rumale 0.8.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (85) hide show
  1. checksums.yaml +7 -0
  2. data/.coveralls.yml +1 -0
  3. data/.gitignore +20 -0
  4. data/.rspec +3 -0
  5. data/.rubocop.yml +47 -0
  6. data/.rubocop_todo.yml +58 -0
  7. data/.travis.yml +13 -0
  8. data/CHANGELOG.md +2 -0
  9. data/CODE_OF_CONDUCT.md +74 -0
  10. data/Gemfile +4 -0
  11. data/LICENSE.txt +23 -0
  12. data/README.md +175 -0
  13. data/Rakefile +6 -0
  14. data/bin/console +14 -0
  15. data/bin/setup +8 -0
  16. data/lib/rumale.rb +70 -0
  17. data/lib/rumale/base/base_estimator.rb +13 -0
  18. data/lib/rumale/base/classifier.rb +36 -0
  19. data/lib/rumale/base/cluster_analyzer.rb +31 -0
  20. data/lib/rumale/base/evaluator.rb +17 -0
  21. data/lib/rumale/base/regressor.rb +36 -0
  22. data/lib/rumale/base/splitter.rb +21 -0
  23. data/lib/rumale/base/transformer.rb +22 -0
  24. data/lib/rumale/clustering/dbscan.rb +125 -0
  25. data/lib/rumale/clustering/k_means.rb +138 -0
  26. data/lib/rumale/dataset.rb +110 -0
  27. data/lib/rumale/decomposition/nmf.rb +141 -0
  28. data/lib/rumale/decomposition/pca.rb +148 -0
  29. data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
  30. data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
  31. data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
  32. data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
  33. data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
  34. data/lib/rumale/evaluation_measure/f_score.rb +50 -0
  35. data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
  36. data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
  37. data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
  38. data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
  39. data/lib/rumale/evaluation_measure/precision.rb +50 -0
  40. data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
  41. data/lib/rumale/evaluation_measure/purity.rb +40 -0
  42. data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
  43. data/lib/rumale/evaluation_measure/recall.rb +50 -0
  44. data/lib/rumale/kernel_approximation/rbf.rb +121 -0
  45. data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
  46. data/lib/rumale/linear_model/base_linear_model.rb +89 -0
  47. data/lib/rumale/linear_model/lasso.rb +136 -0
  48. data/lib/rumale/linear_model/linear_regression.rb +110 -0
  49. data/lib/rumale/linear_model/logistic_regression.rb +159 -0
  50. data/lib/rumale/linear_model/ridge.rb +110 -0
  51. data/lib/rumale/linear_model/svc.rb +183 -0
  52. data/lib/rumale/linear_model/svr.rb +122 -0
  53. data/lib/rumale/model_selection/cross_validation.rb +123 -0
  54. data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
  55. data/lib/rumale/model_selection/k_fold.rb +76 -0
  56. data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
  57. data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
  58. data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
  59. data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
  60. data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
  61. data/lib/rumale/optimizer/nadam.rb +90 -0
  62. data/lib/rumale/optimizer/rmsprop.rb +69 -0
  63. data/lib/rumale/optimizer/sgd.rb +65 -0
  64. data/lib/rumale/optimizer/yellow_fin.rb +144 -0
  65. data/lib/rumale/pairwise_metric.rb +91 -0
  66. data/lib/rumale/pipeline/pipeline.rb +197 -0
  67. data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
  68. data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
  69. data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
  70. data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
  71. data/lib/rumale/preprocessing/label_encoder.rb +94 -0
  72. data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
  73. data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
  74. data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
  75. data/lib/rumale/probabilistic_output.rb +112 -0
  76. data/lib/rumale/tree/base_decision_tree.rb +153 -0
  77. data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
  78. data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
  79. data/lib/rumale/tree/node.rb +70 -0
  80. data/lib/rumale/utils.rb +37 -0
  81. data/lib/rumale/validation.rb +79 -0
  82. data/lib/rumale/values.rb +13 -0
  83. data/lib/rumale/version.rb +6 -0
  84. data/rumale.gemspec +41 -0
  85. metadata +204 -0
@@ -0,0 +1,136 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/linear_model/base_linear_model'
4
+ require 'rumale/base/regressor'
5
+
6
+ module Rumale
7
+ module LinearModel
8
+ # Lasso is a class that implements Lasso Regression
9
+ # with stochastic gradient descent (SGD) optimization.
10
+ #
11
+ # @example
12
+ # estimator =
13
+ # Rumale::LinearModel::Lasso.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
14
+ # estimator.fit(training_samples, traininig_values)
15
+ # results = estimator.predict(testing_samples)
16
+ #
17
+ # *Reference*
18
+ # - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
19
+ # - L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," Proc. COMPSTAT'10, pp. 177--186, 2010.
20
+ class Lasso < BaseLinearModel
21
+ include Base::Regressor
22
+
23
+ # Return the weight vector.
24
+ # @return [Numo::DFloat] (shape: [n_outputs, n_features])
25
+ attr_reader :weight_vec
26
+
27
+ # Return the bias term (a.k.a. intercept).
28
+ # @return [Numo::DFloat] (shape: [n_outputs])
29
+ attr_reader :bias_term
30
+
31
+ # Return the random generator for random sampling.
32
+ # @return [Random]
33
+ attr_reader :rng
34
+
35
+ # Create a new Lasso regressor.
36
+ #
37
+ # @param reg_param [Float] The regularization parameter.
38
+ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
39
+ # @param bias_scale [Float] The scale of the bias term.
40
+ # @param max_iter [Integer] The maximum number of iterations.
41
+ # @param batch_size [Integer] The size of the mini batches.
42
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
43
+ # If nil is given, Nadam is used.
44
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
45
+ def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
46
+ check_params_float(reg_param: reg_param, bias_scale: bias_scale)
47
+ check_params_integer(max_iter: max_iter, batch_size: batch_size)
48
+ check_params_boolean(fit_bias: fit_bias)
49
+ check_params_type_or_nil(Integer, random_seed: random_seed)
50
+ check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
51
+ super
52
+ end
53
+
54
+ # Fit the model with given training data.
55
+ #
56
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
57
+ # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
58
+ # @return [Lasso] The learned regressor itself.
59
+ def fit(x, y)
60
+ check_sample_array(x)
61
+ check_tvalue_array(y)
62
+ check_sample_tvalue_size(x, y)
63
+
64
+ n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
65
+ n_features = x.shape[1]
66
+
67
+ if n_outputs > 1
68
+ @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
69
+ @bias_term = Numo::DFloat.zeros(n_outputs)
70
+ n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
71
+ else
72
+ @weight_vec, @bias_term = partial_fit(x, y)
73
+ end
74
+
75
+ self
76
+ end
77
+
78
+ # Predict values for samples.
79
+ #
80
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
81
+ # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
82
+ def predict(x)
83
+ check_sample_array(x)
84
+ x.dot(@weight_vec.transpose) + @bias_term
85
+ end
86
+
87
+ # Dump marshal data.
88
+ # @return [Hash] The marshal data about Lasso.
89
+ def marshal_dump
90
+ { params: @params,
91
+ weight_vec: @weight_vec,
92
+ bias_term: @bias_term,
93
+ rng: @rng }
94
+ end
95
+
96
+ # Load marshal data.
97
+ # @return [nil]
98
+ def marshal_load(obj)
99
+ @params = obj[:params]
100
+ @weight_vec = obj[:weight_vec]
101
+ @bias_term = obj[:bias_term]
102
+ @rng = obj[:rng]
103
+ nil
104
+ end
105
+
106
+ private
107
+
108
+ def partial_fit(x, y)
109
+ n_features = @params[:fit_bias] ? x.shape[1] + 1 : x.shape[1]
110
+ @left_weight = Numo::DFloat.zeros(n_features)
111
+ @right_weight = Numo::DFloat.zeros(n_features)
112
+ @left_optimizer = @params[:optimizer].dup
113
+ @right_optimizer = @params[:optimizer].dup
114
+ super
115
+ end
116
+
117
+ def calc_loss_gradient(x, y, weight)
118
+ 2.0 * (x.dot(weight) - y)
119
+ end
120
+
121
+ def calc_new_weight(_optimizer, x, _weight, loss_gradient)
122
+ @left_weight = round_weight(@left_optimizer.call(@left_weight, calc_weight_gradient(loss_gradient, x)))
123
+ @right_weight = round_weight(@right_optimizer.call(@right_weight, calc_weight_gradient(-loss_gradient, x)))
124
+ @left_weight - @right_weight
125
+ end
126
+
127
+ def calc_weight_gradient(loss_gradient, data)
128
+ ((@params[:reg_param] + loss_gradient).expand_dims(1) * data).mean(0)
129
+ end
130
+
131
+ def round_weight(weight)
132
+ 0.5 * (weight + weight.abs)
133
+ end
134
+ end
135
+ end
136
+ end
@@ -0,0 +1,110 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/linear_model/base_linear_model'
4
+ require 'rumale/base/regressor'
5
+
6
+ module Rumale
7
+ module LinearModel
8
+ # LinearRegression is a class that implements ordinary least square linear regression
9
+ # with mini-batch stochastic gradient descent optimization.
10
+ #
11
+ # @example
12
+ # estimator =
13
+ # Rumale::LinearModel::LinearRegression.new(max_iter: 1000, batch_size: 20, random_seed: 1)
14
+ # estimator.fit(training_samples, traininig_values)
15
+ # results = estimator.predict(testing_samples)
16
+ #
17
+ class LinearRegression < BaseLinearModel
18
+ include Base::Regressor
19
+
20
+ # Return the weight vector.
21
+ # @return [Numo::DFloat] (shape: [n_outputs, n_features])
22
+ attr_reader :weight_vec
23
+
24
+ # Return the bias term (a.k.a. intercept).
25
+ # @return [Numo::DFloat] (shape: [n_outputs])
26
+ attr_reader :bias_term
27
+
28
+ # Return the random generator for random sampling.
29
+ # @return [Random]
30
+ attr_reader :rng
31
+
32
+ # Create a new ordinary least square linear regressor.
33
+ #
34
+ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
35
+ # @param bias_scale [Float] The scale of the bias term.
36
+ # @param max_iter [Integer] The maximum number of iterations.
37
+ # @param batch_size [Integer] The size of the mini batches.
38
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
39
+ # If nil is given, Nadam is used.
40
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
41
+ def initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
42
+ check_params_float(bias_scale: bias_scale)
43
+ check_params_integer(max_iter: max_iter, batch_size: batch_size)
44
+ check_params_boolean(fit_bias: fit_bias)
45
+ check_params_type_or_nil(Integer, random_seed: random_seed)
46
+ check_params_positive(max_iter: max_iter, batch_size: batch_size)
47
+ keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(reg_param: 0.0)
48
+ super(keywd_args)
49
+ end
50
+
51
+ # Fit the model with given training data.
52
+ #
53
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
54
+ # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
55
+ # @return [LinearRegression] The learned regressor itself.
56
+ def fit(x, y)
57
+ check_sample_array(x)
58
+ check_tvalue_array(y)
59
+ check_sample_tvalue_size(x, y)
60
+
61
+ n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
62
+ n_features = x.shape[1]
63
+
64
+ if n_outputs > 1
65
+ @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
66
+ @bias_term = Numo::DFloat.zeros(n_outputs)
67
+ n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
68
+ else
69
+ @weight_vec, @bias_term = partial_fit(x, y)
70
+ end
71
+
72
+ self
73
+ end
74
+
75
+ # Predict values for samples.
76
+ #
77
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
78
+ # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
79
+ def predict(x)
80
+ check_sample_array(x)
81
+ x.dot(@weight_vec.transpose) + @bias_term
82
+ end
83
+
84
+ # Dump marshal data.
85
+ # @return [Hash] The marshal data about LinearRegression.
86
+ def marshal_dump
87
+ { params: @params,
88
+ weight_vec: @weight_vec,
89
+ bias_term: @bias_term,
90
+ rng: @rng }
91
+ end
92
+
93
+ # Load marshal data.
94
+ # @return [nil]
95
+ def marshal_load(obj)
96
+ @params = obj[:params]
97
+ @weight_vec = obj[:weight_vec]
98
+ @bias_term = obj[:bias_term]
99
+ @rng = obj[:rng]
100
+ nil
101
+ end
102
+
103
+ private
104
+
105
+ def calc_loss_gradient(x, y, weight)
106
+ 2.0 * (x.dot(weight) - y)
107
+ end
108
+ end
109
+ end
110
+ end
@@ -0,0 +1,159 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/linear_model/base_linear_model'
4
+ require 'rumale/base/classifier'
5
+
6
+ module Rumale
7
+ module LinearModel
8
+ # LogisticRegression is a class that implements Logistic Regression
9
+ # with mini-batch stochastic gradient descent optimization.
10
+ # For multiclass classification problem, it uses one-vs-the-rest strategy.
11
+ #
12
+ # @example
13
+ # estimator =
14
+ # Rumale::LinearModel::LogisticRegression.new(reg_param: 1.0, max_iter: 1000, batch_size: 20, random_seed: 1)
15
+ # estimator.fit(training_samples, traininig_labels)
16
+ # results = estimator.predict(testing_samples)
17
+ #
18
+ # *Reference*
19
+ # - S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
20
+ class LogisticRegression < BaseLinearModel
21
+ include Base::Classifier
22
+
23
+ # Return the weight vector for Logistic Regression.
24
+ # @return [Numo::DFloat] (shape: [n_classes, n_features])
25
+ attr_reader :weight_vec
26
+
27
+ # Return the bias term (a.k.a. intercept) for Logistic Regression.
28
+ # @return [Numo::DFloat] (shape: [n_classes])
29
+ attr_reader :bias_term
30
+
31
+ # Return the class labels.
32
+ # @return [Numo::Int32] (shape: [n_classes])
33
+ attr_reader :classes
34
+
35
+ # Return the random generator for performing random sampling.
36
+ # @return [Random]
37
+ attr_reader :rng
38
+
39
+ # Create a new classifier with Logisitc Regression by the SGD optimization.
40
+ #
41
+ # @param reg_param [Float] The regularization parameter.
42
+ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
43
+ # @param bias_scale [Float] The scale of the bias term.
44
+ # If fit_bias is true, the feature vector v becoms [v; bias_scale].
45
+ # @param max_iter [Integer] The maximum number of iterations.
46
+ # @param batch_size [Integer] The size of the mini batches.
47
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
48
+ # If nil is given, Nadam is used.
49
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
50
+ def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
51
+ max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil)
52
+ check_params_float(reg_param: reg_param, bias_scale: bias_scale)
53
+ check_params_integer(max_iter: max_iter, batch_size: batch_size)
54
+ check_params_boolean(fit_bias: fit_bias)
55
+ check_params_type_or_nil(Integer, random_seed: random_seed)
56
+ check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
57
+ super
58
+ @classes = nil
59
+ end
60
+
61
+ # Fit the model with given training data.
62
+ #
63
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
64
+ # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
65
+ # @return [LogisticRegression] The learned classifier itself.
66
+ def fit(x, y)
67
+ check_sample_array(x)
68
+ check_label_array(y)
69
+ check_sample_label_size(x, y)
70
+
71
+ @classes = Numo::Int32[*y.to_a.uniq.sort]
72
+ n_classes = @classes.size
73
+ n_features = x.shape[1]
74
+
75
+ if n_classes > 2
76
+ @weight_vec = Numo::DFloat.zeros(n_classes, n_features)
77
+ @bias_term = Numo::DFloat.zeros(n_classes)
78
+ n_classes.times do |n|
79
+ bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
80
+ @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
81
+ end
82
+ else
83
+ negative_label = y.to_a.uniq.min
84
+ bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
85
+ @weight_vec, @bias_term = partial_fit(x, bin_y)
86
+ end
87
+
88
+ self
89
+ end
90
+
91
+ # Calculate confidence scores for samples.
92
+ #
93
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
94
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
95
+ def decision_function(x)
96
+ check_sample_array(x)
97
+ x.dot(@weight_vec.transpose) + @bias_term
98
+ end
99
+
100
+ # Predict class labels for samples.
101
+ #
102
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
103
+ # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
104
+ def predict(x)
105
+ check_sample_array(x)
106
+
107
+ return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2
108
+
109
+ n_samples, = x.shape
110
+ decision_values = predict_proba(x)
111
+ Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
112
+ end
113
+
114
+ # Predict probability for samples.
115
+ #
116
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
117
+ # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
118
+ def predict_proba(x)
119
+ check_sample_array(x)
120
+
121
+ proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
122
+ return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2
123
+
124
+ n_samples, = x.shape
125
+ probs = Numo::DFloat.zeros(n_samples, 2)
126
+ probs[true, 1] = proba
127
+ probs[true, 0] = 1.0 - proba
128
+ probs
129
+ end
130
+
131
+ # Dump marshal data.
132
+ # @return [Hash] The marshal data about LogisticRegression.
133
+ def marshal_dump
134
+ { params: @params,
135
+ weight_vec: @weight_vec,
136
+ bias_term: @bias_term,
137
+ classes: @classes,
138
+ rng: @rng }
139
+ end
140
+
141
+ # Load marshal data.
142
+ # @return [nil]
143
+ def marshal_load(obj)
144
+ @params = obj[:params]
145
+ @weight_vec = obj[:weight_vec]
146
+ @bias_term = obj[:bias_term]
147
+ @classes = obj[:classes]
148
+ @rng = obj[:rng]
149
+ nil
150
+ end
151
+
152
+ private
153
+
154
+ def calc_loss_gradient(x, y, weight)
155
+ y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
156
+ end
157
+ end
158
+ end
159
+ end
@@ -0,0 +1,110 @@
1
+ # frozen_string_literal: true
2
+
3
+ require 'rumale/linear_model/base_linear_model'
4
+ require 'rumale/base/regressor'
5
+
6
+ module Rumale
7
+ module LinearModel
8
+ # Ridge is a class that implements Ridge Regression
9
+ # with mini-batch stochastic gradient descent optimization.
10
+ #
11
+ # @example
12
+ # estimator =
13
+ # Rumale::LinearModel::Ridge.new(reg_param: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
14
+ # estimator.fit(training_samples, traininig_values)
15
+ # results = estimator.predict(testing_samples)
16
+ #
17
+ class Ridge < BaseLinearModel
18
+ include Base::Regressor
19
+
20
+ # Return the weight vector.
21
+ # @return [Numo::DFloat] (shape: [n_outputs, n_features])
22
+ attr_reader :weight_vec
23
+
24
+ # Return the bias term (a.k.a. intercept).
25
+ # @return [Numo::DFloat] (shape: [n_outputs])
26
+ attr_reader :bias_term
27
+
28
+ # Return the random generator for random sampling.
29
+ # @return [Random]
30
+ attr_reader :rng
31
+
32
+ # Create a new Ridge regressor.
33
+ #
34
+ # @param reg_param [Float] The regularization parameter.
35
+ # @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
36
+ # @param bias_scale [Float] The scale of the bias term.
37
+ # @param max_iter [Integer] The maximum number of iterations.
38
+ # @param batch_size [Integer] The size of the mini batches.
39
+ # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
40
+ # If nil is given, Nadam is used.
41
+ # @param random_seed [Integer] The seed value using to initialize the random generator.
42
+ def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
43
+ check_params_float(reg_param: reg_param, bias_scale: bias_scale)
44
+ check_params_integer(max_iter: max_iter, batch_size: batch_size)
45
+ check_params_boolean(fit_bias: fit_bias)
46
+ check_params_type_or_nil(Integer, random_seed: random_seed)
47
+ check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
48
+ super
49
+ end
50
+
51
+ # Fit the model with given training data.
52
+ #
53
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
54
+ # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
55
+ # @return [Ridge] The learned regressor itself.
56
+ def fit(x, y)
57
+ check_sample_array(x)
58
+ check_tvalue_array(y)
59
+ check_sample_tvalue_size(x, y)
60
+
61
+ n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
62
+ n_features = x.shape[1]
63
+
64
+ if n_outputs > 1
65
+ @weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
66
+ @bias_term = Numo::DFloat.zeros(n_outputs)
67
+ n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
68
+ else
69
+ @weight_vec, @bias_term = partial_fit(x, y)
70
+ end
71
+
72
+ self
73
+ end
74
+
75
+ # Predict values for samples.
76
+ #
77
+ # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
78
+ # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
79
+ def predict(x)
80
+ check_sample_array(x)
81
+ x.dot(@weight_vec.transpose) + @bias_term
82
+ end
83
+
84
+ # Dump marshal data.
85
+ # @return [Hash] The marshal data about Ridge.
86
+ def marshal_dump
87
+ { params: @params,
88
+ weight_vec: @weight_vec,
89
+ bias_term: @bias_term,
90
+ rng: @rng }
91
+ end
92
+
93
+ # Load marshal data.
94
+ # @return [nil]
95
+ def marshal_load(obj)
96
+ @params = obj[:params]
97
+ @weight_vec = obj[:weight_vec]
98
+ @bias_term = obj[:bias_term]
99
+ @rng = obj[:rng]
100
+ nil
101
+ end
102
+
103
+ private
104
+
105
+ def calc_loss_gradient(x, y, weight)
106
+ 2.0 * (x.dot(weight) - y)
107
+ end
108
+ end
109
+ end
110
+ end