- package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
- package/src/llama.cpp/src/models/falcon.cpp +120 -0
- package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
- package/src/llama.cpp/src/models/gemma.cpp +112 -0
- package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
- package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
- package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
- package/src/llama.cpp/src/models/glm4.cpp +127 -0
- package/src/llama.cpp/src/models/gpt2.cpp +105 -0
- package/src/llama.cpp/src/models/gptneox.cpp +144 -0
- package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
- package/src/llama.cpp/src/models/granite.cpp +211 -0
- package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
- package/src/llama.cpp/src/models/grok.cpp +159 -0
- package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
- package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
- package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
- package/src/llama.cpp/src/models/internlm2.cpp +120 -0
- package/src/llama.cpp/src/models/jais.cpp +86 -0
- package/src/llama.cpp/src/models/jamba.cpp +106 -0
- package/src/llama.cpp/src/models/lfm2.cpp +173 -0
- package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
- package/src/llama.cpp/src/models/llada.cpp +99 -0
- package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
- package/src/llama.cpp/src/models/llama.cpp +155 -0
- package/src/llama.cpp/src/models/mamba.cpp +55 -0
- package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
- package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
- package/src/llama.cpp/src/models/models.h +481 -0
- package/src/llama.cpp/src/models/mpt.cpp +126 -0
- package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
- package/src/llama.cpp/src/models/nemotron.cpp +122 -0
- package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
- package/src/llama.cpp/src/models/olmo.cpp +121 -0
- package/src/llama.cpp/src/models/olmo2.cpp +150 -0
- package/src/llama.cpp/src/models/olmoe.cpp +124 -0
- package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
- package/src/llama.cpp/src/models/openelm.cpp +124 -0
- package/src/llama.cpp/src/models/orion.cpp +123 -0
- package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
- package/src/llama.cpp/src/models/phi2.cpp +121 -0
- package/src/llama.cpp/src/models/phi3.cpp +152 -0
- package/src/llama.cpp/src/models/plamo.cpp +110 -0
- package/src/llama.cpp/src/models/plamo2.cpp +316 -0
- package/src/llama.cpp/src/models/plm.cpp +168 -0
- package/src/llama.cpp/src/models/qwen.cpp +108 -0
- package/src/llama.cpp/src/models/qwen2.cpp +117 -0
- package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
- package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
- package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
- package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
- package/src/llama.cpp/src/models/refact.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
- package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
- package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
- package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
- package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
- package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
- package/src/llama.cpp/src/models/smollm3.cpp +128 -0
- package/src/llama.cpp/src/models/stablelm.cpp +146 -0
- package/src/llama.cpp/src/models/starcoder.cpp +100 -0
- package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
- package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
- package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
- package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
- package/src/llama.cpp/src/models/xverse.cpp +108 -0
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
#include "../llama-memory-hybrid.h"
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
llm_build_lfm2::llm_build_lfm2(const llama_model & model, const llm_graph_params & params) :
|
|
7
|
+
llm_graph_context(params),
|
|
8
|
+
model(model) {
|
|
9
|
+
ggml_tensor * cur = build_inp_embd(model.tok_embd);
|
|
10
|
+
cb(cur, "model.embed_tokens", -1);
|
|
11
|
+
|
|
12
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
13
|
+
auto * inp_hybrid = build_inp_mem_hybrid();
|
|
14
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
15
|
+
|
|
16
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
17
|
+
const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
|
|
18
|
+
|
|
19
|
+
auto * prev_cur = cur;
|
|
20
|
+
cur = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
21
|
+
cb(cur, "model.layers.{}.operator_norm", il);
|
|
22
|
+
|
|
23
|
+
cur = hparams.is_recurrent(il) ? build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
|
|
24
|
+
build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il);
|
|
25
|
+
|
|
26
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
27
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
28
|
+
prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
|
|
29
|
+
}
|
|
30
|
+
|
|
31
|
+
cur = ggml_add(ctx0, prev_cur, cur);
|
|
32
|
+
|
|
33
|
+
auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
34
|
+
cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
|
|
35
|
+
|
|
36
|
+
ggml_tensor * ffn_out =
|
|
37
|
+
is_moe_layer ? build_moe_feed_forward(ffn_norm_out, il) : build_dense_feed_forward(ffn_norm_out, il);
|
|
38
|
+
cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
|
|
39
|
+
|
|
40
|
+
cur = ggml_add(ctx0, cur, ffn_out);
|
|
41
|
+
}
|
|
42
|
+
|
|
43
|
+
cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
|
|
44
|
+
cb(cur, "model.embedding_norm", -1);
|
|
45
|
+
res->t_embd = cur;
|
|
46
|
+
|
|
47
|
+
cur = build_lora_mm(model.output, cur);
|
|
48
|
+
cb(cur, "lm_head", -1);
|
|
49
|
+
|
|
50
|
+
res->t_logits = cur;
|
|
51
|
+
|
|
52
|
+
ggml_build_forward_expand(gf, cur);
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
ggml_tensor * llm_build_lfm2::build_moe_feed_forward(ggml_tensor * cur, int il) const {
|
|
56
|
+
return build_moe_ffn(cur,
|
|
57
|
+
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
|
58
|
+
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
|
59
|
+
model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0,
|
|
60
|
+
static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
ggml_tensor * llm_build_lfm2::build_dense_feed_forward(ggml_tensor * cur, int il) const {
|
|
64
|
+
GGML_ASSERT(!model.layers[il].ffn_up_b);
|
|
65
|
+
GGML_ASSERT(!model.layers[il].ffn_gate_b);
|
|
66
|
+
GGML_ASSERT(!model.layers[il].ffn_down_b);
|
|
67
|
+
return build_ffn(cur,
|
|
68
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
69
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
70
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
71
|
+
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
ggml_tensor * llm_build_lfm2::build_attn_block(ggml_tensor * cur,
|
|
75
|
+
ggml_tensor * inp_pos,
|
|
76
|
+
llm_graph_input_attn_kv * inp_attn,
|
|
77
|
+
int il) const {
|
|
78
|
+
GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
|
|
79
|
+
const auto n_embd_head = hparams.n_embd_head_v;
|
|
80
|
+
const auto n_head_kv = hparams.n_head_kv(il);
|
|
81
|
+
|
|
82
|
+
auto * q = build_lora_mm(model.layers[il].wq, cur);
|
|
83
|
+
cb(q, "model.layers.{}.self_attn.q_proj", il);
|
|
84
|
+
auto * k = build_lora_mm(model.layers[il].wk, cur);
|
|
85
|
+
cb(k, "model.layers.{}.self_attn.k_proj", il);
|
|
86
|
+
auto * v = build_lora_mm(model.layers[il].wv, cur);
|
|
87
|
+
cb(v, "model.layers.{}.self_attn.v_proj", il);
|
|
88
|
+
|
|
89
|
+
q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
|
|
90
|
+
k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
|
|
91
|
+
v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
|
|
92
|
+
|
|
93
|
+
// qk norm
|
|
94
|
+
q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
95
|
+
cb(q, "model.layers.{}.self_attn.q_layernorm", il);
|
|
96
|
+
k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
97
|
+
cb(k, "model.layers.{}.self_attn.k_layernorm", il);
|
|
98
|
+
|
|
99
|
+
// RoPE
|
|
100
|
+
q = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
101
|
+
attn_factor, beta_fast, beta_slow);
|
|
102
|
+
k = ggml_rope_ext(ctx0, k, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
|
|
103
|
+
attn_factor, beta_fast, beta_slow);
|
|
104
|
+
|
|
105
|
+
cur = build_attn(inp_attn,
|
|
106
|
+
model.layers[il].wo, NULL,
|
|
107
|
+
q, k, v, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
|
108
|
+
|
|
109
|
+
cb(cur, "model.layers.{}.self_attn.out_proj", il);
|
|
110
|
+
|
|
111
|
+
return cur;
|
|
112
|
+
}
|
|
113
|
+
|
|
114
|
+
ggml_tensor * llm_build_lfm2::build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) {
|
|
115
|
+
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
|
116
|
+
const uint32_t kv_head = mctx_cur->get_head();
|
|
117
|
+
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
118
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
|
119
|
+
GGML_ASSERT(n_seqs != 0);
|
|
120
|
+
GGML_ASSERT(ubatch.equal_seqs());
|
|
121
|
+
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
122
|
+
|
|
123
|
+
GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
|
|
124
|
+
const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
|
|
125
|
+
|
|
126
|
+
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
|
127
|
+
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
128
|
+
|
|
129
|
+
auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
|
|
130
|
+
cb(bcx, "model.layers.{}.conv.in_proj", il);
|
|
131
|
+
|
|
132
|
+
constexpr auto n_chunks = 3;
|
|
133
|
+
GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
|
|
134
|
+
const auto chunk_size = bcx->ne[0] / n_chunks;
|
|
135
|
+
auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
136
|
+
0 * chunk_size * ggml_element_size(bcx));
|
|
137
|
+
auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
138
|
+
1 * chunk_size * ggml_element_size(bcx));
|
|
139
|
+
auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
|
|
140
|
+
2 * chunk_size * ggml_element_size(bcx));
|
|
141
|
+
|
|
142
|
+
auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
|
|
143
|
+
|
|
144
|
+
// read conv state
|
|
145
|
+
auto * conv_state = mctx_cur->get_r_l(il);
|
|
146
|
+
auto * conv_rs = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
|
|
147
|
+
auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
|
|
148
|
+
|
|
149
|
+
bx = ggml_concat(ctx0, conv, bx, 0);
|
|
150
|
+
GGML_ASSERT(bx->ne[0] > conv->ne[0]);
|
|
151
|
+
|
|
152
|
+
// last d_conv columns is a new conv state
|
|
153
|
+
auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2],
|
|
154
|
+
(bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
|
|
155
|
+
GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
|
|
156
|
+
|
|
157
|
+
// write new conv conv state
|
|
158
|
+
ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv,
|
|
159
|
+
ggml_view_1d(ctx0, conv_state, ggml_nelements(new_conv),
|
|
160
|
+
kv_head * d_conv * n_embd * ggml_element_size(new_conv))));
|
|
161
|
+
|
|
162
|
+
auto * conv_kernel = model.layers[il].shortconv.conv;
|
|
163
|
+
auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
|
|
164
|
+
cb(conv_out, "model.layers.{}.conv.conv", il);
|
|
165
|
+
|
|
166
|
+
auto * y = ggml_mul(ctx0, c, conv_out);
|
|
167
|
+
y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
|
|
168
|
+
cb(y, "model.layers.{}.conv.out_proj", il);
|
|
169
|
+
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
170
|
+
y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
|
|
171
|
+
|
|
172
|
+
return y;
|
|
173
|
+
}
|
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_llada_moe::llm_build_llada_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
5
|
+
|
|
6
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
7
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
8
|
+
|
|
9
|
+
ggml_tensor * cur;
|
|
10
|
+
ggml_tensor * inpL;
|
|
11
|
+
|
|
12
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
13
|
+
|
|
14
|
+
// inp_pos - contains the positions
|
|
15
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
16
|
+
|
|
17
|
+
auto * inp_attn = build_attn_inp_no_cache();
|
|
18
|
+
|
|
19
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
20
|
+
|
|
21
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
22
|
+
ggml_tensor * inpSA = inpL;
|
|
23
|
+
|
|
24
|
+
// norm
|
|
25
|
+
cur = build_norm(inpL,
|
|
26
|
+
model.layers[il].attn_norm, NULL,
|
|
27
|
+
LLM_NORM_RMS, il);
|
|
28
|
+
cb(cur, "attn_norm", il);
|
|
29
|
+
|
|
30
|
+
// self_attention
|
|
31
|
+
{
|
|
32
|
+
// compute Q and K and RoPE them
|
|
33
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
34
|
+
cb(Qcur, "Qcur", il);
|
|
35
|
+
|
|
36
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
37
|
+
cb(Kcur, "Kcur", il);
|
|
38
|
+
|
|
39
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
40
|
+
cb(Vcur, "Vcur", il);
|
|
41
|
+
|
|
42
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
43
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
44
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
45
|
+
|
|
46
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
47
|
+
cb(Qcur, "Qcur_normed", il);
|
|
48
|
+
|
|
49
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
50
|
+
cb(Kcur, "Kcur_normed", il);
|
|
51
|
+
|
|
52
|
+
Qcur = ggml_rope_ext(
|
|
53
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
54
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
55
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
56
|
+
);
|
|
57
|
+
|
|
58
|
+
Kcur = ggml_rope_ext(
|
|
59
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
60
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
61
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
62
|
+
);
|
|
63
|
+
|
|
64
|
+
cb(Qcur, "Qcur", il);
|
|
65
|
+
cb(Kcur, "Kcur", il);
|
|
66
|
+
cb(Vcur, "Vcur", il);
|
|
67
|
+
|
|
68
|
+
cur = build_attn(inp_attn,
|
|
69
|
+
model.layers[il].wo, NULL,
|
|
70
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
71
|
+
}
|
|
72
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
73
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
74
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
75
|
+
}
|
|
76
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
77
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
78
|
+
|
|
79
|
+
// MoE branch
|
|
80
|
+
cur = build_norm(ffn_inp,
|
|
81
|
+
model.layers[il].ffn_norm, NULL,
|
|
82
|
+
LLM_NORM_RMS, il);
|
|
83
|
+
cb(cur, "ffn_norm", il);
|
|
84
|
+
|
|
85
|
+
cur = build_moe_ffn(cur,
|
|
86
|
+
model.layers[il].ffn_gate_inp,
|
|
87
|
+
model.layers[il].ffn_up_exps,
|
|
88
|
+
model.layers[il].ffn_gate_exps,
|
|
89
|
+
model.layers[il].ffn_down_exps,
|
|
90
|
+
nullptr,
|
|
91
|
+
n_expert, n_expert_used,
|
|
92
|
+
LLM_FFN_SILU, false,
|
|
93
|
+
false, 0.0,
|
|
94
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
95
|
+
il);
|
|
96
|
+
cb(cur, "ffn_moe_out", il);
|
|
97
|
+
|
|
98
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
99
|
+
|
|
100
|
+
cur = build_cvec(cur, il);
|
|
101
|
+
cb(cur, "l_out", il);
|
|
102
|
+
|
|
103
|
+
// input for next layer
|
|
104
|
+
inpL = cur;
|
|
105
|
+
}
|
|
106
|
+
cur = inpL;
|
|
107
|
+
|
|
108
|
+
cur = build_norm(cur,
|
|
109
|
+
model.output_norm, NULL,
|
|
110
|
+
LLM_NORM_RMS, -1);
|
|
111
|
+
|
|
112
|
+
cb(cur, "result_norm", -1);
|
|
113
|
+
res->t_embd = cur;
|
|
114
|
+
|
|
115
|
+
// lm_head
|
|
116
|
+
cur = build_lora_mm(model.output, cur);
|
|
117
|
+
|
|
118
|
+
cb(cur, "result_output", -1);
|
|
119
|
+
res->t_logits = cur;
|
|
120
|
+
|
|
121
|
+
ggml_build_forward_expand(gf, cur);
|
|
122
|
+
}
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_llada::llm_build_llada(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
// LLaDA is similar to LLaMA but uses non-causal attention for diffusion
|
|
5
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
6
|
+
|
|
7
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
8
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
9
|
+
|
|
10
|
+
ggml_tensor * cur;
|
|
11
|
+
ggml_tensor * inpL;
|
|
12
|
+
|
|
13
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
14
|
+
|
|
15
|
+
// inp_pos - contains the positions
|
|
16
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
17
|
+
|
|
18
|
+
// Non-causal attention for diffusion
|
|
19
|
+
auto * inp_attn = build_attn_inp_no_cache();
|
|
20
|
+
|
|
21
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
22
|
+
|
|
23
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
24
|
+
ggml_tensor * inpSA = inpL;
|
|
25
|
+
|
|
26
|
+
// norm
|
|
27
|
+
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
28
|
+
cb(cur, "attn_norm", il);
|
|
29
|
+
|
|
30
|
+
// self-attention
|
|
31
|
+
{
|
|
32
|
+
// compute separate Q, K, V projections without bias, matching LLaDALlamaBlock
|
|
33
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
34
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
35
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
36
|
+
|
|
37
|
+
cb(Qcur, "Qcur", il);
|
|
38
|
+
cb(Kcur, "Kcur", il);
|
|
39
|
+
cb(Vcur, "Vcur", il);
|
|
40
|
+
|
|
41
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
42
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
43
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
44
|
+
|
|
45
|
+
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
46
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
47
|
+
|
|
48
|
+
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
49
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
50
|
+
|
|
51
|
+
cb(Qcur, "Qcur", il);
|
|
52
|
+
cb(Kcur, "Kcur", il);
|
|
53
|
+
cb(Vcur, "Vcur", il);
|
|
54
|
+
|
|
55
|
+
cur = build_attn(inp_attn,
|
|
56
|
+
model.layers[il].wo, NULL,
|
|
57
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
|
58
|
+
}
|
|
59
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
60
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
61
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
62
|
+
}
|
|
63
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
64
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
65
|
+
|
|
66
|
+
// feed-forward network
|
|
67
|
+
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
68
|
+
cb(cur, "ffn_norm", il);
|
|
69
|
+
|
|
70
|
+
cur = build_ffn(cur,
|
|
71
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
72
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
73
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
74
|
+
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
75
|
+
cb(cur, "ffn_out", il);
|
|
76
|
+
|
|
77
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
78
|
+
|
|
79
|
+
cur = build_cvec(cur, il);
|
|
80
|
+
cb(cur, "l_out", il);
|
|
81
|
+
|
|
82
|
+
// input for next layer
|
|
83
|
+
inpL = cur;
|
|
84
|
+
}
|
|
85
|
+
cur = inpL;
|
|
86
|
+
|
|
87
|
+
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
88
|
+
|
|
89
|
+
cb(cur, "result_norm", -1);
|
|
90
|
+
res->t_embd = cur;
|
|
91
|
+
|
|
92
|
+
// lm_head
|
|
93
|
+
cur = build_lora_mm(model.output, cur);
|
|
94
|
+
|
|
95
|
+
cb(cur, "result_output", -1);
|
|
96
|
+
res->t_logits = cur;
|
|
97
|
+
|
|
98
|
+
ggml_build_forward_expand(gf, cur);
|
|
99
|
+
}
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
5
|
+
|
|
6
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
7
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
8
|
+
|
|
9
|
+
ggml_tensor * cur;
|
|
10
|
+
ggml_tensor * inpL;
|
|
11
|
+
|
|
12
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
13
|
+
|
|
14
|
+
// inp_pos - contains the positions
|
|
15
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
16
|
+
|
|
17
|
+
// temperature tuning
|
|
18
|
+
ggml_tensor * inp_attn_scale = nullptr;
|
|
19
|
+
inp_attn_scale = build_inp_attn_scale();
|
|
20
|
+
|
|
21
|
+
auto * inp_attn = build_attn_inp_kv_iswa();
|
|
22
|
+
|
|
23
|
+
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
|
24
|
+
|
|
25
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
26
|
+
|
|
27
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
28
|
+
ggml_tensor * inpSA = inpL;
|
|
29
|
+
|
|
30
|
+
const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
|
|
31
|
+
(il + 1) % hparams.n_no_rope_layer_step != 0;
|
|
32
|
+
|
|
33
|
+
// norm
|
|
34
|
+
cur = build_norm(inpL,
|
|
35
|
+
model.layers[il].attn_norm, NULL,
|
|
36
|
+
LLM_NORM_RMS, il);
|
|
37
|
+
cb(cur, "attn_norm", il);
|
|
38
|
+
|
|
39
|
+
// self-attention
|
|
40
|
+
{
|
|
41
|
+
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
42
|
+
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
|
43
|
+
|
|
44
|
+
// compute Q and K and RoPE them
|
|
45
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
46
|
+
cb(Qcur, "Qcur", il);
|
|
47
|
+
if (model.layers[il].bq) {
|
|
48
|
+
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
49
|
+
cb(Qcur, "Qcur", il);
|
|
50
|
+
}
|
|
51
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
52
|
+
cb(Kcur, "Kcur", il);
|
|
53
|
+
if (model.layers[il].bk) {
|
|
54
|
+
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
55
|
+
cb(Kcur, "Kcur", il);
|
|
56
|
+
}
|
|
57
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
58
|
+
cb(Vcur, "Vcur", il);
|
|
59
|
+
if (model.layers[il].bv) {
|
|
60
|
+
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
61
|
+
cb(Vcur, "Vcur", il);
|
|
62
|
+
}
|
|
63
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
64
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
65
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
66
|
+
|
|
67
|
+
if (use_rope) {
|
|
68
|
+
Qcur = ggml_rope_ext(
|
|
69
|
+
ctx0, Qcur, inp_pos, rope_factors,
|
|
70
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
71
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
72
|
+
);
|
|
73
|
+
|
|
74
|
+
Kcur = ggml_rope_ext(
|
|
75
|
+
ctx0, Kcur, inp_pos, rope_factors,
|
|
76
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
77
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
78
|
+
);
|
|
79
|
+
} else if (inp_attn_scale) {
|
|
80
|
+
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
|
|
81
|
+
}
|
|
82
|
+
cb(Qcur, "Qcur", il);
|
|
83
|
+
cb(Kcur, "Kcur", il);
|
|
84
|
+
cb(Vcur, "Vcur", il);
|
|
85
|
+
|
|
86
|
+
if (use_rope && hparams.use_kq_norm) {
|
|
87
|
+
// Llama4TextL2Norm
|
|
88
|
+
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
|
|
89
|
+
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
|
|
90
|
+
cb(Qcur, "Qcur_normed", il);
|
|
91
|
+
cb(Kcur, "Kcur_normed", il);
|
|
92
|
+
}
|
|
93
|
+
cur = build_attn(inp_attn,
|
|
94
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
95
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
|
96
|
+
cb(cur, "attn_out", il);
|
|
97
|
+
}
|
|
98
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
99
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
100
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
101
|
+
}
|
|
102
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
103
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
104
|
+
|
|
105
|
+
// feed-forward network (non-MoE)
|
|
106
|
+
if (model.layers[il].ffn_gate_inp == nullptr) {
|
|
107
|
+
cur = build_norm(ffn_inp,
|
|
108
|
+
model.layers[il].ffn_norm, NULL,
|
|
109
|
+
LLM_NORM_RMS, il);
|
|
110
|
+
cb(cur, "ffn_norm", il);
|
|
111
|
+
|
|
112
|
+
cur = build_ffn(cur,
|
|
113
|
+
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
114
|
+
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
115
|
+
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
116
|
+
NULL,
|
|
117
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
118
|
+
cb(cur, "ffn_out", il);
|
|
119
|
+
} else {
|
|
120
|
+
ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
|
|
121
|
+
model.layers[il].ffn_norm, NULL,
|
|
122
|
+
LLM_NORM_RMS, il);
|
|
123
|
+
cb(cur, "ffn_norm", il);
|
|
124
|
+
|
|
125
|
+
ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
|
|
126
|
+
model.layers[il].ffn_gate_inp,
|
|
127
|
+
model.layers[il].ffn_up_exps,
|
|
128
|
+
model.layers[il].ffn_gate_exps,
|
|
129
|
+
model.layers[il].ffn_down_exps,
|
|
130
|
+
nullptr,
|
|
131
|
+
n_expert, n_expert_used,
|
|
132
|
+
LLM_FFN_SILU, false,
|
|
133
|
+
false, 0.0,
|
|
134
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
|
|
135
|
+
il);
|
|
136
|
+
|
|
137
|
+
// Shared experts
|
|
138
|
+
ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
|
|
139
|
+
model.layers[il].ffn_up_shexp, NULL, NULL,
|
|
140
|
+
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
|
141
|
+
model.layers[il].ffn_down_shexp, NULL, NULL,
|
|
142
|
+
NULL,
|
|
143
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
144
|
+
cb(shexp_out, "ffn_moe_shexp", il);
|
|
145
|
+
|
|
146
|
+
cur = ggml_add(ctx0, moe_out, shexp_out);
|
|
147
|
+
cb(cur, "ffn_moe_out_merged", il);
|
|
148
|
+
}
|
|
149
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
150
|
+
cb(cur, "ffn_out", il);
|
|
151
|
+
|
|
152
|
+
cur = build_cvec(cur, il);
|
|
153
|
+
cb(cur, "l_out", il);
|
|
154
|
+
|
|
155
|
+
// input for next layer
|
|
156
|
+
inpL = cur;
|
|
157
|
+
}
|
|
158
|
+
cur = inpL;
|
|
159
|
+
|
|
160
|
+
cur = build_norm(cur,
|
|
161
|
+
model.output_norm, NULL,
|
|
162
|
+
LLM_NORM_RMS, -1);
|
|
163
|
+
|
|
164
|
+
cb(cur, "result_norm", -1);
|
|
165
|
+
res->t_embd = cur;
|
|
166
|
+
|
|
167
|
+
// lm_head
|
|
168
|
+
cur = build_lora_mm(model.output, cur);
|
|
169
|
+
|
|
170
|
+
cb(cur, "result_output", -1);
|
|
171
|
+
res->t_logits = cur;
|
|
172
|
+
|
|
173
|
+
ggml_build_forward_expand(gf, cur);
|
|
174
|
+
}
|