@fugood/llama.node 1.3.0 → 1.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (143) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +8 -8
  3. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  4. package/src/llama.cpp/common/arg.cpp +44 -999
  5. package/src/llama.cpp/common/arg.h +2 -2
  6. package/src/llama.cpp/common/chat.cpp +17 -2
  7. package/src/llama.cpp/common/common.cpp +33 -0
  8. package/src/llama.cpp/common/common.h +15 -1
  9. package/src/llama.cpp/common/download.cpp +1054 -0
  10. package/src/llama.cpp/common/download.h +55 -0
  11. package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
  12. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
  15. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
  16. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  17. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  18. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
  21. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
  23. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  24. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  25. package/src/llama.cpp/include/llama.h +7 -3
  26. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  28. package/src/llama.cpp/src/llama-arch.h +11 -0
  29. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  30. package/src/llama.cpp/src/llama-batch.h +12 -1
  31. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  32. package/src/llama.cpp/src/llama-chat.h +1 -0
  33. package/src/llama.cpp/src/llama-context.cpp +36 -13
  34. package/src/llama.cpp/src/llama-context.h +5 -5
  35. package/src/llama.cpp/src/llama-cparams.h +1 -0
  36. package/src/llama.cpp/src/llama-graph.cpp +3 -3
  37. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  38. package/src/llama.cpp/src/llama-hparams.h +6 -0
  39. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  40. package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
  41. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  42. package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
  43. package/src/llama.cpp/src/llama-model.cpp +320 -13171
  44. package/src/llama.cpp/src/llama-model.h +8 -0
  45. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  46. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  47. package/src/llama.cpp/src/llama-vocab.h +1 -0
  48. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  49. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  50. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  51. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  52. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  53. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  54. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  55. package/src/llama.cpp/src/models/bert.cpp +176 -0
  56. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  57. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  58. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  59. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  60. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  61. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  62. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  63. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  64. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  65. package/src/llama.cpp/src/models/deci.cpp +135 -0
  66. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  67. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  68. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  69. package/src/llama.cpp/src/models/dream.cpp +105 -0
  70. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  71. package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
  72. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  73. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  74. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  75. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  76. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  77. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  78. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  79. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  80. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  81. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  82. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  83. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  84. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  85. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  86. package/src/llama.cpp/src/models/granite.cpp +211 -0
  87. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  88. package/src/llama.cpp/src/models/grok.cpp +159 -0
  89. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  90. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  91. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  92. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  93. package/src/llama.cpp/src/models/jais.cpp +86 -0
  94. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  95. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  96. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  97. package/src/llama.cpp/src/models/llada.cpp +99 -0
  98. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  99. package/src/llama.cpp/src/models/llama.cpp +155 -0
  100. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  101. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  102. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  103. package/src/llama.cpp/src/models/models.h +481 -0
  104. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  105. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  106. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  107. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  108. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  109. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  110. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  111. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
  112. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  113. package/src/llama.cpp/src/models/orion.cpp +123 -0
  114. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  115. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  116. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  117. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  118. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  119. package/src/llama.cpp/src/models/plm.cpp +168 -0
  120. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  121. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  122. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  123. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  124. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  125. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  126. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  127. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  128. package/src/llama.cpp/src/models/refact.cpp +94 -0
  129. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  130. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  131. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  132. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  133. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  134. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  135. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  136. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  137. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  138. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  139. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  140. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  141. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  142. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  143. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,101 @@
1
+ #include "models.h"
2
+
3
+ llm_build_bloom::llm_build_bloom(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ auto * inp_attn = build_attn_inp_kv();
15
+
16
+ inpL = build_norm(inpL,
17
+ model.tok_norm,
18
+ model.tok_norm_b,
19
+ LLM_NORM, -1);
20
+ cb(inpL, "inp_norm", -1);
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm,
27
+ model.layers[il].attn_norm_b,
28
+ LLM_NORM, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self-attention
32
+ {
33
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
34
+ cb(cur, "wqkv", il);
35
+
36
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
37
+ cb(cur, "bqkv", il);
38
+
39
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
40
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
41
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
42
+
43
+ cb(Qcur, "Qcur", il);
44
+ cb(Kcur, "Kcur", il);
45
+ cb(Vcur, "Vcur", il);
46
+
47
+ cur = build_attn(inp_attn,
48
+ model.layers[il].wo, model.layers[il].bo,
49
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
50
+ }
51
+
52
+ if (il == n_layer - 1 && inp_out_ids) {
53
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
54
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
55
+ }
56
+
57
+ // Add the input
58
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
59
+ cb(ffn_inp, "ffn_inp", il);
60
+
61
+ // FF
62
+ {
63
+ cur = build_norm(ffn_inp,
64
+ model.layers[il].ffn_norm,
65
+ model.layers[il].ffn_norm_b,
66
+ LLM_NORM, il);
67
+ cb(cur, "ffn_norm", il);
68
+
69
+ cur = build_ffn(cur,
70
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
71
+ NULL, NULL, NULL,
72
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
73
+ NULL,
74
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
75
+ cb(cur, "ffn_out", il);
76
+ }
77
+
78
+ cur = ggml_add(ctx0, cur, ffn_inp);
79
+
80
+ cur = build_cvec(cur, il);
81
+ cb(cur, "l_out", il);
82
+
83
+ // input for next layer
84
+ inpL = cur;
85
+ }
86
+
87
+ cur = build_norm(inpL,
88
+ model.output_norm,
89
+ model.output_norm_b,
90
+ LLM_NORM, -1);
91
+
92
+ cb(cur, "result_norm", -1);
93
+ res->t_embd = cur;
94
+
95
+ cur = build_lora_mm(model.output, cur);
96
+
97
+ cb(cur, "result_output", -1);
98
+ res->t_logits = cur;
99
+
100
+ ggml_build_forward_expand(gf, cur);
101
+ }
@@ -0,0 +1,178 @@
1
+ #include "models.h"
2
+
3
+ #include <float.h>
4
+
5
+ llm_build_chameleon::llm_build_chameleon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
+ const int64_t n_embd_head = hparams.n_embd_head_v;
7
+
8
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
10
+
11
+ ggml_tensor * cur;
12
+ ggml_tensor * inpL;
13
+
14
+ inpL = build_inp_embd(model.tok_embd);
15
+
16
+ // inp_pos - contains the positions
17
+ ggml_tensor * inp_pos = build_inp_pos();
18
+
19
+ auto * inp_attn = build_attn_inp_kv();
20
+
21
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
22
+
23
+ for (int il = 0; il < n_layer; ++il) {
24
+ ggml_tensor * inpSA = inpL;
25
+
26
+ // norm
27
+ if (hparams.swin_norm) {
28
+ cur = inpL;
29
+ } else {
30
+ cur = build_norm(inpL,
31
+ model.layers[il].attn_norm, NULL,
32
+ LLM_NORM_RMS, il);
33
+ cb(cur, "attn_norm", il);
34
+ }
35
+
36
+ // self-attention
37
+ {
38
+ // compute Q and K and RoPE them
39
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
40
+ cb(Qcur, "Qcur", il);
41
+
42
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
43
+ cb(Kcur, "Kcur", il);
44
+
45
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
46
+ cb(Vcur, "Vcur", il);
47
+
48
+ if (model.layers[il].attn_q_norm) {
49
+ Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
50
+ ggml_element_size(Qcur) * n_embd_head,
51
+ ggml_element_size(Qcur) * n_embd_head * n_head,
52
+ 0);
53
+ cb(Qcur, "Qcur", il);
54
+
55
+ Qcur = build_norm(Qcur,
56
+ model.layers[il].attn_q_norm,
57
+ model.layers[il].attn_q_norm_b,
58
+ LLM_NORM, il);
59
+ cb(Qcur, "Qcur", il);
60
+ }
61
+
62
+ if (model.layers[il].attn_k_norm) {
63
+ Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
64
+ ggml_element_size(Kcur) * n_embd_head,
65
+ ggml_element_size(Kcur) * n_embd_head * n_head_kv,
66
+ 0);
67
+ cb(Kcur, "Kcur", il);
68
+
69
+ Kcur = build_norm(Kcur,
70
+ model.layers[il].attn_k_norm,
71
+ model.layers[il].attn_k_norm_b,
72
+ LLM_NORM, il);
73
+ cb(Kcur, "Kcur", il);
74
+ }
75
+
76
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
77
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
78
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
79
+
80
+ Qcur = ggml_rope_ext(
81
+ ctx0, Qcur, inp_pos, nullptr,
82
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
83
+ ext_factor, attn_factor, beta_fast, beta_slow
84
+ );
85
+
86
+ Kcur = ggml_rope_ext(
87
+ ctx0, Kcur, inp_pos, nullptr,
88
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
89
+ ext_factor, attn_factor, beta_fast, beta_slow
90
+ );
91
+
92
+ cb(Qcur, "Qcur", il);
93
+ cb(Kcur, "Kcur", il);
94
+ cb(Vcur, "Vcur", il);
95
+
96
+ cur = build_attn(inp_attn,
97
+ model.layers[il].wo, nullptr,
98
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
99
+ }
100
+
101
+ if (il == n_layer - 1 && inp_out_ids) {
102
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
103
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
104
+ }
105
+
106
+ if (hparams.swin_norm) {
107
+ cur = build_norm(cur,
108
+ model.layers[il].attn_norm, NULL,
109
+ LLM_NORM_RMS, il);
110
+ }
111
+
112
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
113
+ cb(ffn_inp, "ffn_inp", il);
114
+
115
+ // feed-forward network
116
+ if (!hparams.swin_norm) {
117
+ cur = build_norm(ffn_inp,
118
+ model.layers[il].ffn_norm, NULL,
119
+ LLM_NORM_RMS, il);
120
+ cb(cur, "ffn_norm", il);
121
+ }
122
+
123
+ cur = build_ffn(cur,
124
+ model.layers[il].ffn_up, NULL, NULL,
125
+ model.layers[il].ffn_gate, NULL, NULL,
126
+ model.layers[il].ffn_down, NULL, NULL,
127
+ NULL,
128
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
129
+ cb(cur, "ffn_out", il);
130
+
131
+ if (hparams.swin_norm) {
132
+ cur = build_norm(cur,
133
+ model.layers[il].ffn_norm, NULL,
134
+ LLM_NORM_RMS, il);
135
+ cb(cur, "ffn_norm", il);
136
+ }
137
+
138
+ cur = ggml_add(ctx0, cur, ffn_inp);
139
+ cb(cur, "ffn_out", il);
140
+
141
+ cur = build_cvec(cur, il);
142
+ cb(cur, "l_out", il);
143
+
144
+ // input for next layer
145
+ inpL = cur;
146
+ }
147
+
148
+ cur = inpL;
149
+
150
+ cur = build_norm(cur,
151
+ model.output_norm, NULL,
152
+ LLM_NORM_RMS, -1);
153
+
154
+ cb(cur, "result_norm", -1);
155
+ res->t_embd = cur;
156
+
157
+ // lm_head
158
+ cur = build_lora_mm(model.output, cur);
159
+ cb(cur, "result_output_with_img_logits", -1);
160
+
161
+ // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
162
+ // Needs to be removed once image outputs are supported.
163
+ int img_token_end_idx = 8196;
164
+ int img_token_start_idx = 4;
165
+ int num_img_tokens = img_token_end_idx - img_token_start_idx;
166
+ // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
167
+ // which ensures that text token values are always at least larger than image token values
168
+ ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
169
+ img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
170
+ cb(img_logits, "img_logits", -1);
171
+
172
+ cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
173
+
174
+ cb(cur, "result_output", -1);
175
+ res->t_logits = cur;
176
+
177
+ ggml_build_forward_expand(gf, cur);
178
+ }
@@ -0,0 +1,132 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_chatglm::llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
7
+
8
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ ggml_tensor * inpSA = inpL;
24
+
25
+ cur = build_norm(inpL,
26
+ model.layers[il].attn_norm,
27
+ NULL,
28
+ LLM_NORM_RMS, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self-attention
32
+ {
33
+ ggml_tensor * Qcur = nullptr;
34
+ ggml_tensor * Kcur = nullptr;
35
+ ggml_tensor * Vcur = nullptr;
36
+
37
+ if (model.layers[il].wqkv == nullptr) {
38
+ Qcur = build_lora_mm(model.layers[il].wq, cur);
39
+ if (model.layers[il].bq) {
40
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
41
+ }
42
+ Kcur = build_lora_mm(model.layers[il].wk, cur);
43
+ if (model.layers[il].bk) {
44
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
45
+ }
46
+ Vcur = build_lora_mm(model.layers[il].wv, cur);
47
+ if (model.layers[il].bv) {
48
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
49
+ }
50
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
51
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
+ } else {
54
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
55
+ cb(cur, "wqkv", il);
56
+ if (model.layers[il].bqkv) {
57
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
58
+ cb(cur, "bqkv", il);
59
+ }
60
+ Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
61
+ Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
62
+ Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
63
+ }
64
+
65
+ //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
66
+ Qcur = ggml_rope_ext(
67
+ ctx0, Qcur, inp_pos, nullptr,
68
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
69
+ ext_factor, attn_factor, beta_fast, beta_slow
70
+ );
71
+
72
+ Kcur = ggml_rope_ext(
73
+ ctx0, Kcur, inp_pos, nullptr,
74
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
75
+ ext_factor, attn_factor, beta_fast, beta_slow
76
+ );
77
+
78
+ cb(Qcur, "Qcur", il);
79
+ cb(Kcur, "Kcur", il);
80
+ cb(Vcur, "Vcur", il);
81
+
82
+ cur = build_attn(inp_attn,
83
+ model.layers[il].wo, NULL,
84
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
85
+ }
86
+
87
+ if (il == n_layer - 1 && inp_out_ids) {
88
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
89
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
90
+ }
91
+
92
+ // Add the input
93
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
94
+ cb(ffn_inp, "ffn_inp", il);
95
+
96
+ // FF
97
+ {
98
+ cur = build_norm(ffn_inp,
99
+ model.layers[il].ffn_norm,
100
+ NULL,
101
+ LLM_NORM_RMS, il);
102
+ cb(cur, "ffn_norm", il);
103
+
104
+ cur = build_ffn(cur,
105
+ model.layers[il].ffn_up, NULL, NULL,
106
+ NULL, NULL, NULL,
107
+ model.layers[il].ffn_down, NULL, NULL,
108
+ NULL,
109
+ LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
110
+ cb(cur, "ffn_out", il);
111
+
112
+ }
113
+
114
+ inpL = ggml_add(ctx0, cur, ffn_inp);
115
+ cb(inpL, "l_out", il);
116
+ }
117
+
118
+ cur = build_norm(inpL,
119
+ model.output_norm,
120
+ NULL,
121
+ LLM_NORM_RMS, -1);
122
+
123
+ cb(cur, "result_norm", -1);
124
+ res->t_embd = cur;
125
+
126
+ cur = build_lora_mm(model.output, cur);
127
+
128
+ cb(cur, "result_output", -1);
129
+ res->t_logits = cur;
130
+
131
+ ggml_build_forward_expand(gf, cur);
132
+ }
@@ -0,0 +1,111 @@
1
+ #include "models.h"
2
+
3
+ llm_build_codeshell::llm_build_codeshell(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
+ const int64_t n_embd_head = hparams.n_embd_head_v;
5
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ cur = build_norm(inpL,
24
+ model.layers[il].attn_norm,
25
+ model.layers[il].attn_norm_b,
26
+ LLM_NORM, il);
27
+ cb(cur, "attn_norm", il);
28
+
29
+ // self-attention
30
+ {
31
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
32
+ cb(cur, "wqkv", il);
33
+
34
+ cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
35
+ cb(cur, "bqkv", il);
36
+
37
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
38
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
39
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
40
+
41
+ Qcur = ggml_rope_ext(
42
+ ctx0, Qcur, inp_pos, nullptr,
43
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
44
+ ext_factor, attn_factor, beta_fast, beta_slow
45
+ );
46
+
47
+ Kcur = ggml_rope_ext(
48
+ ctx0, Kcur, inp_pos, nullptr,
49
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
50
+ ext_factor, attn_factor, beta_fast, beta_slow
51
+ );
52
+
53
+ cb(Qcur, "Qcur", il);
54
+ cb(Kcur, "Kcur", il);
55
+ cb(Vcur, "Vcur", il);
56
+
57
+ cur = build_attn(inp_attn,
58
+ model.layers[il].wo, model.layers[il].bo,
59
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
60
+ }
61
+
62
+ if (il == n_layer - 1 && inp_out_ids) {
63
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
64
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
65
+ }
66
+
67
+ // add the input
68
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
69
+ cb(ffn_inp, "ffn_inp", il);
70
+
71
+ // FF
72
+ {
73
+ cur = build_norm(ffn_inp,
74
+ model.layers[il].ffn_norm,
75
+ model.layers[il].ffn_norm_b,
76
+ LLM_NORM, il);
77
+ cb(cur, "ffn_norm", il);
78
+
79
+ cur = build_ffn(cur,
80
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
81
+ NULL, NULL, NULL,
82
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
83
+ NULL,
84
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
85
+ cb(cur, "ffn_out", il);
86
+ }
87
+
88
+ cur = ggml_add(ctx0, cur, ffn_inp);
89
+
90
+ cur = build_cvec(cur, il);
91
+ cb(cur, "l_out", il);
92
+
93
+ // input for next layer
94
+ inpL = cur;
95
+ }
96
+
97
+ cur = build_norm(inpL,
98
+ model.output_norm,
99
+ model.output_norm_b,
100
+ LLM_NORM, -1);
101
+
102
+ cb(cur, "result_norm", -1);
103
+ res->t_embd = cur;
104
+
105
+ cur = build_lora_mm(model.output, cur);
106
+
107
+ cb(cur, "result_output", -1);
108
+ res->t_logits = cur;
109
+
110
+ ggml_build_forward_expand(gf, cur);
111
+ }
@@ -0,0 +1,100 @@
1
+ #include "models.h"
2
+
3
+ llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
4
+ llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+ float kq_scale = 1.0f / sqrtf(float(n_embd_head));
7
+
8
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
10
+
11
+ ggml_tensor *inpL, *cur;
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ ggml_tensor * inp_pos = build_inp_pos();
15
+
16
+ auto * inp_attn = build_attn_inp_kv();
17
+
18
+ // check ubatch to see if we have input tokens (text)
19
+ // or an input embedding vector (image)
20
+ bool is_text;
21
+ if (ubatch.token) {
22
+ is_text = true;
23
+ } else {
24
+ is_text = false;
25
+ }
26
+
27
+ for (int il = 0; il < n_layer; ++il) {
28
+ // get either the text or image weight tensors
29
+ ggml_tensor *wqkv, *wo;
30
+ ggml_tensor *ffn_gate, *ffn_down, *ffn_up;
31
+
32
+ if (is_text) {
33
+ wqkv = model.layers[il].wqkv;
34
+ wo = model.layers[il].wo;
35
+ ffn_gate = model.layers[il].ffn_gate;
36
+ ffn_down = model.layers[il].ffn_down;
37
+ ffn_up = model.layers[il].ffn_up;
38
+ } else {
39
+ wqkv = model.layers[il].visexp_attn_wqkv;
40
+ wo = model.layers[il].visexp_attn_wo;
41
+ ffn_gate = model.layers[il].visexp_ffn_gate;
42
+ ffn_down = model.layers[il].visexp_ffn_down;
43
+ ffn_up = model.layers[il].visexp_ffn_up;
44
+ }
45
+
46
+ ggml_tensor * inpSA = inpL;
47
+ cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
48
+
49
+ // build self attention
50
+ {
51
+ ggml_tensor * qkv = build_lora_mm(wqkv, cur);
52
+
53
+ // split qkv into Q, K, V along the first dimension
54
+ ggml_tensor * Qcur =
55
+ ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0);
56
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
57
+ qkv->nb[1], n_embd * ggml_element_size(qkv));
58
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
59
+ qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
60
+
61
+ Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
62
+ Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
63
+
64
+ cur = build_attn(inp_attn,
65
+ wo, nullptr,
66
+ Qcur, Kcur, Vcur,
67
+ nullptr, nullptr, nullptr,
68
+ kq_scale, il);
69
+ cb(cur, "attn_out", il);
70
+ }
71
+
72
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
73
+ cb(ffn_inp, "ffn_inp", il);
74
+
75
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
76
+ cb(cur, "ffn_norm", il);
77
+
78
+ cur = build_ffn(cur,
79
+ ffn_up, NULL, NULL,
80
+ ffn_gate, NULL, NULL,
81
+ ffn_down, NULL, NULL,
82
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
83
+
84
+ cur = ggml_add(ctx0, cur, ffn_inp);
85
+ cb(cur, "ffn_out", il);
86
+
87
+ inpL = cur;
88
+ }
89
+
90
+ cur = inpL;
91
+
92
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
93
+ cb(cur, "result_norm", -1);
94
+ res->t_embd = cur;
95
+
96
+ cur = build_lora_mm(model.output, cur);
97
+ cb(cur, "result_output", -1);
98
+ res->t_logits = cur;
99
+ ggml_build_forward_expand(gf, cur);
100
+ }