rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,76 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/splitter'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
# This module consists of the classes for model validation techniques.
|
7
|
+
module ModelSelection
|
8
|
+
# KFold is a class that generates the set of data indices for K-fold cross-validation.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# kf = Rumale::ModelSelection::KFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
12
|
+
# kf.split(samples, labels).each do |train_ids, test_ids|
|
13
|
+
# train_samples = samples[train_ids, true]
|
14
|
+
# test_samples = samples[test_ids, true]
|
15
|
+
# ...
|
16
|
+
# end
|
17
|
+
#
|
18
|
+
class KFold
|
19
|
+
include Base::Splitter
|
20
|
+
|
21
|
+
# Return the flag indicating whether to shuffle the dataset.
|
22
|
+
# @return [Boolean]
|
23
|
+
attr_reader :shuffle
|
24
|
+
|
25
|
+
# Return the random generator for shuffling the dataset.
|
26
|
+
# @return [Random]
|
27
|
+
attr_reader :rng
|
28
|
+
|
29
|
+
# Create a new data splitter for K-fold cross validation.
|
30
|
+
#
|
31
|
+
# @param n_splits [Integer] The number of folds.
|
32
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
33
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
34
|
+
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
35
|
+
check_params_integer(n_splits: n_splits)
|
36
|
+
check_params_boolean(shuffle: shuffle)
|
37
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
38
|
+
check_params_positive(n_splits: n_splits)
|
39
|
+
@n_splits = n_splits
|
40
|
+
@shuffle = shuffle
|
41
|
+
@random_seed = random_seed
|
42
|
+
@random_seed ||= srand
|
43
|
+
@rng = Random.new(@random_seed)
|
44
|
+
end
|
45
|
+
|
46
|
+
# Generate data indices for K-fold cross validation.
|
47
|
+
#
|
48
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
49
|
+
# The dataset to be used to generate data indices for K-fold cross validation.
|
50
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
51
|
+
def split(x, _y = nil)
|
52
|
+
check_sample_array(x)
|
53
|
+
# Initialize and check some variables.
|
54
|
+
n_samples, = x.shape
|
55
|
+
unless @n_splits.between?(2, n_samples)
|
56
|
+
raise ArgumentError,
|
57
|
+
'The value of n_splits must be not less than 2 and not more than the number of samples.'
|
58
|
+
end
|
59
|
+
# Splits dataset ids to each fold.
|
60
|
+
dataset_ids = [*0...n_samples]
|
61
|
+
dataset_ids.shuffle!(random: @rng) if @shuffle
|
62
|
+
fold_sets = Array.new(@n_splits) do |n|
|
63
|
+
n_fold_samples = n_samples / @n_splits
|
64
|
+
n_fold_samples += 1 if n < n_samples % @n_splits
|
65
|
+
dataset_ids.shift(n_fold_samples)
|
66
|
+
end
|
67
|
+
# Returns array consisting of the training and testing ids for each fold.
|
68
|
+
Array.new(@n_splits) do |n|
|
69
|
+
train_ids = fold_sets.select.with_index { |_, id| id != n }.flatten
|
70
|
+
test_ids = fold_sets[n]
|
71
|
+
[train_ids, test_ids]
|
72
|
+
end
|
73
|
+
end
|
74
|
+
end
|
75
|
+
end
|
76
|
+
end
|
@@ -0,0 +1,94 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/splitter'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module ModelSelection
|
7
|
+
# StratifiedKFold is a class that generates the set of data indices for K-fold cross-validation.
|
8
|
+
# The proportion of the number of samples in each class will be almost equal for each fold.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 3, shuffle: true, random_seed: 1)
|
12
|
+
# kf.split(samples, labels).each do |train_ids, test_ids|
|
13
|
+
# train_samples = samples[train_ids, true]
|
14
|
+
# test_samples = samples[test_ids, true]
|
15
|
+
# ...
|
16
|
+
# end
|
17
|
+
#
|
18
|
+
class StratifiedKFold
|
19
|
+
include Base::Splitter
|
20
|
+
|
21
|
+
# Return the flag indicating whether to shuffle the dataset.
|
22
|
+
# @return [Boolean]
|
23
|
+
attr_reader :shuffle
|
24
|
+
|
25
|
+
# Return the random generator for shuffling the dataset.
|
26
|
+
# @return [Random]
|
27
|
+
attr_reader :rng
|
28
|
+
|
29
|
+
# Create a new data splitter for K-fold cross validation.
|
30
|
+
#
|
31
|
+
# @param n_splits [Integer] The number of folds.
|
32
|
+
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
33
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
34
|
+
def initialize(n_splits: 3, shuffle: false, random_seed: nil)
|
35
|
+
check_params_integer(n_splits: n_splits)
|
36
|
+
check_params_boolean(shuffle: shuffle)
|
37
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
38
|
+
check_params_positive(n_splits: n_splits)
|
39
|
+
@n_splits = n_splits
|
40
|
+
@shuffle = shuffle
|
41
|
+
@random_seed = random_seed
|
42
|
+
@random_seed ||= srand
|
43
|
+
@rng = Random.new(@random_seed)
|
44
|
+
end
|
45
|
+
|
46
|
+
# Generate data indices for stratified K-fold cross validation.
|
47
|
+
#
|
48
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
49
|
+
# The dataset to be used to generate data indices for stratified K-fold cross validation.
|
50
|
+
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
51
|
+
# @param y [Numo::Int32] (shape: [n_samples])
|
52
|
+
# The labels to be used to generate data indices for stratified K-fold cross validation.
|
53
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
54
|
+
def split(x, y)
|
55
|
+
check_sample_array(x)
|
56
|
+
check_label_array(y)
|
57
|
+
check_sample_label_size(x, y)
|
58
|
+
# Check the number of samples in each class.
|
59
|
+
unless valid_n_splits?(y)
|
60
|
+
raise ArgumentError,
|
61
|
+
'The value of n_splits must be not less than 2 and not more than the number of samples in each class.'
|
62
|
+
end
|
63
|
+
# Splits dataset ids of each class to each fold.
|
64
|
+
fold_sets_each_class = y.to_a.uniq.map { |label| fold_sets(y, label) }
|
65
|
+
# Returns array consisting of the training and testing ids for each fold.
|
66
|
+
Array.new(@n_splits) { |fold_id| train_test_sets(fold_sets_each_class, fold_id) }
|
67
|
+
end
|
68
|
+
|
69
|
+
private
|
70
|
+
|
71
|
+
def valid_n_splits?(y)
|
72
|
+
y.to_a.uniq.map { |label| y.eq(label).where.size }.all? { |n_samples| @n_splits.between?(2, n_samples) }
|
73
|
+
end
|
74
|
+
|
75
|
+
def fold_sets(y, label)
|
76
|
+
sample_ids = y.eq(label).where.to_a
|
77
|
+
sample_ids.shuffle!(random: @rng) if @shuffle
|
78
|
+
n_samples = sample_ids.size
|
79
|
+
Array.new(@n_splits) do |n|
|
80
|
+
n_fold_samples = n_samples / @n_splits
|
81
|
+
n_fold_samples += 1 if n < n_samples % @n_splits
|
82
|
+
sample_ids.shift(n_fold_samples)
|
83
|
+
end
|
84
|
+
end
|
85
|
+
|
86
|
+
def train_test_sets(fold_sets_each_class, fold_id)
|
87
|
+
train_test_sets_each_class = fold_sets_each_class.map do |folds|
|
88
|
+
folds.partition.with_index { |_, id| id != fold_id }.map(&:flatten)
|
89
|
+
end
|
90
|
+
train_test_sets_each_class.transpose.map(&:flatten)
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
94
|
+
end
|
@@ -0,0 +1,100 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator.rb'
|
4
|
+
require 'rumale/base/classifier.rb'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# This module consists of the classes that implement multi-class classification strategy.
|
8
|
+
module Multiclass
|
9
|
+
# @note
|
10
|
+
# All classifier in Rumale support multi-class classifiction since version 0.2.7.
|
11
|
+
# There is no need to explicitly use this class for multiclass classifiction.
|
12
|
+
#
|
13
|
+
# OneVsRestClassifier is a class that implements One-vs-Rest (OvR) strategy for multi-class classification.
|
14
|
+
#
|
15
|
+
# @example
|
16
|
+
# base_estimator = Rumale::LinearModel::LogisticRegression.new
|
17
|
+
# estimator = Rumale::Multiclass::OneVsRestClassifier.new(estimator: base_estimator)
|
18
|
+
# estimator.fit(training_samples, training_labels)
|
19
|
+
# results = estimator.predict(testing_samples)
|
20
|
+
class OneVsRestClassifier
|
21
|
+
include Base::BaseEstimator
|
22
|
+
include Base::Classifier
|
23
|
+
|
24
|
+
# Return the set of estimators.
|
25
|
+
# @return [Array<Classifier>]
|
26
|
+
attr_reader :estimators
|
27
|
+
|
28
|
+
# Return the class labels.
|
29
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
30
|
+
attr_reader :classes
|
31
|
+
|
32
|
+
# Create a new multi-class classifier with the one-vs-rest startegy.
|
33
|
+
#
|
34
|
+
# @param estimator [Classifier] The (binary) classifier for construction a multi-class classifier.
|
35
|
+
def initialize(estimator: nil)
|
36
|
+
check_params_type(Rumale::Base::BaseEstimator, estimator: estimator)
|
37
|
+
@params = {}
|
38
|
+
@params[:estimator] = estimator
|
39
|
+
@estimators = nil
|
40
|
+
@classes = nil
|
41
|
+
end
|
42
|
+
|
43
|
+
# Fit the model with given training data.
|
44
|
+
#
|
45
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
46
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
47
|
+
# @return [OneVsRestClassifier] The learned classifier itself.
|
48
|
+
def fit(x, y)
|
49
|
+
check_sample_array(x)
|
50
|
+
check_label_array(y)
|
51
|
+
check_sample_label_size(x, y)
|
52
|
+
y_arr = y.to_a
|
53
|
+
@classes = Numo::Int32.asarray(y_arr.uniq.sort)
|
54
|
+
@estimators = @classes.to_a.map do |label|
|
55
|
+
bin_y = Numo::Int32.asarray(y_arr.map { |l| l == label ? 1 : -1 })
|
56
|
+
@params[:estimator].dup.fit(x, bin_y)
|
57
|
+
end
|
58
|
+
self
|
59
|
+
end
|
60
|
+
|
61
|
+
# Calculate confidence scores for samples.
|
62
|
+
#
|
63
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
64
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
65
|
+
def decision_function(x)
|
66
|
+
check_sample_array(x)
|
67
|
+
n_classes = @classes.size
|
68
|
+
Numo::DFloat.asarray(Array.new(n_classes) { |m| @estimators[m].decision_function(x).to_a }).transpose
|
69
|
+
end
|
70
|
+
|
71
|
+
# Predict class labels for samples.
|
72
|
+
#
|
73
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
74
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
75
|
+
def predict(x)
|
76
|
+
check_sample_array(x)
|
77
|
+
n_samples, = x.shape
|
78
|
+
decision_values = decision_function(x)
|
79
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
80
|
+
end
|
81
|
+
|
82
|
+
# Dump marshal data.
|
83
|
+
# @return [Hash] The marshal data about OneVsRestClassifier.
|
84
|
+
def marshal_dump
|
85
|
+
{ params: @params,
|
86
|
+
classes: @classes,
|
87
|
+
estimators: @estimators.map { |e| Marshal.dump(e) } }
|
88
|
+
end
|
89
|
+
|
90
|
+
# Load marshal data.
|
91
|
+
# @return [nil]
|
92
|
+
def marshal_load(obj)
|
93
|
+
@params = obj[:params]
|
94
|
+
@classes = obj[:classes]
|
95
|
+
@estimators = obj[:estimators].map { |e| Marshal.load(e) }
|
96
|
+
nil
|
97
|
+
end
|
98
|
+
end
|
99
|
+
end
|
100
|
+
end
|
@@ -0,0 +1,315 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# This module consists of the classes that implement naive bayes models.
|
8
|
+
module NaiveBayes
|
9
|
+
# BaseNaiveBayes is a class that has methods for common processes of naive bayes classifier.
|
10
|
+
class BaseNaiveBayes
|
11
|
+
include Base::BaseEstimator
|
12
|
+
include Base::Classifier
|
13
|
+
|
14
|
+
# Predict class labels for samples.
|
15
|
+
#
|
16
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
17
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
18
|
+
def predict(x)
|
19
|
+
check_sample_array(x)
|
20
|
+
n_samples = x.shape.first
|
21
|
+
decision_values = decision_function(x)
|
22
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
23
|
+
end
|
24
|
+
|
25
|
+
# Predict log-probability for samples.
|
26
|
+
#
|
27
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
29
|
+
def predict_log_proba(x)
|
30
|
+
check_sample_array(x)
|
31
|
+
n_samples, = x.shape
|
32
|
+
log_likelihoods = decision_function(x)
|
33
|
+
log_likelihoods - Numo::NMath.log(Numo::NMath.exp(log_likelihoods).sum(1)).reshape(n_samples, 1)
|
34
|
+
end
|
35
|
+
|
36
|
+
# Predict probability for samples.
|
37
|
+
#
|
38
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
39
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
40
|
+
def predict_proba(x)
|
41
|
+
check_sample_array(x)
|
42
|
+
Numo::NMath.exp(predict_log_proba(x)).abs
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
# GaussianNB is a class that implements Gaussian Naive Bayes classifier.
|
47
|
+
#
|
48
|
+
# @example
|
49
|
+
# estimator = Rumale::NaiveBayes::GaussianNB.new
|
50
|
+
# estimator.fit(training_samples, training_labels)
|
51
|
+
# results = estimator.predict(testing_samples)
|
52
|
+
class GaussianNB < BaseNaiveBayes
|
53
|
+
# Return the class labels.
|
54
|
+
# @return [Numo::Int32] (size: n_classes)
|
55
|
+
attr_reader :classes
|
56
|
+
|
57
|
+
# Return the prior probabilities of the classes.
|
58
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
59
|
+
attr_reader :class_priors
|
60
|
+
|
61
|
+
# Return the mean vectors of the classes.
|
62
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
63
|
+
attr_reader :means
|
64
|
+
|
65
|
+
# Return the variance vectors of the classes.
|
66
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
67
|
+
attr_reader :variances
|
68
|
+
|
69
|
+
# Create a new classifier with Gaussian Naive Bayes.
|
70
|
+
def initialize
|
71
|
+
@params = {}
|
72
|
+
end
|
73
|
+
|
74
|
+
# Fit the model with given training data.
|
75
|
+
#
|
76
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
77
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
78
|
+
# to be used for fitting the model.
|
79
|
+
# @return [GaussianNB] The learned classifier itself.
|
80
|
+
def fit(x, y)
|
81
|
+
check_sample_array(x)
|
82
|
+
check_label_array(y)
|
83
|
+
check_sample_label_size(x, y)
|
84
|
+
n_samples, = x.shape
|
85
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
86
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
87
|
+
@means = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].mean(0) }]
|
88
|
+
@variances = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].var(0) }]
|
89
|
+
self
|
90
|
+
end
|
91
|
+
|
92
|
+
# Calculate confidence scores for samples.
|
93
|
+
#
|
94
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
95
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
96
|
+
def decision_function(x)
|
97
|
+
check_sample_array(x)
|
98
|
+
n_classes = @classes.size
|
99
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
100
|
+
Math.log(@class_priors[l]) - 0.5 * (
|
101
|
+
Numo::NMath.log(2.0 * Math::PI * @variances[l, true]) +
|
102
|
+
((x - @means[l, true])**2 / @variances[l, true])).sum(1)
|
103
|
+
end
|
104
|
+
Numo::DFloat[*log_likelihoods].transpose
|
105
|
+
end
|
106
|
+
|
107
|
+
# Dump marshal data.
|
108
|
+
#
|
109
|
+
# @return [Hash] The marshal data about GaussianNB.
|
110
|
+
def marshal_dump
|
111
|
+
{ params: @params,
|
112
|
+
classes: @classes,
|
113
|
+
class_priors: @class_priors,
|
114
|
+
means: @means,
|
115
|
+
variances: @variances }
|
116
|
+
end
|
117
|
+
|
118
|
+
# Load marshal data.
|
119
|
+
#
|
120
|
+
# @return [nil]
|
121
|
+
def marshal_load(obj)
|
122
|
+
@params = obj[:params]
|
123
|
+
@classes = obj[:classes]
|
124
|
+
@class_priors = obj[:class_priors]
|
125
|
+
@means = obj[:means]
|
126
|
+
@variances = obj[:variances]
|
127
|
+
nil
|
128
|
+
end
|
129
|
+
end
|
130
|
+
|
131
|
+
# MultinomialNB is a class that implements Multinomial Naive Bayes classifier.
|
132
|
+
#
|
133
|
+
# @example
|
134
|
+
# estimator = Rumale::NaiveBayes::MultinomialNB.new(smoothing_param: 1.0)
|
135
|
+
# estimator.fit(training_samples, training_labels)
|
136
|
+
# results = estimator.predict(testing_samples)
|
137
|
+
#
|
138
|
+
# *Reference*
|
139
|
+
# - C D. Manning, P. Raghavan, and H. Schutze, "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
140
|
+
class MultinomialNB < BaseNaiveBayes
|
141
|
+
# Return the class labels.
|
142
|
+
# @return [Numo::Int32] (size: n_classes)
|
143
|
+
attr_reader :classes
|
144
|
+
|
145
|
+
# Return the prior probabilities of the classes.
|
146
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
147
|
+
attr_reader :class_priors
|
148
|
+
|
149
|
+
# Return the conditional probabilities for features of each class.
|
150
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
151
|
+
attr_reader :feature_probs
|
152
|
+
|
153
|
+
# Create a new classifier with Multinomial Naive Bayes.
|
154
|
+
#
|
155
|
+
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
156
|
+
def initialize(smoothing_param: 1.0)
|
157
|
+
check_params_float(smoothing_param: smoothing_param)
|
158
|
+
check_params_positive(smoothing_param: smoothing_param)
|
159
|
+
@params = {}
|
160
|
+
@params[:smoothing_param] = smoothing_param
|
161
|
+
end
|
162
|
+
|
163
|
+
# Fit the model with given training data.
|
164
|
+
#
|
165
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
166
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
167
|
+
# to be used for fitting the model.
|
168
|
+
# @return [MultinomialNB] The learned classifier itself.
|
169
|
+
def fit(x, y)
|
170
|
+
check_sample_array(x)
|
171
|
+
check_label_array(y)
|
172
|
+
check_sample_label_size(x, y)
|
173
|
+
n_samples, = x.shape
|
174
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
175
|
+
@class_priors = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count / n_samples.to_f }]
|
176
|
+
count_features = Numo::DFloat[*@classes.to_a.map { |l| x[y.eq(l).where, true].sum(0) }]
|
177
|
+
count_features += @params[:smoothing_param]
|
178
|
+
n_classes = @classes.size
|
179
|
+
@feature_probs = count_features / count_features.sum(1).reshape(n_classes, 1)
|
180
|
+
self
|
181
|
+
end
|
182
|
+
|
183
|
+
# Calculate confidence scores for samples.
|
184
|
+
#
|
185
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
186
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
187
|
+
def decision_function(x)
|
188
|
+
check_sample_array(x)
|
189
|
+
n_classes = @classes.size
|
190
|
+
bin_x = x.gt(0)
|
191
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
192
|
+
Math.log(@class_priors[l]) + (Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
193
|
+
end
|
194
|
+
Numo::DFloat[*log_likelihoods].transpose
|
195
|
+
end
|
196
|
+
|
197
|
+
# Dump marshal data.
|
198
|
+
#
|
199
|
+
# @return [Hash] The marshal data about MultinomialNB.
|
200
|
+
def marshal_dump
|
201
|
+
{ params: @params,
|
202
|
+
classes: @classes,
|
203
|
+
class_priors: @class_priors,
|
204
|
+
feature_probs: @feature_probs }
|
205
|
+
end
|
206
|
+
|
207
|
+
# Load marshal data.
|
208
|
+
#
|
209
|
+
# @return [nil]
|
210
|
+
def marshal_load(obj)
|
211
|
+
@params = obj[:params]
|
212
|
+
@classes = obj[:classes]
|
213
|
+
@class_priors = obj[:class_priors]
|
214
|
+
@feature_probs = obj[:feature_probs]
|
215
|
+
nil
|
216
|
+
end
|
217
|
+
end
|
218
|
+
|
219
|
+
# BernoulliNB is a class that implements Bernoulli Naive Bayes classifier.
|
220
|
+
#
|
221
|
+
# @example
|
222
|
+
# estimator = Rumale::NaiveBayes::BernoulliNB.new(smoothing_param: 1.0, bin_threshold: 0.0)
|
223
|
+
# estimator.fit(training_samples, training_labels)
|
224
|
+
# results = estimator.predict(testing_samples)
|
225
|
+
#
|
226
|
+
# *Reference*
|
227
|
+
# - C D. Manning, P. Raghavan, and H. Schutze, "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
228
|
+
class BernoulliNB < BaseNaiveBayes
|
229
|
+
# Return the class labels.
|
230
|
+
# @return [Numo::Int32] (size: n_classes)
|
231
|
+
attr_reader :classes
|
232
|
+
|
233
|
+
# Return the prior probabilities of the classes.
|
234
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
235
|
+
attr_reader :class_priors
|
236
|
+
|
237
|
+
# Return the conditional probabilities for features of each class.
|
238
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
239
|
+
attr_reader :feature_probs
|
240
|
+
|
241
|
+
# Create a new classifier with Bernoulli Naive Bayes.
|
242
|
+
#
|
243
|
+
# @param smoothing_param [Float] The Laplace smoothing parameter.
|
244
|
+
# @param bin_threshold [Float] The threshold for binarizing of features.
|
245
|
+
def initialize(smoothing_param: 1.0, bin_threshold: 0.0)
|
246
|
+
check_params_float(smoothing_param: smoothing_param, bin_threshold: bin_threshold)
|
247
|
+
check_params_positive(smoothing_param: smoothing_param)
|
248
|
+
@params = {}
|
249
|
+
@params[:smoothing_param] = smoothing_param
|
250
|
+
@params[:bin_threshold] = bin_threshold
|
251
|
+
end
|
252
|
+
|
253
|
+
# Fit the model with given training data.
|
254
|
+
#
|
255
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
256
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The categorical variables (e.g. labels)
|
257
|
+
# to be used for fitting the model.
|
258
|
+
# @return [BernoulliNB] The learned classifier itself.
|
259
|
+
def fit(x, y)
|
260
|
+
check_sample_array(x)
|
261
|
+
check_label_array(y)
|
262
|
+
check_sample_label_size(x, y)
|
263
|
+
n_samples, = x.shape
|
264
|
+
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
265
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
266
|
+
n_samples_each_class = Numo::DFloat[*@classes.to_a.map { |l| y.eq(l).count.to_f }]
|
267
|
+
@class_priors = n_samples_each_class / n_samples
|
268
|
+
count_features = Numo::DFloat[*@classes.to_a.map { |l| bin_x[y.eq(l).where, true].sum(0) }]
|
269
|
+
count_features += @params[:smoothing_param]
|
270
|
+
n_samples_each_class += 2.0 * @params[:smoothing_param]
|
271
|
+
n_classes = @classes.size
|
272
|
+
@feature_probs = count_features / n_samples_each_class.reshape(n_classes, 1)
|
273
|
+
self
|
274
|
+
end
|
275
|
+
|
276
|
+
# Calculate confidence scores for samples.
|
277
|
+
#
|
278
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
279
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence scores per sample for each class.
|
280
|
+
def decision_function(x)
|
281
|
+
check_sample_array(x)
|
282
|
+
n_classes = @classes.size
|
283
|
+
bin_x = Numo::DFloat[*x.gt(@params[:bin_threshold])]
|
284
|
+
not_bin_x = Numo::DFloat[*x.le(@params[:bin_threshold])]
|
285
|
+
log_likelihoods = Array.new(n_classes) do |l|
|
286
|
+
Math.log(@class_priors[l]) + (
|
287
|
+
(Numo::DFloat[*bin_x] * Numo::NMath.log(@feature_probs[l, true])).sum(1)
|
288
|
+
(Numo::DFloat[*not_bin_x] * Numo::NMath.log(1.0 - @feature_probs[l, true])).sum(1))
|
289
|
+
end
|
290
|
+
Numo::DFloat[*log_likelihoods].transpose
|
291
|
+
end
|
292
|
+
|
293
|
+
# Dump marshal data.
|
294
|
+
#
|
295
|
+
# @return [Hash] The marshal data about BernoulliNB.
|
296
|
+
def marshal_dump
|
297
|
+
{ params: @params,
|
298
|
+
classes: @classes,
|
299
|
+
class_priors: @class_priors,
|
300
|
+
feature_probs: @feature_probs }
|
301
|
+
end
|
302
|
+
|
303
|
+
# Load marshal data.
|
304
|
+
#
|
305
|
+
# @return [nil]
|
306
|
+
def marshal_load(obj)
|
307
|
+
@params = obj[:params]
|
308
|
+
@classes = obj[:classes]
|
309
|
+
@class_priors = obj[:class_priors]
|
310
|
+
@feature_probs = obj[:feature_probs]
|
311
|
+
nil
|
312
|
+
end
|
313
|
+
end
|
314
|
+
end
|
315
|
+
end
|