@fugood/llama.node 1.3.0 → 1.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/package.json +14 -14
- package/scripts/llama.cpp.patch +8 -8
- package/src/llama.cpp/common/CMakeLists.txt +2 -0
- package/src/llama.cpp/common/arg.cpp +44 -999
- package/src/llama.cpp/common/arg.h +2 -2
- package/src/llama.cpp/common/chat.cpp +17 -2
- package/src/llama.cpp/common/common.cpp +33 -0
- package/src/llama.cpp/common/common.h +15 -1
- package/src/llama.cpp/common/download.cpp +1054 -0
- package/src/llama.cpp/common/download.h +55 -0
- package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
- package/src/llama.cpp/ggml/include/ggml.h +2 -0
- package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
- package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
- package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
- package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
- package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
- package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
- package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
- package/src/llama.cpp/include/llama.h +7 -3
- package/src/llama.cpp/src/CMakeLists.txt +95 -0
- package/src/llama.cpp/src/llama-arch.cpp +108 -0
- package/src/llama.cpp/src/llama-arch.h +11 -0
- package/src/llama.cpp/src/llama-batch.cpp +63 -31
- package/src/llama.cpp/src/llama-batch.h +12 -1
- package/src/llama.cpp/src/llama-chat.cpp +32 -0
- package/src/llama.cpp/src/llama-chat.h +1 -0
- package/src/llama.cpp/src/llama-context.cpp +36 -13
- package/src/llama.cpp/src/llama-context.h +5 -5
- package/src/llama.cpp/src/llama-cparams.h +1 -0
- package/src/llama.cpp/src/llama-graph.cpp +3 -3
- package/src/llama.cpp/src/llama-hparams.cpp +11 -1
- package/src/llama.cpp/src/llama-hparams.h +6 -0
- package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
- package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
- package/src/llama.cpp/src/llama-kv-cells.h +44 -2
- package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
- package/src/llama.cpp/src/llama-model.cpp +320 -13171
- package/src/llama.cpp/src/llama-model.h +8 -0
- package/src/llama.cpp/src/llama-quant.cpp +1 -1
- package/src/llama.cpp/src/llama-vocab.cpp +5 -0
- package/src/llama.cpp/src/llama-vocab.h +1 -0
- package/src/llama.cpp/src/models/apertus.cpp +125 -0
- package/src/llama.cpp/src/models/arcee.cpp +135 -0
- package/src/llama.cpp/src/models/arctic.cpp +138 -0
- package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
- package/src/llama.cpp/src/models/baichuan.cpp +122 -0
- package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
- package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
- package/src/llama.cpp/src/models/bert.cpp +176 -0
- package/src/llama.cpp/src/models/bitnet.cpp +160 -0
- package/src/llama.cpp/src/models/bloom.cpp +101 -0
- package/src/llama.cpp/src/models/chameleon.cpp +178 -0
- package/src/llama.cpp/src/models/chatglm.cpp +132 -0
- package/src/llama.cpp/src/models/codeshell.cpp +111 -0
- package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
- package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/command-r.cpp +122 -0
- package/src/llama.cpp/src/models/dbrx.cpp +123 -0
- package/src/llama.cpp/src/models/deci.cpp +135 -0
- package/src/llama.cpp/src/models/deepseek.cpp +144 -0
- package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
- package/src/llama.cpp/src/models/dots1.cpp +134 -0
- package/src/llama.cpp/src/models/dream.cpp +105 -0
- package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
- package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
- package/src/llama.cpp/src/models/exaone.cpp +114 -0
- package/src/llama.cpp/src/models/exaone4.cpp +123 -0
- package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
- package/src/llama.cpp/src/models/falcon.cpp +120 -0
- package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
- package/src/llama.cpp/src/models/gemma.cpp +112 -0
- package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
- package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
- package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
- package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
- package/src/llama.cpp/src/models/glm4.cpp +127 -0
- package/src/llama.cpp/src/models/gpt2.cpp +105 -0
- package/src/llama.cpp/src/models/gptneox.cpp +144 -0
- package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
- package/src/llama.cpp/src/models/granite.cpp +211 -0
- package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
- package/src/llama.cpp/src/models/grok.cpp +159 -0
- package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
- package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
- package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
- package/src/llama.cpp/src/models/internlm2.cpp +120 -0
- package/src/llama.cpp/src/models/jais.cpp +86 -0
- package/src/llama.cpp/src/models/jamba.cpp +106 -0
- package/src/llama.cpp/src/models/lfm2.cpp +173 -0
- package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
- package/src/llama.cpp/src/models/llada.cpp +99 -0
- package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
- package/src/llama.cpp/src/models/llama.cpp +155 -0
- package/src/llama.cpp/src/models/mamba.cpp +55 -0
- package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
- package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
- package/src/llama.cpp/src/models/models.h +481 -0
- package/src/llama.cpp/src/models/mpt.cpp +126 -0
- package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
- package/src/llama.cpp/src/models/nemotron.cpp +122 -0
- package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
- package/src/llama.cpp/src/models/olmo.cpp +121 -0
- package/src/llama.cpp/src/models/olmo2.cpp +150 -0
- package/src/llama.cpp/src/models/olmoe.cpp +124 -0
- package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
- package/src/llama.cpp/src/models/openelm.cpp +124 -0
- package/src/llama.cpp/src/models/orion.cpp +123 -0
- package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
- package/src/llama.cpp/src/models/phi2.cpp +121 -0
- package/src/llama.cpp/src/models/phi3.cpp +152 -0
- package/src/llama.cpp/src/models/plamo.cpp +110 -0
- package/src/llama.cpp/src/models/plamo2.cpp +316 -0
- package/src/llama.cpp/src/models/plm.cpp +168 -0
- package/src/llama.cpp/src/models/qwen.cpp +108 -0
- package/src/llama.cpp/src/models/qwen2.cpp +117 -0
- package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
- package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3.cpp +117 -0
- package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
- package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
- package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
- package/src/llama.cpp/src/models/refact.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
- package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
- package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
- package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
- package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
- package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
- package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
- package/src/llama.cpp/src/models/smollm3.cpp +128 -0
- package/src/llama.cpp/src/models/stablelm.cpp +146 -0
- package/src/llama.cpp/src/models/starcoder.cpp +100 -0
- package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
- package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
- package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
- package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
- package/src/llama.cpp/src/models/xverse.cpp +108 -0
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
|
|
5
|
+
const int64_t n_embd = hparams.n_embd;
|
|
6
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
7
|
+
|
|
8
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
9
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
10
|
+
|
|
11
|
+
ggml_tensor * cur;
|
|
12
|
+
ggml_tensor * inpL;
|
|
13
|
+
|
|
14
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
15
|
+
|
|
16
|
+
int sections[4];
|
|
17
|
+
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
|
|
18
|
+
|
|
19
|
+
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
|
|
20
|
+
|
|
21
|
+
if (ubatch.embd) {
|
|
22
|
+
// Image input: split main embd and deepstack embds
|
|
23
|
+
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
|
|
24
|
+
for (size_t i = 0; i < n_deepstack_layers; i++) {
|
|
25
|
+
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
|
|
26
|
+
}
|
|
27
|
+
inpL = inpL_main;
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
// inp_pos - contains the positions
|
|
31
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
32
|
+
|
|
33
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
34
|
+
|
|
35
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
36
|
+
|
|
37
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
38
|
+
ggml_tensor * inpSA = inpL;
|
|
39
|
+
|
|
40
|
+
// norm
|
|
41
|
+
cur = build_norm(inpL,
|
|
42
|
+
model.layers[il].attn_norm, NULL,
|
|
43
|
+
LLM_NORM_RMS, il);
|
|
44
|
+
cb(cur, "attn_norm", il);
|
|
45
|
+
|
|
46
|
+
// self_attention
|
|
47
|
+
{
|
|
48
|
+
// compute Q and K and RoPE them
|
|
49
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
50
|
+
cb(Qcur, "Qcur", il);
|
|
51
|
+
|
|
52
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
53
|
+
cb(Kcur, "Kcur", il);
|
|
54
|
+
|
|
55
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
56
|
+
cb(Vcur, "Vcur", il);
|
|
57
|
+
|
|
58
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
59
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
60
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
61
|
+
|
|
62
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
63
|
+
cb(Qcur, "Qcur_normed", il);
|
|
64
|
+
|
|
65
|
+
Qcur = ggml_rope_multi(
|
|
66
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
67
|
+
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
68
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
69
|
+
);
|
|
70
|
+
|
|
71
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
72
|
+
cb(Kcur, "Kcur_normed", il);
|
|
73
|
+
|
|
74
|
+
Kcur = ggml_rope_multi(
|
|
75
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
76
|
+
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
77
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
78
|
+
);
|
|
79
|
+
|
|
80
|
+
cb(Qcur, "Qcur", il);
|
|
81
|
+
cb(Kcur, "Kcur", il);
|
|
82
|
+
cb(Vcur, "Vcur", il);
|
|
83
|
+
|
|
84
|
+
cur = build_attn(inp_attn,
|
|
85
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
86
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
90
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
91
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
92
|
+
}
|
|
93
|
+
|
|
94
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
95
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
96
|
+
|
|
97
|
+
// MoE branch
|
|
98
|
+
cur = build_norm(ffn_inp,
|
|
99
|
+
model.layers[il].ffn_norm, NULL,
|
|
100
|
+
LLM_NORM_RMS, il);
|
|
101
|
+
cb(cur, "ffn_norm", il);
|
|
102
|
+
|
|
103
|
+
ggml_tensor * moe_out =
|
|
104
|
+
build_moe_ffn(cur,
|
|
105
|
+
model.layers[il].ffn_gate_inp,
|
|
106
|
+
model.layers[il].ffn_up_exps,
|
|
107
|
+
model.layers[il].ffn_gate_exps,
|
|
108
|
+
model.layers[il].ffn_down_exps,
|
|
109
|
+
nullptr,
|
|
110
|
+
n_expert, n_expert_used,
|
|
111
|
+
LLM_FFN_SILU, true,
|
|
112
|
+
false, 0.0,
|
|
113
|
+
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
|
114
|
+
il);
|
|
115
|
+
cb(moe_out, "ffn_moe_out", il);
|
|
116
|
+
cur = moe_out;
|
|
117
|
+
|
|
118
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
119
|
+
|
|
120
|
+
cur = build_cvec(cur, il);
|
|
121
|
+
cb(cur, "l_out", il);
|
|
122
|
+
|
|
123
|
+
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
|
|
124
|
+
cur = ggml_add(ctx0, cur, deepstack_features[il]);
|
|
125
|
+
cb(cur, "deepstack_out", il);
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
// input for next layer
|
|
129
|
+
inpL = cur;
|
|
130
|
+
}
|
|
131
|
+
|
|
132
|
+
cur = inpL;
|
|
133
|
+
|
|
134
|
+
cur = build_norm(cur,
|
|
135
|
+
model.output_norm, NULL,
|
|
136
|
+
LLM_NORM_RMS, -1);
|
|
137
|
+
|
|
138
|
+
cb(cur, "result_norm", -1);
|
|
139
|
+
res->t_embd = cur;
|
|
140
|
+
|
|
141
|
+
// lm_head
|
|
142
|
+
cur = build_lora_mm(model.output, cur);
|
|
143
|
+
|
|
144
|
+
cb(cur, "result_output", -1);
|
|
145
|
+
res->t_logits = cur;
|
|
146
|
+
|
|
147
|
+
ggml_build_forward_expand(gf, cur);
|
|
148
|
+
}
|
|
149
|
+
|
|
@@ -0,0 +1,141 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_qwen3vl::llm_build_qwen3vl(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const size_t n_deepstack_layers = hparams.n_deepstack_layers;
|
|
5
|
+
const int64_t n_embd = hparams.n_embd;
|
|
6
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
7
|
+
|
|
8
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
9
|
+
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
10
|
+
|
|
11
|
+
ggml_tensor * cur;
|
|
12
|
+
ggml_tensor * inpL;
|
|
13
|
+
|
|
14
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
15
|
+
|
|
16
|
+
int sections[4];
|
|
17
|
+
std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
|
|
18
|
+
|
|
19
|
+
std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
|
|
20
|
+
|
|
21
|
+
if (ubatch.embd) {
|
|
22
|
+
// Image input: split main embd and deepstack embds
|
|
23
|
+
ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
|
|
24
|
+
for (size_t i = 0; i < n_deepstack_layers; i++) {
|
|
25
|
+
deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
|
|
26
|
+
}
|
|
27
|
+
inpL = inpL_main;
|
|
28
|
+
}
|
|
29
|
+
|
|
30
|
+
// inp_pos - contains the positions
|
|
31
|
+
ggml_tensor * inp_pos = build_inp_pos();
|
|
32
|
+
|
|
33
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
34
|
+
|
|
35
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
36
|
+
|
|
37
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
38
|
+
ggml_tensor * inpSA = inpL;
|
|
39
|
+
|
|
40
|
+
// norm
|
|
41
|
+
cur = build_norm(inpL,
|
|
42
|
+
model.layers[il].attn_norm, NULL,
|
|
43
|
+
LLM_NORM_RMS, il);
|
|
44
|
+
cb(cur, "attn_norm", il);
|
|
45
|
+
|
|
46
|
+
// self-attention
|
|
47
|
+
{
|
|
48
|
+
// compute Q and K and RoPE them
|
|
49
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
50
|
+
cb(Qcur, "Qcur", il);
|
|
51
|
+
|
|
52
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
53
|
+
cb(Kcur, "Kcur", il);
|
|
54
|
+
|
|
55
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
56
|
+
cb(Vcur, "Vcur", il);
|
|
57
|
+
|
|
58
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
59
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
60
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
61
|
+
|
|
62
|
+
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
|
|
63
|
+
cb(Qcur, "Qcur_normed", il);
|
|
64
|
+
|
|
65
|
+
Qcur = ggml_rope_multi(
|
|
66
|
+
ctx0, Qcur, inp_pos, nullptr,
|
|
67
|
+
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
68
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
69
|
+
);
|
|
70
|
+
|
|
71
|
+
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
|
|
72
|
+
cb(Kcur, "Kcur_normed", il);
|
|
73
|
+
|
|
74
|
+
Kcur = ggml_rope_multi(
|
|
75
|
+
ctx0, Kcur, inp_pos, nullptr,
|
|
76
|
+
n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
77
|
+
ext_factor, attn_factor, beta_fast, beta_slow
|
|
78
|
+
);
|
|
79
|
+
|
|
80
|
+
cb(Qcur, "Qcur", il);
|
|
81
|
+
cb(Kcur, "Kcur", il);
|
|
82
|
+
cb(Vcur, "Vcur", il);
|
|
83
|
+
|
|
84
|
+
cur = build_attn(inp_attn,
|
|
85
|
+
model.layers[il].wo, model.layers[il].bo,
|
|
86
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
90
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
91
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
92
|
+
}
|
|
93
|
+
|
|
94
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
95
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
96
|
+
|
|
97
|
+
// feed-forward network
|
|
98
|
+
cur = build_norm(ffn_inp,
|
|
99
|
+
model.layers[il].ffn_norm, NULL,
|
|
100
|
+
LLM_NORM_RMS, il);
|
|
101
|
+
cb(cur, "ffn_norm", il);
|
|
102
|
+
|
|
103
|
+
cur = build_ffn(cur,
|
|
104
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
105
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
106
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
107
|
+
NULL,
|
|
108
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
109
|
+
cb(cur, "ffn_out", il);
|
|
110
|
+
|
|
111
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
112
|
+
|
|
113
|
+
cur = build_cvec(cur, il);
|
|
114
|
+
cb(cur, "l_out", il);
|
|
115
|
+
|
|
116
|
+
if (ubatch.embd && (size_t)il < n_deepstack_layers) {
|
|
117
|
+
cur = ggml_add(ctx0, cur, deepstack_features[il]);
|
|
118
|
+
cb(cur, "deepstack_out", il);
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
// input for next layer
|
|
122
|
+
inpL = cur;
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
cur = inpL;
|
|
126
|
+
|
|
127
|
+
cur = build_norm(cur,
|
|
128
|
+
model.output_norm, NULL,
|
|
129
|
+
LLM_NORM_RMS, -1);
|
|
130
|
+
|
|
131
|
+
cb(cur, "result_norm", -1);
|
|
132
|
+
res->t_embd = cur;
|
|
133
|
+
|
|
134
|
+
// lm_head
|
|
135
|
+
cur = build_lora_mm(model.output, cur);
|
|
136
|
+
|
|
137
|
+
cb(cur, "result_output", -1);
|
|
138
|
+
res->t_logits = cur;
|
|
139
|
+
|
|
140
|
+
ggml_build_forward_expand(gf, cur);
|
|
141
|
+
}
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_refact::llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
|
|
4
|
+
const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
5
|
+
|
|
6
|
+
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
7
|
+
|
|
8
|
+
ggml_tensor * cur;
|
|
9
|
+
ggml_tensor * inpL;
|
|
10
|
+
|
|
11
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
12
|
+
|
|
13
|
+
auto * inp_attn = build_attn_inp_kv();
|
|
14
|
+
|
|
15
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
16
|
+
|
|
17
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
18
|
+
ggml_tensor * inpSA = inpL;
|
|
19
|
+
|
|
20
|
+
cur = build_norm(inpL,
|
|
21
|
+
model.layers[il].attn_norm, NULL,
|
|
22
|
+
LLM_NORM_RMS, il);
|
|
23
|
+
cb(cur, "attn_norm", il);
|
|
24
|
+
|
|
25
|
+
// self-attention
|
|
26
|
+
{
|
|
27
|
+
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
|
28
|
+
cb(Qcur, "Qcur", il);
|
|
29
|
+
|
|
30
|
+
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
|
31
|
+
cb(Kcur, "Kcur", il);
|
|
32
|
+
|
|
33
|
+
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
|
34
|
+
cb(Vcur, "Vcur", il);
|
|
35
|
+
|
|
36
|
+
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
37
|
+
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
|
38
|
+
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
|
39
|
+
|
|
40
|
+
cb(Qcur, "Qcur", il);
|
|
41
|
+
cb(Kcur, "Kcur", il);
|
|
42
|
+
cb(Vcur, "Vcur", il);
|
|
43
|
+
|
|
44
|
+
cur = build_attn(inp_attn,
|
|
45
|
+
model.layers[il].wo, NULL,
|
|
46
|
+
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
|
|
47
|
+
}
|
|
48
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
49
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
50
|
+
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
51
|
+
}
|
|
52
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
53
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
54
|
+
|
|
55
|
+
// feed-forward network
|
|
56
|
+
{
|
|
57
|
+
cur = build_norm(ffn_inp,
|
|
58
|
+
model.layers[il].ffn_norm, NULL,
|
|
59
|
+
LLM_NORM_RMS, il);
|
|
60
|
+
cb(cur, "ffn_norm", il);
|
|
61
|
+
|
|
62
|
+
cur = build_ffn(cur,
|
|
63
|
+
model.layers[il].ffn_up, NULL, NULL,
|
|
64
|
+
model.layers[il].ffn_gate, NULL, NULL,
|
|
65
|
+
model.layers[il].ffn_down, NULL, NULL,
|
|
66
|
+
NULL,
|
|
67
|
+
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
|
68
|
+
cb(cur, "ffn_out", il);
|
|
69
|
+
}
|
|
70
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
71
|
+
|
|
72
|
+
cur = build_cvec(cur, il);
|
|
73
|
+
cb(cur, "l_out", il);
|
|
74
|
+
|
|
75
|
+
// input for next layer
|
|
76
|
+
inpL = cur;
|
|
77
|
+
}
|
|
78
|
+
cur = inpL;
|
|
79
|
+
|
|
80
|
+
cur = build_norm(cur,
|
|
81
|
+
model.output_norm, NULL,
|
|
82
|
+
LLM_NORM_RMS, -1);
|
|
83
|
+
|
|
84
|
+
cb(cur, "result_norm", -1);
|
|
85
|
+
res->t_embd = cur;
|
|
86
|
+
|
|
87
|
+
// lm_head
|
|
88
|
+
cur = build_lora_mm(model.output, cur);
|
|
89
|
+
|
|
90
|
+
cb(cur, "result_output", -1);
|
|
91
|
+
res->t_logits = cur;
|
|
92
|
+
|
|
93
|
+
ggml_build_forward_expand(gf, cur);
|
|
94
|
+
}
|
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) :
|
|
4
|
+
llm_graph_context(params),
|
|
5
|
+
model(model) {}
|
|
6
|
+
|
|
7
|
+
ggml_tensor * llm_build_rwkv6_base::build_rwkv6_channel_mix(const llama_layer * layer,
|
|
8
|
+
ggml_tensor * cur,
|
|
9
|
+
ggml_tensor * x_prev,
|
|
10
|
+
llm_arch arch) const {
|
|
11
|
+
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
|
|
12
|
+
switch (arch) {
|
|
13
|
+
case LLM_ARCH_RWKV6:
|
|
14
|
+
{
|
|
15
|
+
ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
|
|
16
|
+
ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
|
|
17
|
+
|
|
18
|
+
ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
|
|
19
|
+
ggml_tensor * k = ggml_sqr(ctx0, ggml_relu(ctx0, build_lora_mm(layer->channel_mix_key, xk)));
|
|
20
|
+
cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
|
|
21
|
+
}
|
|
22
|
+
break;
|
|
23
|
+
default:
|
|
24
|
+
GGML_ABORT("fatal error");
|
|
25
|
+
}
|
|
26
|
+
return cur;
|
|
27
|
+
}
|
|
28
|
+
|
|
29
|
+
ggml_tensor * llm_build_rwkv6_base::build_rwkv6_time_mix(llm_graph_input_rs * inp,
|
|
30
|
+
ggml_tensor * cur,
|
|
31
|
+
ggml_tensor * x_prev,
|
|
32
|
+
const llama_ubatch & ubatch,
|
|
33
|
+
int il) const {
|
|
34
|
+
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
|
35
|
+
|
|
36
|
+
const auto n_tokens = ubatch.n_tokens;
|
|
37
|
+
const auto n_seqs = ubatch.n_seqs;
|
|
38
|
+
const auto n_seq_tokens = ubatch.n_seq_tokens;
|
|
39
|
+
const auto n_embd = hparams.n_embd;
|
|
40
|
+
const auto head_size = hparams.wkv_head_size;
|
|
41
|
+
const auto n_head = n_embd / head_size;
|
|
42
|
+
const auto n_head_kv = hparams.n_head_kv(il);
|
|
43
|
+
|
|
44
|
+
const auto kv_head = mctx_cur->get_head();
|
|
45
|
+
|
|
46
|
+
const auto & layer = model.layers[il];
|
|
47
|
+
|
|
48
|
+
bool is_qrwkv = layer.time_mix_first == nullptr;
|
|
49
|
+
|
|
50
|
+
ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
|
|
51
|
+
|
|
52
|
+
sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
|
|
53
|
+
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
54
|
+
|
|
55
|
+
ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
|
|
56
|
+
|
|
57
|
+
xxx = ggml_reshape_4d(ctx0, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)),
|
|
58
|
+
layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens);
|
|
59
|
+
|
|
60
|
+
xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
|
|
61
|
+
|
|
62
|
+
xxx = ggml_mul_mat(
|
|
63
|
+
ctx0, ggml_reshape_4d(ctx0, layer.time_mix_w2, layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5), xxx);
|
|
64
|
+
|
|
65
|
+
ggml_tensor *xw, *xk, *xv, *xr, *xg;
|
|
66
|
+
if (layer.time_mix_lerp_fused) {
|
|
67
|
+
// fusing these weights makes some performance improvement
|
|
68
|
+
sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
|
|
69
|
+
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
|
|
70
|
+
xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
|
|
71
|
+
xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
|
72
|
+
xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
|
73
|
+
xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
|
74
|
+
xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
|
75
|
+
xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
|
76
|
+
} else {
|
|
77
|
+
// for backward compatibility
|
|
78
|
+
xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
|
|
79
|
+
xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
|
|
80
|
+
xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
|
|
81
|
+
xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
|
|
82
|
+
xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
|
|
83
|
+
|
|
84
|
+
xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
|
|
85
|
+
xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
|
|
86
|
+
xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
|
|
87
|
+
xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
|
|
88
|
+
xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
|
|
89
|
+
}
|
|
90
|
+
ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
|
|
91
|
+
ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
|
|
92
|
+
ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
|
|
93
|
+
if (layer.time_mix_receptance_b) {
|
|
94
|
+
r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
|
|
95
|
+
}
|
|
96
|
+
if (layer.time_mix_key_b) {
|
|
97
|
+
k = ggml_add(ctx0, k, layer.time_mix_key_b);
|
|
98
|
+
}
|
|
99
|
+
if (layer.time_mix_value_b) {
|
|
100
|
+
v = ggml_add(ctx0, v, layer.time_mix_value_b);
|
|
101
|
+
}
|
|
102
|
+
ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
|
|
103
|
+
if (is_qrwkv) {
|
|
104
|
+
g = ggml_sigmoid(ctx0, g);
|
|
105
|
+
} else {
|
|
106
|
+
g = ggml_silu(ctx0, g);
|
|
107
|
+
}
|
|
108
|
+
if (n_head_kv != 0 && n_head_kv != n_head) {
|
|
109
|
+
GGML_ASSERT(n_head % n_head_kv == 0);
|
|
110
|
+
k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
|
|
111
|
+
v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
|
|
112
|
+
ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
|
|
113
|
+
k = ggml_repeat(ctx0, k, tmp);
|
|
114
|
+
v = ggml_repeat(ctx0, v, tmp);
|
|
115
|
+
}
|
|
116
|
+
k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
|
|
117
|
+
v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
|
|
118
|
+
r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
|
|
119
|
+
|
|
120
|
+
ggml_tensor * w =
|
|
121
|
+
ggml_mul_mat(ctx0, layer.time_mix_decay_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)));
|
|
122
|
+
|
|
123
|
+
w = ggml_add(ctx0, w, layer.time_mix_decay);
|
|
124
|
+
w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
|
|
125
|
+
w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
|
|
126
|
+
|
|
127
|
+
if (is_qrwkv) {
|
|
128
|
+
// k = k * (1 - w)
|
|
129
|
+
k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
|
|
130
|
+
}
|
|
131
|
+
ggml_tensor * wkv_state = build_rs(inp, mctx_cur->get_s_l(il), hparams.n_embd_s(), n_seqs);
|
|
132
|
+
|
|
133
|
+
ggml_tensor * wkv_output;
|
|
134
|
+
if (is_qrwkv) {
|
|
135
|
+
wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
|
|
136
|
+
} else {
|
|
137
|
+
wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
|
|
138
|
+
}
|
|
139
|
+
cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
|
|
140
|
+
wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
|
|
141
|
+
|
|
142
|
+
ggml_build_forward_expand(
|
|
143
|
+
gf, ggml_cpy(ctx0, wkv_state,
|
|
144
|
+
ggml_view_1d(ctx0, mctx_cur->get_s_l(il), hparams.n_embd_s() * n_seqs,
|
|
145
|
+
hparams.n_embd_s() * kv_head * ggml_element_size(mctx_cur->get_s_l(il)))));
|
|
146
|
+
|
|
147
|
+
if (!is_qrwkv) {
|
|
148
|
+
// group norm with head_count groups
|
|
149
|
+
cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
|
|
150
|
+
cur = ggml_norm(ctx0, cur, 64e-5f);
|
|
151
|
+
|
|
152
|
+
// Convert back to regular vectors.
|
|
153
|
+
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
154
|
+
cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
|
|
155
|
+
} else {
|
|
156
|
+
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
157
|
+
}
|
|
158
|
+
cur = ggml_mul(ctx0, cur, g);
|
|
159
|
+
cur = build_lora_mm(layer.time_mix_output, cur);
|
|
160
|
+
|
|
161
|
+
return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
|
|
162
|
+
}
|
|
@@ -0,0 +1,94 @@
|
|
|
1
|
+
#include "models.h"
|
|
2
|
+
|
|
3
|
+
llm_build_rwkv6::llm_build_rwkv6(const llama_model & model, const llm_graph_params & params) :
|
|
4
|
+
llm_build_rwkv6_base(model, params) {
|
|
5
|
+
GGML_ASSERT(hparams.token_shift_count == 2);
|
|
6
|
+
|
|
7
|
+
ggml_tensor * cur;
|
|
8
|
+
ggml_tensor * inpL;
|
|
9
|
+
|
|
10
|
+
inpL = build_inp_embd(model.tok_embd);
|
|
11
|
+
inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
|
|
12
|
+
|
|
13
|
+
auto * rs_inp = build_rs_inp();
|
|
14
|
+
|
|
15
|
+
const auto n_embd = hparams.n_embd;
|
|
16
|
+
const auto n_seq_tokens = ubatch.n_seq_tokens;
|
|
17
|
+
const auto n_seqs = ubatch.n_seqs;
|
|
18
|
+
|
|
19
|
+
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
20
|
+
|
|
21
|
+
for (int il = 0; il < n_layer; ++il) {
|
|
22
|
+
const llama_layer * layer = &model.layers[il];
|
|
23
|
+
inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
|
|
24
|
+
|
|
25
|
+
ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
|
|
26
|
+
|
|
27
|
+
ggml_tensor * att_shift =
|
|
28
|
+
ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
|
|
29
|
+
ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1],
|
|
30
|
+
token_shift->nb[2], n_embd * ggml_element_size(token_shift));
|
|
31
|
+
|
|
32
|
+
ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
|
|
33
|
+
cb(att_norm, "attn_norm", il);
|
|
34
|
+
|
|
35
|
+
ggml_tensor * x_prev = ggml_concat(
|
|
36
|
+
ctx0, att_shift,
|
|
37
|
+
ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1);
|
|
38
|
+
|
|
39
|
+
cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
|
|
40
|
+
|
|
41
|
+
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
|
|
42
|
+
cb(ffn_inp, "ffn_inp", il);
|
|
43
|
+
|
|
44
|
+
ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
|
|
45
|
+
cb(ffn_norm, "ffn_norm", il);
|
|
46
|
+
|
|
47
|
+
x_prev = ggml_concat(
|
|
48
|
+
ctx0, ffn_shift,
|
|
49
|
+
ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1);
|
|
50
|
+
|
|
51
|
+
token_shift = ggml_concat(ctx0,
|
|
52
|
+
ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2],
|
|
53
|
+
(n_seq_tokens - 1) * n_embd * ggml_element_size(att_norm)),
|
|
54
|
+
ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2],
|
|
55
|
+
(n_seq_tokens - 1) * n_embd * ggml_element_size(ffn_norm)),
|
|
56
|
+
1);
|
|
57
|
+
ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
|
|
58
|
+
|
|
59
|
+
ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
|
|
60
|
+
ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens);
|
|
61
|
+
x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens);
|
|
62
|
+
cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
|
|
63
|
+
|
|
64
|
+
if (il == n_layer - 1 && inp_out_ids) {
|
|
65
|
+
ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
|
|
66
|
+
ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids);
|
|
67
|
+
x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids);
|
|
68
|
+
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
69
|
+
}
|
|
70
|
+
cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
|
|
71
|
+
cur = ggml_add(ctx0, cur, ffn_inp);
|
|
72
|
+
|
|
73
|
+
if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
|
|
74
|
+
cur = ggml_scale(ctx0, cur, 0.5F);
|
|
75
|
+
}
|
|
76
|
+
cur = build_cvec(cur, il);
|
|
77
|
+
cb(cur, "l_out", il);
|
|
78
|
+
|
|
79
|
+
// input for next layer
|
|
80
|
+
inpL = cur;
|
|
81
|
+
}
|
|
82
|
+
cur = inpL;
|
|
83
|
+
cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
|
|
84
|
+
|
|
85
|
+
cb(cur, "result_norm", -1);
|
|
86
|
+
res->t_embd = cur;
|
|
87
|
+
|
|
88
|
+
cur = build_lora_mm(model.output, cur);
|
|
89
|
+
|
|
90
|
+
cb(cur, "result_output", -1);
|
|
91
|
+
res->t_logits = cur;
|
|
92
|
+
|
|
93
|
+
ggml_build_forward_expand(gf, cur);
|
|
94
|
+
}
|