@fugood/llama.node 1.3.0 → 1.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (143) hide show
  1. package/package.json +14 -14
  2. package/scripts/llama.cpp.patch +8 -8
  3. package/src/llama.cpp/common/CMakeLists.txt +2 -0
  4. package/src/llama.cpp/common/arg.cpp +44 -999
  5. package/src/llama.cpp/common/arg.h +2 -2
  6. package/src/llama.cpp/common/chat.cpp +17 -2
  7. package/src/llama.cpp/common/common.cpp +33 -0
  8. package/src/llama.cpp/common/common.h +15 -1
  9. package/src/llama.cpp/common/download.cpp +1054 -0
  10. package/src/llama.cpp/common/download.h +55 -0
  11. package/src/llama.cpp/ggml/CMakeLists.txt +1 -1
  12. package/src/llama.cpp/ggml/include/ggml.h +2 -0
  13. package/src/llama.cpp/ggml/src/CMakeLists.txt +6 -3
  14. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +29 -11
  15. package/src/llama.cpp/ggml/src/ggml-cpu/arch/arm/quants.c +428 -26
  16. package/src/llama.cpp/ggml/src/ggml-cpu/arch/loongarch/quants.c +4 -5
  17. package/src/llama.cpp/ggml/src/ggml-cpu/arch/riscv/quants.c +108 -49
  18. package/src/llama.cpp/ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp +50 -0
  19. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +3 -1
  20. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +21 -21
  21. package/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp +172 -75
  22. package/src/llama.cpp/ggml/src/ggml-cpu/ops.h +0 -4
  23. package/src/llama.cpp/ggml/src/ggml-cpu/repack.cpp +82 -21
  24. package/src/llama.cpp/ggml/src/ggml-cpu/simd-mappings.h +25 -25
  25. package/src/llama.cpp/include/llama.h +7 -3
  26. package/src/llama.cpp/src/CMakeLists.txt +95 -0
  27. package/src/llama.cpp/src/llama-arch.cpp +108 -0
  28. package/src/llama.cpp/src/llama-arch.h +11 -0
  29. package/src/llama.cpp/src/llama-batch.cpp +63 -31
  30. package/src/llama.cpp/src/llama-batch.h +12 -1
  31. package/src/llama.cpp/src/llama-chat.cpp +32 -0
  32. package/src/llama.cpp/src/llama-chat.h +1 -0
  33. package/src/llama.cpp/src/llama-context.cpp +36 -13
  34. package/src/llama.cpp/src/llama-context.h +5 -5
  35. package/src/llama.cpp/src/llama-cparams.h +1 -0
  36. package/src/llama.cpp/src/llama-graph.cpp +3 -3
  37. package/src/llama.cpp/src/llama-hparams.cpp +11 -1
  38. package/src/llama.cpp/src/llama-hparams.h +6 -0
  39. package/src/llama.cpp/src/llama-kv-cache-iswa.cpp +3 -1
  40. package/src/llama.cpp/src/llama-kv-cache.cpp +33 -1
  41. package/src/llama.cpp/src/llama-kv-cells.h +44 -2
  42. package/src/llama.cpp/src/llama-memory-recurrent.cpp +4 -3
  43. package/src/llama.cpp/src/llama-model.cpp +320 -13171
  44. package/src/llama.cpp/src/llama-model.h +8 -0
  45. package/src/llama.cpp/src/llama-quant.cpp +1 -1
  46. package/src/llama.cpp/src/llama-vocab.cpp +5 -0
  47. package/src/llama.cpp/src/llama-vocab.h +1 -0
  48. package/src/llama.cpp/src/models/apertus.cpp +125 -0
  49. package/src/llama.cpp/src/models/arcee.cpp +135 -0
  50. package/src/llama.cpp/src/models/arctic.cpp +138 -0
  51. package/src/llama.cpp/src/models/arwkv7.cpp +86 -0
  52. package/src/llama.cpp/src/models/baichuan.cpp +122 -0
  53. package/src/llama.cpp/src/models/bailingmoe.cpp +144 -0
  54. package/src/llama.cpp/src/models/bailingmoe2.cpp +135 -0
  55. package/src/llama.cpp/src/models/bert.cpp +176 -0
  56. package/src/llama.cpp/src/models/bitnet.cpp +160 -0
  57. package/src/llama.cpp/src/models/bloom.cpp +101 -0
  58. package/src/llama.cpp/src/models/chameleon.cpp +178 -0
  59. package/src/llama.cpp/src/models/chatglm.cpp +132 -0
  60. package/src/llama.cpp/src/models/codeshell.cpp +111 -0
  61. package/src/llama.cpp/src/models/cogvlm.cpp +100 -0
  62. package/src/llama.cpp/src/models/cohere2-iswa.cpp +131 -0
  63. package/src/llama.cpp/src/models/command-r.cpp +122 -0
  64. package/src/llama.cpp/src/models/dbrx.cpp +123 -0
  65. package/src/llama.cpp/src/models/deci.cpp +135 -0
  66. package/src/llama.cpp/src/models/deepseek.cpp +144 -0
  67. package/src/llama.cpp/src/models/deepseek2.cpp +236 -0
  68. package/src/llama.cpp/src/models/dots1.cpp +134 -0
  69. package/src/llama.cpp/src/models/dream.cpp +105 -0
  70. package/src/llama.cpp/src/models/ernie4-5-moe.cpp +150 -0
  71. package/src/llama.cpp/src/models/ernie4-5.cpp +110 -0
  72. package/src/llama.cpp/src/models/exaone.cpp +114 -0
  73. package/src/llama.cpp/src/models/exaone4.cpp +123 -0
  74. package/src/llama.cpp/src/models/falcon-h1.cpp +113 -0
  75. package/src/llama.cpp/src/models/falcon.cpp +120 -0
  76. package/src/llama.cpp/src/models/gemma-embedding.cpp +120 -0
  77. package/src/llama.cpp/src/models/gemma.cpp +112 -0
  78. package/src/llama.cpp/src/models/gemma2-iswa.cpp +125 -0
  79. package/src/llama.cpp/src/models/gemma3-iswa.cpp +131 -0
  80. package/src/llama.cpp/src/models/gemma3n-iswa.cpp +377 -0
  81. package/src/llama.cpp/src/models/glm4-moe.cpp +153 -0
  82. package/src/llama.cpp/src/models/glm4.cpp +127 -0
  83. package/src/llama.cpp/src/models/gpt2.cpp +105 -0
  84. package/src/llama.cpp/src/models/gptneox.cpp +144 -0
  85. package/src/llama.cpp/src/models/granite-hybrid.cpp +196 -0
  86. package/src/llama.cpp/src/models/granite.cpp +211 -0
  87. package/src/llama.cpp/src/models/graph-context-mamba.cpp +283 -0
  88. package/src/llama.cpp/src/models/grok.cpp +159 -0
  89. package/src/llama.cpp/src/models/grovemoe.cpp +141 -0
  90. package/src/llama.cpp/src/models/hunyuan-dense.cpp +132 -0
  91. package/src/llama.cpp/src/models/hunyuan-moe.cpp +154 -0
  92. package/src/llama.cpp/src/models/internlm2.cpp +120 -0
  93. package/src/llama.cpp/src/models/jais.cpp +86 -0
  94. package/src/llama.cpp/src/models/jamba.cpp +106 -0
  95. package/src/llama.cpp/src/models/lfm2.cpp +173 -0
  96. package/src/llama.cpp/src/models/llada-moe.cpp +122 -0
  97. package/src/llama.cpp/src/models/llada.cpp +99 -0
  98. package/src/llama.cpp/src/models/llama-iswa.cpp +174 -0
  99. package/src/llama.cpp/src/models/llama.cpp +155 -0
  100. package/src/llama.cpp/src/models/mamba.cpp +55 -0
  101. package/src/llama.cpp/src/models/minicpm3.cpp +199 -0
  102. package/src/llama.cpp/src/models/minimax-m2.cpp +124 -0
  103. package/src/llama.cpp/src/models/models.h +481 -0
  104. package/src/llama.cpp/src/models/mpt.cpp +126 -0
  105. package/src/llama.cpp/src/models/nemotron-h.cpp +121 -0
  106. package/src/llama.cpp/src/models/nemotron.cpp +122 -0
  107. package/src/llama.cpp/src/models/neo-bert.cpp +104 -0
  108. package/src/llama.cpp/src/models/olmo.cpp +121 -0
  109. package/src/llama.cpp/src/models/olmo2.cpp +150 -0
  110. package/src/llama.cpp/src/models/olmoe.cpp +124 -0
  111. package/src/llama.cpp/src/models/openai-moe-iswa.cpp +124 -0
  112. package/src/llama.cpp/src/models/openelm.cpp +124 -0
  113. package/src/llama.cpp/src/models/orion.cpp +123 -0
  114. package/src/llama.cpp/src/models/pangu-embedded.cpp +121 -0
  115. package/src/llama.cpp/src/models/phi2.cpp +121 -0
  116. package/src/llama.cpp/src/models/phi3.cpp +152 -0
  117. package/src/llama.cpp/src/models/plamo.cpp +110 -0
  118. package/src/llama.cpp/src/models/plamo2.cpp +316 -0
  119. package/src/llama.cpp/src/models/plm.cpp +168 -0
  120. package/src/llama.cpp/src/models/qwen.cpp +108 -0
  121. package/src/llama.cpp/src/models/qwen2.cpp +117 -0
  122. package/src/llama.cpp/src/models/qwen2moe.cpp +151 -0
  123. package/src/llama.cpp/src/models/qwen2vl.cpp +117 -0
  124. package/src/llama.cpp/src/models/qwen3.cpp +117 -0
  125. package/src/llama.cpp/src/models/qwen3moe.cpp +124 -0
  126. package/src/llama.cpp/src/models/qwen3vl-moe.cpp +149 -0
  127. package/src/llama.cpp/src/models/qwen3vl.cpp +141 -0
  128. package/src/llama.cpp/src/models/refact.cpp +94 -0
  129. package/src/llama.cpp/src/models/rwkv6-base.cpp +162 -0
  130. package/src/llama.cpp/src/models/rwkv6.cpp +94 -0
  131. package/src/llama.cpp/src/models/rwkv6qwen2.cpp +86 -0
  132. package/src/llama.cpp/src/models/rwkv7-base.cpp +135 -0
  133. package/src/llama.cpp/src/models/rwkv7.cpp +90 -0
  134. package/src/llama.cpp/src/models/seed-oss.cpp +124 -0
  135. package/src/llama.cpp/src/models/smallthinker.cpp +120 -0
  136. package/src/llama.cpp/src/models/smollm3.cpp +128 -0
  137. package/src/llama.cpp/src/models/stablelm.cpp +146 -0
  138. package/src/llama.cpp/src/models/starcoder.cpp +100 -0
  139. package/src/llama.cpp/src/models/starcoder2.cpp +121 -0
  140. package/src/llama.cpp/src/models/t5-dec.cpp +166 -0
  141. package/src/llama.cpp/src/models/t5-enc.cpp +96 -0
  142. package/src/llama.cpp/src/models/wavtokenizer-dec.cpp +149 -0
  143. package/src/llama.cpp/src/models/xverse.cpp +108 -0
@@ -0,0 +1,110 @@
1
+ #include "models.h"
2
+
3
+ llm_build_ernie4_5::llm_build_ernie4_5(const llama_model & model, const llm_graph_params & params) :
4
+ llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+
7
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
9
+
10
+ ggml_tensor * cur;
11
+ ggml_tensor * inpL;
12
+
13
+ inpL = build_inp_embd(model.tok_embd);
14
+
15
+ // inp_pos - contains the positions
16
+ ggml_tensor * inp_pos = build_inp_pos();
17
+
18
+ auto * inp_attn = build_attn_inp_kv();
19
+
20
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
21
+
22
+ for (int il = 0; il < n_layer; ++il) {
23
+ ggml_tensor * inpSA = inpL;
24
+
25
+ // norm
26
+ {
27
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
28
+ cb(cur, "attn_norm", il);
29
+ }
30
+ // self-attention
31
+ {
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ cb(Qcur, "Qcur", il);
34
+ if (model.layers[il].bq) {
35
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
36
+ cb(Qcur, "Qcur", il);
37
+ }
38
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
+ cb(Kcur, "Kcur", il);
40
+ if (model.layers[il].bk) {
41
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
42
+ cb(Kcur, "Kcur", il);
43
+ }
44
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
+ cb(Vcur, "Vcur", il);
46
+ if (model.layers[il].bv) {
47
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
48
+ cb(Vcur, "Vcur", il);
49
+ }
50
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
51
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
+
54
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
55
+ ext_factor, attn_factor, beta_fast, beta_slow);
56
+
57
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
+ ext_factor, attn_factor, beta_fast, beta_slow);
59
+
60
+ cb(Qcur, "Qcur", il);
61
+ cb(Kcur, "Kcur", il);
62
+ cb(Vcur, "Vcur", il);
63
+
64
+ cur = build_attn(inp_attn,
65
+ model.layers[il].wo, NULL,
66
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
67
+ }
68
+ if (il == n_layer - 1) {
69
+ // skip computing output for unused tokens
70
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
71
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
72
+ }
73
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
74
+ cb(ffn_inp, "ffn_inp", il);
75
+
76
+ // feed-forward network
77
+ {
78
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
79
+ cb(cur, "ffn_norm", il);
80
+
81
+ cur = build_ffn(cur,
82
+ model.layers[il].ffn_up, NULL, NULL,
83
+ model.layers[il].ffn_gate, NULL, NULL,
84
+ model.layers[il].ffn_down, NULL, NULL,
85
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
86
+ cb(cur, "ffn_out", il);
87
+ }
88
+ cur = ggml_add(ctx0, cur, ffn_inp);
89
+
90
+ cur = build_cvec(cur, il);
91
+ cb(cur, "l_out", il);
92
+
93
+ // input for next layer
94
+ inpL = cur;
95
+ }
96
+ cur = inpL;
97
+
98
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
99
+
100
+ cb(cur, "result_norm", -1);
101
+ res->t_embd = cur;
102
+
103
+ // lm_head
104
+ cur = build_lora_mm(model.output, cur);
105
+
106
+ cb(cur, "result_output", -1);
107
+ res->t_logits = cur;
108
+
109
+ ggml_build_forward_expand(gf, cur);
110
+ }
@@ -0,0 +1,114 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_exaone::llm_build_exaone(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_v;
8
+
9
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
11
+
12
+ ggml_tensor * cur;
13
+ ggml_tensor * inpL;
14
+
15
+ inpL = build_inp_embd(model.tok_embd);
16
+
17
+ // inp_pos - contains the positions
18
+ ggml_tensor * inp_pos = build_inp_pos();
19
+
20
+ auto * inp_attn = build_attn_inp_kv();
21
+
22
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
23
+
24
+ for (int il = 0; il < n_layer; ++il) {
25
+ ggml_tensor * inpSA = inpL;
26
+
27
+ // norm
28
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self-attention
32
+ {
33
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
34
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
35
+
36
+ // compute Q and K and RoPE them
37
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
+ cb(Qcur, "Qcur", il);
39
+ if (model.layers[il].bq) {
40
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
41
+ cb(Qcur, "Qcur", il);
42
+ }
43
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
+ cb(Kcur, "Kcur", il);
45
+ if (model.layers[il].bk) {
46
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
47
+ cb(Kcur, "Kcur", il);
48
+ }
49
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
50
+ cb(Vcur, "Vcur", il);
51
+ if (model.layers[il].bv) {
52
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
53
+ cb(Vcur, "Vcur", il);
54
+ }
55
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
56
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
57
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
58
+
59
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
60
+ ext_factor, attn_factor, beta_fast, beta_slow);
61
+
62
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
+ ext_factor, attn_factor, beta_fast, beta_slow);
64
+
65
+ cb(Qcur, "Qcur", il);
66
+ cb(Kcur, "Kcur", il);
67
+ cb(Vcur, "Vcur", il);
68
+
69
+ cur = build_attn(inp_attn,
70
+ model.layers[il].wo, model.layers[il].bo,
71
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
72
+ }
73
+ if (il == n_layer - 1 && inp_out_ids) {
74
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
75
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
76
+ }
77
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
78
+ cb(ffn_inp, "ffn_inp", il);
79
+
80
+ // feed-forward network
81
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
82
+ cb(cur, "ffn_norm", il);
83
+
84
+ cur = build_ffn(cur,
85
+ model.layers[il].ffn_up, NULL, NULL,
86
+ model.layers[il].ffn_gate, NULL, NULL,
87
+ model.layers[il].ffn_down, NULL, NULL,
88
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
89
+ cb(cur, "ffn_out", il);
90
+
91
+ cur = ggml_add(ctx0, cur, ffn_inp);
92
+ cb(cur, "ffn_out", il);
93
+
94
+ cur = build_cvec(cur, il);
95
+ cb(cur, "l_out", il);
96
+
97
+ // input for next layer
98
+ inpL = cur;
99
+ }
100
+ cur = inpL;
101
+
102
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
103
+
104
+ cb(cur, "result_norm", -1);
105
+ res->t_embd = cur;
106
+
107
+ // lm_head
108
+ cur = build_lora_mm(model.output, cur);
109
+
110
+ cb(cur, "result_output", -1);
111
+ res->t_logits = cur;
112
+
113
+ ggml_build_forward_expand(gf, cur);
114
+ }
@@ -0,0 +1,123 @@
1
+ #include "models.h"
2
+
3
+
4
+ template <bool iswa>
5
+ llm_build_exaone4<iswa>::llm_build_exaone4(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_k;
8
+
9
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
10
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
11
+
12
+ ggml_tensor * cur;
13
+ ggml_tensor * inpL;
14
+
15
+ inpL = build_inp_embd(model.tok_embd);
16
+
17
+ // inp_pos - contains the positions
18
+ ggml_tensor * inp_pos = build_inp_pos();
19
+
20
+ using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
21
+ inp_attn_type * inp_attn = nullptr;
22
+
23
+ if constexpr (iswa) {
24
+ inp_attn = build_attn_inp_kv_iswa();
25
+ } else {
26
+ inp_attn = build_attn_inp_kv();
27
+ }
28
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
29
+
30
+ for (int il = 0; il < n_layer; ++il) {
31
+ ggml_tensor * inpSA = inpL;
32
+
33
+ // use RoPE for SWA layers or non-SWA models
34
+ const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
35
+
36
+ cur = inpL;
37
+
38
+ // self-attention
39
+ {
40
+ ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
41
+
42
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
43
+ cb(Qcur, "Qcur", il);
44
+
45
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
46
+ cb(Kcur, "Kcur", il);
47
+
48
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
49
+ cb(Vcur, "Vcur", il);
50
+
51
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
52
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
53
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
54
+
55
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
56
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
57
+ cb(Qcur, "Qcur_normed", il);
58
+ cb(Kcur, "Kcur_normed", il);
59
+
60
+ if (use_rope) {
61
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
62
+ freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
63
+
64
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
65
+ freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
66
+ }
67
+ cb(Qcur, "Qcur", il);
68
+ cb(Kcur, "Kcur", il);
69
+ cb(Vcur, "Vcur", il);
70
+
71
+ cur = build_attn(inp_attn,
72
+ model.layers[il].wo, NULL,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
74
+ cb(cur, "attn_out", il);
75
+ }
76
+ if (il == n_layer - 1 && inp_out_ids) {
77
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
78
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
79
+ }
80
+ cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
81
+ cb(cur, "attn_post_norm", il);
82
+
83
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
84
+ cb(ffn_inp, "ffn_inp", il);
85
+
86
+ // feed-forward network
87
+ cur = build_ffn(ffn_inp,
88
+ model.layers[il].ffn_up, NULL, NULL,
89
+ model.layers[il].ffn_gate, NULL, NULL,
90
+ model.layers[il].ffn_down, NULL, NULL, NULL,
91
+ LLM_FFN_SILU, LLM_FFN_PAR, il);
92
+ cb(cur, "ffn_out", il);
93
+
94
+ cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
95
+ cb(cur, "ffn_post_norm", -1);
96
+
97
+ cur = ggml_add(ctx0, cur, ffn_inp);
98
+
99
+ cur = build_cvec(cur, il);
100
+ cb(cur, "l_out", il);
101
+
102
+ // input for next layer
103
+ inpL = cur;
104
+ }
105
+ cur = inpL;
106
+
107
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
108
+
109
+ cb(cur, "result_norm", -1);
110
+ res->t_embd = cur;
111
+
112
+ // lm_head
113
+ cur = build_lora_mm(model.output, cur);
114
+
115
+ cb(cur, "result_output", -1);
116
+ res->t_logits = cur;
117
+
118
+ ggml_build_forward_expand(gf, cur);
119
+ }
120
+
121
+ // Explicit template instantiations
122
+ template struct llm_build_exaone4<false>;
123
+ template struct llm_build_exaone4<true>;
@@ -0,0 +1,113 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context_mamba(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_v;
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // inp_pos - contains the positions
15
+ ggml_tensor * inp_pos = build_inp_pos();
16
+
17
+ // Build the inputs in the recurrent & kv cache
18
+ auto * inp = build_inp_mem_hybrid();
19
+
20
+ const float kq_scale =
21
+ hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
22
+
23
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
24
+
25
+ for (int il = 0; il < n_layer; ++il) {
26
+ ggml_tensor * inpSA = inpL;
27
+
28
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
+ cb(cur, "attn_norm", il);
30
+
31
+ // self-attention
32
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
33
+ cb(Qcur, "Qcur", il);
34
+
35
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
36
+ cb(Kcur, "Kcur", il);
37
+
38
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
39
+ cb(Vcur, "Vcur", il);
40
+
41
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
42
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
43
+
44
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
45
+
46
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
47
+ ext_factor, attn_factor, beta_fast, beta_slow);
48
+
49
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, hparams.rope_type, n_ctx_orig, freq_base, freq_scale,
50
+ ext_factor, attn_factor, beta_fast, beta_slow);
51
+
52
+ cb(Qcur, "Qcur-post-rope", il);
53
+ cb(Kcur, "Kcur-post-rope", il);
54
+ cb(Vcur, "Vcur-post-rope", il);
55
+
56
+ ggml_tensor * attn_out = build_attn(inp->get_attn(),
57
+ model.layers[il].wo, NULL,
58
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
59
+ cb(attn_out, "attn_out", il);
60
+
61
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
62
+ // Mamba2 layer
63
+ cb(cur, "ssm_in", il);
64
+
65
+ ggml_tensor * ssm_out = build_mamba2_layer(inp->get_recr(), cur, model, ubatch, il);
66
+ cb(ssm_out, "ssm_out", il);
67
+
68
+ // // Aggregation
69
+ cur = ggml_add(ctx0, attn_out, ssm_out);
70
+ inpSA = ggml_add(ctx0, cur, inpSA);
71
+ cb(cur, "layer_out", il);
72
+
73
+ if (il == n_layer - 1 && inp_out_ids) {
74
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
75
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
76
+ }
77
+ ggml_tensor * ffn_inp = inpSA;
78
+ cb(ffn_inp, "ffn_inp", il);
79
+
80
+ // feed-forward network
81
+ cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
82
+ cb(cur, "ffn_norm", il);
83
+
84
+ cur = build_ffn(cur,
85
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
86
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
87
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
88
+ NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
89
+ cb(cur, "ffn_out", il);
90
+
91
+ cur = ggml_add(ctx0, cur, inpSA);
92
+
93
+ cur = build_cvec(cur, il);
94
+ cb(cur, "l_out", il);
95
+
96
+ // input for next layer
97
+ inpL = cur;
98
+ }
99
+ cur = inpL;
100
+
101
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
102
+
103
+ cb(cur, "result_norm", -1);
104
+ res->t_embd = cur;
105
+
106
+ // lm_head
107
+ cur = build_lora_mm(model.output, cur);
108
+
109
+ cb(cur, "result_output", -1);
110
+ res->t_logits = cur;
111
+
112
+ ggml_build_forward_expand(gf, cur);
113
+ }
@@ -0,0 +1,120 @@
1
+ #include "models.h"
2
+
3
+
4
+ llm_build_falcon::llm_build_falcon(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
+ const int64_t n_embd_head = hparams.n_embd_head_v;
6
+ const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
7
+
8
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
10
+
11
+ ggml_tensor * cur;
12
+ ggml_tensor * inpL;
13
+
14
+ inpL = build_inp_embd(model.tok_embd);
15
+
16
+ // inp_pos - contains the positions
17
+ ggml_tensor * inp_pos = build_inp_pos();
18
+
19
+ auto * inp_attn = build_attn_inp_kv();
20
+
21
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
22
+
23
+ for (int il = 0; il < n_layer; ++il) {
24
+ ggml_tensor * attn_norm;
25
+
26
+ attn_norm = build_norm(inpL,
27
+ model.layers[il].attn_norm,
28
+ model.layers[il].attn_norm_b,
29
+ LLM_NORM, il);
30
+ cb(attn_norm, "attn_norm", il);
31
+
32
+ // self-attention
33
+ {
34
+ if (model.layers[il].attn_norm_2) {
35
+ // Falcon-40B
36
+ cur = build_norm(inpL,
37
+ model.layers[il].attn_norm_2,
38
+ model.layers[il].attn_norm_2_b,
39
+ LLM_NORM, il);
40
+ cb(cur, "attn_norm_2", il);
41
+ } else {
42
+ cur = attn_norm;
43
+ }
44
+
45
+ cur = build_lora_mm(model.layers[il].wqkv, cur);
46
+ cb(cur, "wqkv", il);
47
+
48
+ ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
49
+ ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
50
+ ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
51
+
52
+ // using mode = 2 for neox mode
53
+ Qcur = ggml_rope_ext(
54
+ ctx0, Qcur, inp_pos, nullptr,
55
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
56
+ ext_factor, attn_factor, beta_fast, beta_slow
57
+ );
58
+
59
+ Kcur = ggml_rope_ext(
60
+ ctx0, Kcur, inp_pos, nullptr,
61
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
62
+ ext_factor, attn_factor, beta_fast, beta_slow
63
+ );
64
+
65
+ cb(Qcur, "Qcur", il);
66
+ cb(Kcur, "Kcur", il);
67
+ cb(Vcur, "Vcur", il);
68
+
69
+ cur = build_attn(inp_attn,
70
+ model.layers[il].wo, NULL,
71
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
72
+ }
73
+
74
+ if (il == n_layer - 1 && inp_out_ids) {
75
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
76
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
77
+ attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
78
+ }
79
+
80
+ ggml_tensor * ffn_inp = cur;
81
+
82
+ // feed forward
83
+ {
84
+ cur = build_ffn(attn_norm, // !! use the attn norm, not the result
85
+ model.layers[il].ffn_up, NULL, NULL,
86
+ NULL, NULL, NULL,
87
+ model.layers[il].ffn_down, NULL, NULL,
88
+ NULL,
89
+ LLM_FFN_GELU, LLM_FFN_SEQ, il);
90
+ cb(cur, "ffn_out", il);
91
+ }
92
+
93
+ cur = ggml_add(ctx0, cur, ffn_inp);
94
+ cur = ggml_add(ctx0, cur, inpL);
95
+
96
+ cur = build_cvec(cur, il);
97
+ cb(cur, "l_out", il);
98
+
99
+ // input for next layer
100
+ inpL = cur;
101
+ }
102
+
103
+ cur = inpL;
104
+
105
+ // norm
106
+ cur = build_norm(cur,
107
+ model.output_norm,
108
+ model.output_norm_b,
109
+ LLM_NORM, -1);
110
+
111
+ cb(cur, "result_norm", -1);
112
+ res->t_embd = cur;
113
+
114
+ cur = build_lora_mm(model.output, cur);
115
+
116
+ cb(cur, "result_output", -1);
117
+ res->t_logits = cur;
118
+
119
+ ggml_build_forward_expand(gf, cur);
120
+ }
@@ -0,0 +1,120 @@
1
+ #include "models.h"
2
+
3
+
4
+
5
+ llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
6
+ llm_graph_context(params) {
7
+ const int64_t n_embd_head = hparams.n_embd_head_k;
8
+
9
+ ggml_tensor * cur;
10
+ ggml_tensor * inpL;
11
+
12
+ inpL = build_inp_embd(model.tok_embd);
13
+
14
+ // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
15
+ if (ubatch.token) {
16
+ inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
17
+ cb(inpL, "inp_scaled", -1);
18
+ }
19
+
20
+ // inp_pos - contains the positions
21
+ ggml_tensor * inp_pos = build_inp_pos();
22
+
23
+ auto * inp_attn = build_attn_inp_no_cache();
24
+
25
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
26
+
27
+ for (int il = 0; il < n_layer; ++il) {
28
+ const float freq_base_l = model.get_rope_freq_base(cparams, il);
29
+ const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
30
+
31
+ // norm
32
+ cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
33
+ cb(cur, "attn_norm", il);
34
+
35
+ // self-attention
36
+ {
37
+ // compute Q and K and RoPE them
38
+ ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
39
+ cb(Qcur, "Qcur", il);
40
+
41
+ ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
42
+ cb(Kcur, "Kcur", il);
43
+
44
+ ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
45
+ cb(Vcur, "Vcur", il);
46
+
47
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
48
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
49
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
50
+
51
+ Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
52
+ cb(Qcur, "Qcur_normed", il);
53
+
54
+ Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
55
+ ext_factor, attn_factor, beta_fast, beta_slow);
56
+
57
+ Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
58
+ cb(Kcur, "Kcur_normed", il);
59
+
60
+ Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
61
+ ext_factor, attn_factor, beta_fast, beta_slow);
62
+
63
+ cb(Qcur, "Qcur", il);
64
+ cb(Kcur, "Kcur", il);
65
+ cb(Vcur, "Vcur", il);
66
+
67
+ // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
68
+ Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
69
+
70
+ cur =
71
+ build_attn(inp_attn,
72
+ model.layers[il].wo, NULL,
73
+ Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
74
+ }
75
+
76
+ if (il == n_layer - 1 && inp_out_ids) {
77
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
78
+ inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
79
+ }
80
+
81
+ cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
82
+ cb(cur, "attn_post_norm", il);
83
+
84
+ ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
85
+ cb(sa_out, "sa_out", il);
86
+
87
+ cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
88
+ cb(cur, "ffn_norm", il);
89
+
90
+ // feed-forward network
91
+ {
92
+ cur = build_ffn(cur,
93
+ model.layers[il].ffn_up, NULL, NULL,
94
+ model.layers[il].ffn_gate, NULL, NULL,
95
+ model.layers[il].ffn_down, NULL, NULL,
96
+ NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
97
+ cb(cur, "ffn_out", il);
98
+ }
99
+
100
+ cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
101
+ cb(cur, "ffn_post_norm", -1);
102
+
103
+ cur = ggml_add(ctx0, cur, sa_out);
104
+
105
+ cur = build_cvec(cur, il);
106
+ cb(cur, "l_out", il);
107
+
108
+ // input for next layer
109
+ inpL = cur;
110
+ }
111
+
112
+ cur = inpL;
113
+
114
+ cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
115
+
116
+ cb(cur, "result_norm", -1);
117
+ res->t_embd = cur;
118
+
119
+ ggml_build_forward_expand(gf, cur);
120
+ }