@fugood/llama.node 1.3.0 → 1.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +8 -8
- package/src/llama.cpp/common/CMakeLists.txt +2 -0
- package/src/llama.cpp/common/arg.cpp +44 -999
- package/src/llama.cpp/common/arg.h +2 -2
- package/src/llama.cpp/common/chat.cpp +17 -2
- package/src/llama.cpp/common/common.cpp +33 -0
- package/src/llama.cpp/common/common.h +15 -1
- package/src/llama.cpp/common/download.cpp +1054 -0
- package/src/llama.cpp/common/download.h +55 -0
- package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
- package/src/llama.cpp/ggml/include/ggml.h +2 -0
- package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
- package/src/llama.cpp/include/llama.h +7 -3
- package/src/llama.cpp/src/CMakeLists.txt +95 -0
- package/src/llama.cpp/src/llama-arch.cpp +108 -0
- package/src/llama.cpp/src/llama-arch.h +11 -0
- package/src/llama.cpp/src/llama-batch.cpp +63 -31
- package/src/llama.cpp/src/llama-batch.h +12 -1
- package/src/llama.cpp/src/llama-chat.cpp +32 -0
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +36 -13
- package/src/llama.cpp/src/llama-context.h +5 -5
- package/src/llama.cpp/src/llama-cparams.h +1 -0
- package/src/llama.cpp/src/llama-graph.cpp +3 -3
- package/src/llama.cpp/src/llama-hparams.cpp +11 -1
- package/src/llama.cpp/src/llama-hparams.h +6 -0
- package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
- package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
- package/src/llama.cpp/src/llama-kv-cells.h +44 -2
- package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
- package/src/llama.cpp/src/llama-model.cpp +320 -13171
- package/src/llama.cpp/src/llama-model.h +8 -0
- package/src/llama.cpp/src/llama-quant.cpp +1 -1
- package/src/llama.cpp/src/llama-vocab.cpp +5 -0
- package/src/llama.cpp/src/llama-vocab.h +1 -0
- package/src/llama.cpp/src/models/apertus.cpp +125 -0
- package/src/llama.cpp/src/models/arcee.cpp +135 -0
- package/src/llama.cpp/src/models/arctic.cpp +138 -0
- package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
- package/src/llama.cpp/src/models/baichuan.cpp +122 -0
- package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
- package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
- package/src/llama.cpp/src/models/bert.cpp +176 -0
- package/src/llama.cpp/src/models/bitnet.cpp +160 -0
- package/src/llama.cpp/src/models/bloom.cpp +101 -0
- package/src/llama.cpp/src/models/chameleon.cpp +178 -0
- package/src/llama.cpp/src/models/chatglm.cpp +132 -0
- package/src/llama.cpp/src/models/codeshell.cpp +111 -0
- package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
- package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/command-r.cpp +122 -0
- package/src/llama.cpp/src/models/dbrx.cpp +123 -0
- package/src/llama.cpp/src/models/deci.cpp +135 -0
- package/src/llama.cpp/src/models/deepseek.cpp +144 -0
- package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
- package/src/llama.cpp/src/models/dots1.cpp +134 -0
- package/src/llama.cpp/src/models/dream.cpp +105 -0
- package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
- package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
- package/src/llama.cpp/src/models/exaone.cpp +114 -0
- package/src/llama.cpp/src/models/exaone4.cpp +123 -0
- package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
- package/src/llama.cpp/src/models/falcon.cpp +120 -0
- package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
- package/src/llama.cpp/src/models/gemma.cpp +112 -0
- package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
- package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
- package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
- package/src/llama.cpp/src/models/glm4.cpp +127 -0
- package/src/llama.cpp/src/models/gpt2.cpp +105 -0
- package/src/llama.cpp/src/models/gptneox.cpp +144 -0
- package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
- package/src/llama.cpp/src/models/granite.cpp +211 -0
- package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
- package/src/llama.cpp/src/models/grok.cpp +159 -0
- package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
- package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
- package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
- package/src/llama.cpp/src/models/internlm2.cpp +120 -0
- package/src/llama.cpp/src/models/jais.cpp +86 -0
- package/src/llama.cpp/src/models/jamba.cpp +106 -0
- package/src/llama.cpp/src/models/lfm2.cpp +173 -0
- package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
- package/src/llama.cpp/src/models/llada.cpp +99 -0
- package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
- package/src/llama.cpp/src/models/llama.cpp +155 -0
- package/src/llama.cpp/src/models/mamba.cpp +55 -0
- package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
- package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
- package/src/llama.cpp/src/models/models.h +481 -0
- package/src/llama.cpp/src/models/mpt.cpp +126 -0
- package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
- package/src/llama.cpp/src/models/nemotron.cpp +122 -0
- package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
- package/src/llama.cpp/src/models/olmo.cpp +121 -0
- package/src/llama.cpp/src/models/olmo2.cpp +150 -0
- package/src/llama.cpp/src/models/olmoe.cpp +124 -0
- package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
- package/src/llama.cpp/src/models/openelm.cpp +124 -0
- package/src/llama.cpp/src/models/orion.cpp +123 -0
- package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
- package/src/llama.cpp/src/models/phi2.cpp +121 -0
- package/src/llama.cpp/src/models/phi3.cpp +152 -0
- package/src/llama.cpp/src/models/plamo.cpp +110 -0
- package/src/llama.cpp/src/models/plamo2.cpp +316 -0
- package/src/llama.cpp/src/models/plm.cpp +168 -0
- package/src/llama.cpp/src/models/qwen.cpp +108 -0
- package/src/llama.cpp/src/models/qwen2.cpp +117 -0
- package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
- package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
- package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
- package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
- package/src/llama.cpp/src/models/refact.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
- package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
- package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
- package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
- package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
- package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
- package/src/llama.cpp/src/models/smollm3.cpp +128 -0
- package/src/llama.cpp/src/models/stablelm.cpp +146 -0
- package/src/llama.cpp/src/models/starcoder.cpp +100 -0
- package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
- package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
- package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
- package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
- package/src/llama.cpp/src/models/xverse.cpp +108 -0
|
@@ -0,0 +1,283 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
|
|
4
|
+
|
|
5
|
+
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
|
|
6
|
+
ggml_tensor * cur,
|
|
7
|
+
const llama_model & model,
|
|
8
|
+
const llama_ubatch & ubatch,
|
|
9
|
+
int il) {
|
|
10
|
+
const auto * mctx_cur = inp->mctx;
|
|
11
|
+
|
|
12
|
+
const auto kv_head = mctx_cur->get_head();
|
|
13
|
+
|
|
14
|
+
const auto & layer = model.layers[il];
|
|
15
|
+
|
|
16
|
+
const int64_t d_conv = hparams.ssm_d_conv;
|
|
17
|
+
const int64_t d_inner = hparams.ssm_d_inner;
|
|
18
|
+
const int64_t d_state = hparams.ssm_d_state;
|
|
19
|
+
const int64_t dt_rank = hparams.ssm_dt_rank;
|
|
20
|
+
const int64_t n_head = d_inner;
|
|
21
|
+
const int64_t head_dim = 1;
|
|
22
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
|
23
|
+
// Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
|
|
24
|
+
const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
|
|
25
|
+
|
|
26
|
+
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
27
|
+
|
|
28
|
+
GGML_ASSERT(n_seqs != 0);
|
|
29
|
+
GGML_ASSERT(ubatch.equal_seqs());
|
|
30
|
+
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
31
|
+
|
|
32
|
+
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
|
33
|
+
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
|
34
|
+
|
|
35
|
+
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
|
36
|
+
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
|
|
37
|
+
|
|
38
|
+
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
|
39
|
+
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
40
|
+
|
|
41
|
+
// {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
|
|
42
|
+
ggml_tensor * xz = build_lora_mm(layer.ssm_in, cur);
|
|
43
|
+
// split the above in two
|
|
44
|
+
// => {d_inner, n_seq_tokens, n_seqs}
|
|
45
|
+
ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
|
|
46
|
+
ggml_tensor * z =
|
|
47
|
+
ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner * ggml_element_size(xz));
|
|
48
|
+
|
|
49
|
+
// conv
|
|
50
|
+
{
|
|
51
|
+
// => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
|
|
52
|
+
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
|
|
53
|
+
|
|
54
|
+
// copy last (d_conv - 1) columns back into the state cache
|
|
55
|
+
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
|
|
56
|
+
n_seq_tokens * (conv_x->nb[0]));
|
|
57
|
+
|
|
58
|
+
ggml_build_forward_expand(
|
|
59
|
+
gf, ggml_cpy(ctx0, last_conv,
|
|
60
|
+
ggml_view_1d(ctx0, conv_states_all, (d_conv - 1) * (d_inner) * (n_seqs),
|
|
61
|
+
kv_head * (d_conv - 1) * (d_inner) *ggml_element_size(conv_states_all))));
|
|
62
|
+
|
|
63
|
+
// 1D convolution
|
|
64
|
+
// The equivalent is to make a self-overlapping view of conv_x
|
|
65
|
+
// over d_conv columns at each stride in the 3rd dimension,
|
|
66
|
+
// then element-wise multiply that with the conv1d weight,
|
|
67
|
+
// then sum the elements of each row,
|
|
68
|
+
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
|
69
|
+
// then permute away the ne[0] dimension,
|
|
70
|
+
// and then you're left with the resulting x tensor.
|
|
71
|
+
// For simultaneous sequences, all sequences need to have the same length.
|
|
72
|
+
x = ggml_ssm_conv(ctx0, conv_x, layer.ssm_conv1d);
|
|
73
|
+
|
|
74
|
+
// bias
|
|
75
|
+
x = ggml_add(ctx0, x, layer.ssm_conv1d_b);
|
|
76
|
+
|
|
77
|
+
x = ggml_silu(ctx0, x);
|
|
78
|
+
}
|
|
79
|
+
|
|
80
|
+
// ssm
|
|
81
|
+
{
|
|
82
|
+
// {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
|
|
83
|
+
ggml_tensor * x_db = build_lora_mm(layer.ssm_x, x);
|
|
84
|
+
// split
|
|
85
|
+
ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
|
|
86
|
+
ggml_tensor * B =
|
|
87
|
+
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
|
|
88
|
+
x_db->nb[2], ggml_element_size(x_db) * dt_rank);
|
|
89
|
+
ggml_tensor * C =
|
|
90
|
+
ggml_view_4d(ctx0, x_db, d_state, /* n_group */ 1, n_seq_tokens, n_seqs, d_state * x_db->nb[0], x_db->nb[1],
|
|
91
|
+
x_db->nb[2], ggml_element_size(x_db) * (dt_rank + d_state));
|
|
92
|
+
|
|
93
|
+
// Some Mamba variants (e.g. FalconMamba, Jamba) apply RMS norm in B, C & Dt layers
|
|
94
|
+
if (ssm_dt_b_c_rms || (layer.ssm_dt_norm && layer.ssm_b_norm && layer.ssm_c_norm)) {
|
|
95
|
+
dt = build_norm(dt, layer.ssm_dt_norm, NULL, LLM_NORM_RMS, il);
|
|
96
|
+
B = build_norm(B, layer.ssm_b_norm, NULL, LLM_NORM_RMS, il);
|
|
97
|
+
C = build_norm(C, layer.ssm_c_norm, NULL, LLM_NORM_RMS, il);
|
|
98
|
+
}
|
|
99
|
+
|
|
100
|
+
// {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
|
|
101
|
+
dt = build_lora_mm(layer.ssm_dt, dt);
|
|
102
|
+
dt = ggml_add(ctx0, dt, layer.ssm_dt_b);
|
|
103
|
+
|
|
104
|
+
cur = x;
|
|
105
|
+
x = ggml_reshape_4d(ctx0, x, head_dim, n_head, n_seq_tokens, n_seqs);
|
|
106
|
+
|
|
107
|
+
ggml_tensor * A = layer.ssm_a;
|
|
108
|
+
|
|
109
|
+
// use the states and the indices provided by build_recurrent_state
|
|
110
|
+
// (this is necessary in order to properly use the states before they are overwritten,
|
|
111
|
+
// while avoiding to make unnecessary copies of the states)
|
|
112
|
+
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
|
113
|
+
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
|
|
114
|
+
|
|
115
|
+
// Custom operator to optimize the parallel associative scan
|
|
116
|
+
// as described in the Annex D of the Mamba paper.
|
|
117
|
+
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
|
118
|
+
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
|
119
|
+
};
|
|
120
|
+
|
|
121
|
+
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
|
122
|
+
|
|
123
|
+
// store last states
|
|
124
|
+
ggml_build_forward_expand(
|
|
125
|
+
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, x->nb[3] * x->ne[3]),
|
|
126
|
+
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
|
|
127
|
+
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
|
|
128
|
+
|
|
129
|
+
ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[2], x->nb[3], 0);
|
|
130
|
+
|
|
131
|
+
// TODO: skip computing output earlier for unused tokens
|
|
132
|
+
|
|
133
|
+
y = ggml_add(ctx0, y, ggml_mul(ctx0, cur, layer.ssm_d));
|
|
134
|
+
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
|
135
|
+
|
|
136
|
+
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
|
137
|
+
cur = build_lora_mm(layer.ssm_out, y);
|
|
138
|
+
}
|
|
139
|
+
|
|
140
|
+
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
141
|
+
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
|
142
|
+
|
|
143
|
+
return cur;
|
|
144
|
+
}
|
|
145
|
+
|
|
146
|
+
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
|
|
147
|
+
ggml_tensor * cur,
|
|
148
|
+
const llama_model & model,
|
|
149
|
+
const llama_ubatch & ubatch,
|
|
150
|
+
int il) const {
|
|
151
|
+
const auto * mctx_cur = inp->mctx;
|
|
152
|
+
|
|
153
|
+
const auto kv_head = mctx_cur->get_head();
|
|
154
|
+
|
|
155
|
+
const int64_t d_conv = hparams.ssm_d_conv;
|
|
156
|
+
const int64_t d_inner = hparams.ssm_d_inner;
|
|
157
|
+
const int64_t d_state = hparams.ssm_d_state;
|
|
158
|
+
const int64_t n_head = hparams.ssm_dt_rank;
|
|
159
|
+
const int64_t head_dim = d_inner / n_head;
|
|
160
|
+
const int64_t n_group = hparams.ssm_n_group;
|
|
161
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
|
162
|
+
|
|
163
|
+
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
|
164
|
+
|
|
165
|
+
GGML_ASSERT(n_seqs != 0);
|
|
166
|
+
GGML_ASSERT(ubatch.equal_seqs());
|
|
167
|
+
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
|
168
|
+
|
|
169
|
+
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
|
170
|
+
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
|
171
|
+
|
|
172
|
+
ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
|
173
|
+
conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
|
|
174
|
+
|
|
175
|
+
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
|
|
176
|
+
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
|
|
177
|
+
|
|
178
|
+
// d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
|
|
179
|
+
|
|
180
|
+
// {n_embd, d_in_proj} @ {n_embd, n_seq_tokens, n_seqs} => {d_in_proj, n_seq_tokens, n_seqs}
|
|
181
|
+
ggml_tensor * zxBCdt = build_lora_mm(model.layers[il].ssm_in, cur);
|
|
182
|
+
|
|
183
|
+
// split the above in three
|
|
184
|
+
ggml_tensor * z = ggml_view_4d(ctx0, zxBCdt, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * zxBCdt->nb[0],
|
|
185
|
+
zxBCdt->nb[1], zxBCdt->nb[2], 0);
|
|
186
|
+
ggml_tensor * xBC = ggml_view_3d(ctx0, zxBCdt, d_inner + 2 * n_group * d_state, n_seq_tokens, n_seqs, zxBCdt->nb[1],
|
|
187
|
+
zxBCdt->nb[2], d_inner * ggml_element_size(zxBCdt));
|
|
188
|
+
ggml_tensor * dt = ggml_view_3d(ctx0, zxBCdt, n_head, n_seq_tokens, n_seqs, zxBCdt->nb[1], zxBCdt->nb[2],
|
|
189
|
+
(2 * d_inner + 2 * n_group * d_state) * ggml_element_size(zxBCdt));
|
|
190
|
+
|
|
191
|
+
// conv
|
|
192
|
+
{
|
|
193
|
+
// => {d_conv - 1 + n_seq_tokens, d_inner + 2*n_group*d_state, n_seqs}
|
|
194
|
+
ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, xBC), 0);
|
|
195
|
+
|
|
196
|
+
// copy last (d_conv - 1) columns back into the state cache
|
|
197
|
+
ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs,
|
|
198
|
+
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * (conv_x->nb[0]));
|
|
199
|
+
|
|
200
|
+
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
|
|
201
|
+
ggml_view_1d(ctx0, conv_states_all,
|
|
202
|
+
(d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
|
|
203
|
+
kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
|
|
204
|
+
ggml_element_size(conv_states_all))));
|
|
205
|
+
|
|
206
|
+
// 1D convolution
|
|
207
|
+
// The equivalent is to make a self-overlapping view of conv_x
|
|
208
|
+
// over d_conv columns at each stride in the 3rd dimension,
|
|
209
|
+
// then element-wise multiply that with the conv1d weight,
|
|
210
|
+
// then sum the elements of each row,
|
|
211
|
+
// (the last two steps are a dot product over rows (also doable with mul_mat))
|
|
212
|
+
// then permute away the ne[0] dimension,
|
|
213
|
+
// and then you're left with the resulting x tensor.
|
|
214
|
+
// For simultaneous sequences, all sequences need to have the same length.
|
|
215
|
+
xBC = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
|
|
216
|
+
|
|
217
|
+
// bias
|
|
218
|
+
xBC = ggml_add(ctx0, xBC, model.layers[il].ssm_conv1d_b);
|
|
219
|
+
|
|
220
|
+
xBC = ggml_silu(ctx0, xBC);
|
|
221
|
+
}
|
|
222
|
+
|
|
223
|
+
// ssm
|
|
224
|
+
{
|
|
225
|
+
// These correspond to V K Q in SSM/attention duality
|
|
226
|
+
ggml_tensor * x = ggml_view_4d(ctx0, xBC, head_dim, n_head, n_seq_tokens, n_seqs, head_dim * xBC->nb[0],
|
|
227
|
+
xBC->nb[1], xBC->nb[2], 0);
|
|
228
|
+
ggml_tensor * B = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
|
|
229
|
+
xBC->nb[1], xBC->nb[2], d_inner * ggml_element_size(xBC));
|
|
230
|
+
ggml_tensor * C = ggml_view_4d(ctx0, xBC, d_state, n_group, n_seq_tokens, n_seqs, d_state * xBC->nb[0],
|
|
231
|
+
xBC->nb[1], xBC->nb[2], (d_inner + n_group * d_state) * ggml_element_size(xBC));
|
|
232
|
+
|
|
233
|
+
// {n_head, n_seq_tokens, n_seqs}
|
|
234
|
+
dt = ggml_add(ctx0, ggml_cont(ctx0, dt), model.layers[il].ssm_dt_b);
|
|
235
|
+
|
|
236
|
+
ggml_tensor * A = model.layers[il].ssm_a;
|
|
237
|
+
|
|
238
|
+
// use the states and the indices provided by build_recurrent_state
|
|
239
|
+
// (this is necessary in order to properly use the states before they are overwritten,
|
|
240
|
+
// while avoiding to make unnecessary copies of the states)
|
|
241
|
+
auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
|
|
242
|
+
ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_head, mctx_cur->get_size());
|
|
243
|
+
|
|
244
|
+
// TODO: use semistructured matrices to implement state-space duality
|
|
245
|
+
// => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
|
|
246
|
+
return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
|
|
247
|
+
};
|
|
248
|
+
|
|
249
|
+
ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
|
|
250
|
+
|
|
251
|
+
// store last states
|
|
252
|
+
ggml_build_forward_expand(
|
|
253
|
+
gf, ggml_cpy(ctx0, ggml_view_1d(ctx0, y_ssm, d_state * d_inner * n_seqs, ggml_nelements(x) * x->nb[0]),
|
|
254
|
+
ggml_view_1d(ctx0, ssm_states_all, d_state * d_inner * n_seqs,
|
|
255
|
+
kv_head * d_state * d_inner * ggml_element_size(ssm_states_all))));
|
|
256
|
+
|
|
257
|
+
ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_head, n_seq_tokens, n_seqs, x->nb[1], n_head * x->nb[1],
|
|
258
|
+
n_seq_tokens * n_head * x->nb[1], 0);
|
|
259
|
+
|
|
260
|
+
// TODO: skip computing output earlier for unused tokens
|
|
261
|
+
|
|
262
|
+
y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
|
|
263
|
+
cb(y, "mamba2_y_add_d", il);
|
|
264
|
+
y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
|
|
265
|
+
|
|
266
|
+
// grouped RMS norm
|
|
267
|
+
if (model.layers[il].ssm_norm) {
|
|
268
|
+
y = ggml_reshape_4d(ctx0, y, d_inner / n_group, n_group, n_seq_tokens, n_seqs);
|
|
269
|
+
y = build_norm(y, model.layers[il].ssm_norm, NULL, LLM_NORM_RMS, il);
|
|
270
|
+
}
|
|
271
|
+
|
|
272
|
+
y = ggml_reshape_3d(ctx0, y, d_inner, n_seq_tokens, n_seqs);
|
|
273
|
+
|
|
274
|
+
// {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
|
|
275
|
+
cur = build_lora_mm(model.layers[il].ssm_out, y);
|
|
276
|
+
}
|
|
277
|
+
|
|
278
|
+
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
|
|
279
|
+
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
|
|
280
|
+
cb(cur, "mamba_out", il);
|
|
281
|
+
|
|
282
|
+
return cur;
|
|
283
|
+
}
|
|
@@ -0,0 +1,159 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_grok::llm_build_grok(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
5
|
+
|
|
6
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
7
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
8
|
+
|
|
9
|
+
ggml_tensor * cur;
|
|
10
|
+
ggml_tensor * inpL;
|
|
11
|
+
|
|
12
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
13
|
+
|
|
14
|
+
// inp_pos - contains the positions
|
|
15
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
16
|
+
|
|
17
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
18
|
+
|
|
19
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
20
|
+
|
|
21
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
22
|
+
ggml_tensor * inpSA = inpL;
|
|
23
|
+
|
|
24
|
+
// norm
|
|
25
|
+
cur = build_norm(inpL,
|
|
26
|
+
model.layers[il].attn_norm, NULL,
|
|
27
|
+
LLM_NORM_RMS, il);
|
|
28
|
+
cb(cur, "attn_norm", il);
|
|
29
|
+
|
|
30
|
+
// self-attention
|
|
31
|
+
{
|
|
32
|
+
// compute Q and K and RoPE them
|
|
33
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
34
|
+
cb(Qcur, "Qcur", il);
|
|
35
|
+
if (model.layers[il].bq) {
|
|
36
|
+
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
37
|
+
cb(Qcur, "Qcur", il);
|
|
38
|
+
}
|
|
39
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
40
|
+
cb(Kcur, "Kcur", il);
|
|
41
|
+
if (model.layers[il].bk) {
|
|
42
|
+
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
43
|
+
cb(Kcur, "Kcur", il);
|
|
44
|
+
}
|
|
45
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
46
|
+
cb(Vcur, "Vcur", il);
|
|
47
|
+
if (model.layers[il].bv) {
|
|
48
|
+
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
49
|
+
cb(Vcur, "Vcur", il);
|
|
50
|
+
}
|
|
51
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
52
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
53
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
54
|
+
|
|
55
|
+
Qcur = ggml_rope_ext(
|
|
56
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
57
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
58
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
59
|
+
);
|
|
60
|
+
|
|
61
|
+
Kcur = ggml_rope_ext(
|
|
62
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
63
|
+
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
64
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
65
|
+
);
|
|
66
|
+
|
|
67
|
+
cb(Qcur, "Qcur", il);
|
|
68
|
+
cb(Kcur, "Kcur", il);
|
|
69
|
+
cb(Vcur, "Vcur", il);
|
|
70
|
+
|
|
71
|
+
cur = build_attn(inp_attn,
|
|
72
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
73
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
|
|
74
|
+
}
|
|
75
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
76
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
77
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
78
|
+
}
|
|
79
|
+
cur = build_norm(cur,
|
|
80
|
+
model.layers[il].attn_out_norm, NULL,
|
|
81
|
+
LLM_NORM_RMS, il);
|
|
82
|
+
cb(cur, "attn_out_norm", il);
|
|
83
|
+
|
|
84
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
85
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
86
|
+
|
|
87
|
+
// feed-forward network
|
|
88
|
+
cur = build_norm(ffn_inp,
|
|
89
|
+
model.layers[il].ffn_norm, NULL,
|
|
90
|
+
LLM_NORM_RMS, il);
|
|
91
|
+
cb(cur, "ffn_norm", il);
|
|
92
|
+
|
|
93
|
+
// MoE branch
|
|
94
|
+
ggml_tensor * moe_out = build_moe_ffn(cur,
|
|
95
|
+
model.layers[il].ffn_gate_inp,
|
|
96
|
+
model.layers[il].ffn_up_exps,
|
|
97
|
+
model.layers[il].ffn_gate_exps,
|
|
98
|
+
model.layers[il].ffn_down_exps,
|
|
99
|
+
nullptr,
|
|
100
|
+
n_expert, n_expert_used,
|
|
101
|
+
LLM_FFN_GELU, true,
|
|
102
|
+
false, 0.0,
|
|
103
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
104
|
+
il);
|
|
105
|
+
cb(moe_out, "ffn_moe_out", il);
|
|
106
|
+
|
|
107
|
+
if (model.layers[il].ffn_up) {
|
|
108
|
+
ggml_tensor * ffn_out = build_ffn(cur,
|
|
109
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
110
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
111
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
112
|
+
NULL,
|
|
113
|
+
LLM_FFN_GELU, LLM_FFN_PAR, il);
|
|
114
|
+
cb(ffn_out, "ffn_out", il);
|
|
115
|
+
|
|
116
|
+
cur = ggml_scale(ctx0, ggml_add(ctx0, ffn_out, moe_out), std::sqrt(2) / 2);
|
|
117
|
+
cb(cur, "ffn_out", il);
|
|
118
|
+
} else {
|
|
119
|
+
cur = moe_out;
|
|
120
|
+
}
|
|
121
|
+
cur = build_norm(cur,
|
|
122
|
+
model.layers[il].ffn_post_norm, NULL,
|
|
123
|
+
LLM_NORM_RMS, il);
|
|
124
|
+
cb(cur, "ffn_post_norm", il);
|
|
125
|
+
|
|
126
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
127
|
+
cb(cur, "ffn_out", il);
|
|
128
|
+
|
|
129
|
+
cur = build_cvec(cur, il);
|
|
130
|
+
cb(cur, "l_out", il);
|
|
131
|
+
|
|
132
|
+
// input for next layer
|
|
133
|
+
inpL = cur;
|
|
134
|
+
}
|
|
135
|
+
cur = inpL;
|
|
136
|
+
|
|
137
|
+
cur = build_norm(cur,
|
|
138
|
+
model.output_norm, NULL,
|
|
139
|
+
LLM_NORM_RMS, -1);
|
|
140
|
+
|
|
141
|
+
cb(cur, "result_norm", -1);
|
|
142
|
+
res->t_embd = cur;
|
|
143
|
+
|
|
144
|
+
// lm_head
|
|
145
|
+
cur = build_lora_mm(model.output, cur);
|
|
146
|
+
|
|
147
|
+
cur = ggml_scale(ctx0, cur, hparams.f_logit_scale);
|
|
148
|
+
|
|
149
|
+
// final logit soft-capping
|
|
150
|
+
if (hparams.f_final_logit_softcapping) {
|
|
151
|
+
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
|
|
152
|
+
cur = ggml_tanh(ctx0, cur);
|
|
153
|
+
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
|
|
154
|
+
}
|
|
155
|
+
cb(cur, "result_output", -1);
|
|
156
|
+
res->t_logits = cur;
|
|
157
|
+
|
|
158
|
+
ggml_build_forward_expand(gf, cur);
|
|
159
|
+
}
|
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
llm_build_grovemoe::llm_build_grovemoe(const llama_model & model, const llm_graph_params & params) :
|
|
6
|
+
llm_graph_context(params) {
|
|
7
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
8
|
+
const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
|
|
9
|
+
|
|
10
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
11
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
12
|
+
|
|
13
|
+
ggml_tensor * cur;
|
|
14
|
+
ggml_tensor * inpL;
|
|
15
|
+
|
|
16
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
17
|
+
|
|
18
|
+
// inp_pos - contains the positions
|
|
19
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
20
|
+
|
|
21
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
22
|
+
|
|
23
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
24
|
+
|
|
25
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
26
|
+
ggml_tensor * inpSA = inpL;
|
|
27
|
+
|
|
28
|
+
// norm
|
|
29
|
+
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
|
30
|
+
cb(cur, "attn_norm", il);
|
|
31
|
+
|
|
32
|
+
// self_attention
|
|
33
|
+
{
|
|
34
|
+
// compute Q and K and RoPE them
|
|
35
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
36
|
+
cb(Qcur, "Qcur", il);
|
|
37
|
+
|
|
38
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
39
|
+
cb(Kcur, "Kcur", il);
|
|
40
|
+
|
|
41
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
42
|
+
cb(Vcur, "Vcur", il);
|
|
43
|
+
|
|
44
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
45
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
46
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
47
|
+
|
|
48
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
49
|
+
cb(Qcur, "Qcur_normed", il);
|
|
50
|
+
|
|
51
|
+
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
52
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
53
|
+
|
|
54
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
55
|
+
cb(Kcur, "Kcur_normed", il);
|
|
56
|
+
|
|
57
|
+
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
58
|
+
ext_factor, attn_factor, beta_fast, beta_slow);
|
|
59
|
+
|
|
60
|
+
cb(Qcur, "Qcur", il);
|
|
61
|
+
cb(Kcur, "Kcur", il);
|
|
62
|
+
cb(Vcur, "Vcur", il);
|
|
63
|
+
|
|
64
|
+
cur = build_attn(inp_attn,
|
|
65
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
66
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
70
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
71
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
75
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
76
|
+
|
|
77
|
+
// MoE branch
|
|
78
|
+
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
|
|
79
|
+
cb(cur, "ffn_norm", il);
|
|
80
|
+
|
|
81
|
+
ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, cur); // [n_expert, n_tokens]
|
|
82
|
+
cb(probs, "ffn_moe_logits", il);
|
|
83
|
+
|
|
84
|
+
ggml_tensor * moe_out =
|
|
85
|
+
build_moe_ffn(cur,
|
|
86
|
+
nullptr,
|
|
87
|
+
model.layers[il].ffn_up_exps,
|
|
88
|
+
model.layers[il].ffn_gate_exps,
|
|
89
|
+
model.layers[il].ffn_down_exps,
|
|
90
|
+
nullptr,
|
|
91
|
+
n_expert, n_expert_used,
|
|
92
|
+
LLM_FFN_SILU, true,
|
|
93
|
+
false, 0.0,
|
|
94
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
95
|
+
il,
|
|
96
|
+
probs);
|
|
97
|
+
cb(moe_out, "ffn_moe_out", il);
|
|
98
|
+
cur = moe_out;
|
|
99
|
+
|
|
100
|
+
// TODO: Only do the expert selection and weights once
|
|
101
|
+
moe_out = build_moe_ffn(cur,
|
|
102
|
+
nullptr,
|
|
103
|
+
model.layers[il].ffn_up_chexps,
|
|
104
|
+
model.layers[il].ffn_gate_chexps,
|
|
105
|
+
model.layers[il].ffn_down_chexps,
|
|
106
|
+
nullptr,
|
|
107
|
+
n_chunk_expert, n_expert_used > n_chunk_expert ? n_chunk_expert : n_expert_used,
|
|
108
|
+
LLM_FFN_SILU, true,
|
|
109
|
+
false, 0.0,
|
|
110
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
111
|
+
il,
|
|
112
|
+
probs);
|
|
113
|
+
cb(moe_out, "ffn_adj_moe_out", il);
|
|
114
|
+
|
|
115
|
+
cur = ggml_add(ctx0, cur, ggml_scale(ctx0, moe_out, hparams.expert_group_scale));
|
|
116
|
+
cb(cur, "ffn_final_moe_out", il);
|
|
117
|
+
|
|
118
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
119
|
+
|
|
120
|
+
cur = build_cvec(cur, il);
|
|
121
|
+
cb(cur, "l_out", il);
|
|
122
|
+
|
|
123
|
+
// input for next layer
|
|
124
|
+
inpL = cur;
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
cur = inpL;
|
|
128
|
+
|
|
129
|
+
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
|
|
130
|
+
|
|
131
|
+
cb(cur, "result_norm", -1);
|
|
132
|
+
res->t_embd = cur;
|
|
133
|
+
|
|
134
|
+
// lm_head
|
|
135
|
+
cur = build_lora_mm(model.output, cur);
|
|
136
|
+
|
|
137
|
+
cb(cur, "result_output", -1);
|
|
138
|
+
res->t_logits = cur;
|
|
139
|
+
|
|
140
|
+
ggml_build_forward_expand(gf, cur);
|
|
141
|
+
}
|