rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,135 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/tree/base_decision_tree'
|
4
|
+
require 'rumale/base/regressor'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Tree
|
8
|
+
# DecisionTreeRegressor is a class that implements decision tree for regression.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# estimator =
|
12
|
+
# Rumale::Tree::DecisionTreeRegressor.new(
|
13
|
+
# max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
14
|
+
# estimator.fit(training_samples, traininig_values)
|
15
|
+
# results = estimator.predict(testing_samples)
|
16
|
+
#
|
17
|
+
class DecisionTreeRegressor < BaseDecisionTree
|
18
|
+
include Base::Regressor
|
19
|
+
|
20
|
+
# Return the importance for each feature.
|
21
|
+
# @return [Numo::DFloat] (size: n_features)
|
22
|
+
attr_reader :feature_importances
|
23
|
+
|
24
|
+
# Return the learned tree.
|
25
|
+
# @return [Node]
|
26
|
+
attr_reader :tree
|
27
|
+
|
28
|
+
# Return the random generator for random selection of feature index.
|
29
|
+
# @return [Random]
|
30
|
+
attr_reader :rng
|
31
|
+
|
32
|
+
# Return the values assigned each leaf.
|
33
|
+
# @return [Numo::DFloat] (shape: [n_leafs, n_outputs])
|
34
|
+
attr_reader :leaf_values
|
35
|
+
|
36
|
+
# Create a new regressor with decision tree algorithm.
|
37
|
+
#
|
38
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'mae' and 'mse'.
|
39
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
40
|
+
# If nil is given, decision tree grows without concern for depth.
|
41
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
42
|
+
# If nil is given, number of leaves is not limited.
|
43
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
+
# If nil is given, split process considers all features.
|
46
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
47
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
48
|
+
def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
49
|
+
random_seed: nil)
|
50
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
51
|
+
max_features: max_features, random_seed: random_seed)
|
52
|
+
check_params_integer(min_samples_leaf: min_samples_leaf)
|
53
|
+
check_params_string(criterion: criterion)
|
54
|
+
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
55
|
+
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
56
|
+
super
|
57
|
+
@leaf_values = nil
|
58
|
+
end
|
59
|
+
|
60
|
+
# Fit the model with given training data.
|
61
|
+
#
|
62
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
63
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
64
|
+
# @return [DecisionTreeRegressor] The learned regressor itself.
|
65
|
+
def fit(x, y)
|
66
|
+
check_sample_array(x)
|
67
|
+
check_tvalue_array(y)
|
68
|
+
check_sample_tvalue_size(x, y)
|
69
|
+
n_samples, n_features = x.shape
|
70
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
71
|
+
@params[:max_features] = [@params[:max_features], n_features].min
|
72
|
+
@n_leaves = 0
|
73
|
+
@leaf_values = []
|
74
|
+
build_tree(x, y)
|
75
|
+
eval_importance(n_samples, n_features)
|
76
|
+
@leaf_values = Numo::DFloat.cast(@leaf_values)
|
77
|
+
@leaf_values = @leaf_values.flatten.dup if @leaf_values.shape[1] == 1
|
78
|
+
self
|
79
|
+
end
|
80
|
+
|
81
|
+
# Predict values for samples.
|
82
|
+
#
|
83
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
84
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
85
|
+
def predict(x)
|
86
|
+
check_sample_array(x)
|
87
|
+
@leaf_values.shape[1].nil? ? @leaf_values[apply(x)] : @leaf_values[apply(x), true]
|
88
|
+
end
|
89
|
+
|
90
|
+
# Dump marshal data.
|
91
|
+
# @return [Hash] The marshal data about DecisionTreeRegressor
|
92
|
+
def marshal_dump
|
93
|
+
{ params: @params,
|
94
|
+
tree: @tree,
|
95
|
+
feature_importances: @feature_importances,
|
96
|
+
leaf_values: @leaf_values,
|
97
|
+
rng: @rng }
|
98
|
+
end
|
99
|
+
|
100
|
+
# Load marshal data.
|
101
|
+
# @return [nil]
|
102
|
+
def marshal_load(obj)
|
103
|
+
@params = obj[:params]
|
104
|
+
@tree = obj[:tree]
|
105
|
+
@feature_importances = obj[:feature_importances]
|
106
|
+
@leaf_values = obj[:leaf_values]
|
107
|
+
@rng = obj[:rng]
|
108
|
+
nil
|
109
|
+
end
|
110
|
+
|
111
|
+
private
|
112
|
+
|
113
|
+
def stop_growing?(y)
|
114
|
+
(y - y.mean(0)).sum.abs.zero?
|
115
|
+
end
|
116
|
+
|
117
|
+
def put_leaf(node, y)
|
118
|
+
node.probs = nil
|
119
|
+
node.leaf = true
|
120
|
+
node.leaf_id = @n_leaves
|
121
|
+
@n_leaves += 1
|
122
|
+
@leaf_values.push(y.mean(0))
|
123
|
+
node
|
124
|
+
end
|
125
|
+
|
126
|
+
def impurity(values)
|
127
|
+
if @params[:criterion] == 'mae'
|
128
|
+
(values - values.mean(0)).abs.mean
|
129
|
+
else
|
130
|
+
((values - values.mean(0))**2).mean
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
end
|
135
|
+
end
|
@@ -0,0 +1,70 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Rumale
|
4
|
+
module Tree
|
5
|
+
# Node is a class that implements node used for construction of decision tree.
|
6
|
+
# This class is used for internal data structures.
|
7
|
+
class Node
|
8
|
+
# @!visibility private
|
9
|
+
attr_accessor :depth, :impurity, :n_samples, :probs, :leaf, :leaf_id, :left, :right, :feature_id, :threshold
|
10
|
+
|
11
|
+
# Create a new node for decision tree.
|
12
|
+
#
|
13
|
+
# @param depth [Integer] The depth of the node in tree.
|
14
|
+
# @param impurity [Float] The impurity of the node.
|
15
|
+
# @param n_samples [Integer] The number of the samples in the node.
|
16
|
+
# @param probs [Float] The probability of the node.
|
17
|
+
# @param leaf [Boolean] The flag indicating whether the node is a leaf.
|
18
|
+
# @param leaf_id [Integer] The leaf index of the node.
|
19
|
+
# @param left [Node] The left node.
|
20
|
+
# @param right [Node] The right node.
|
21
|
+
# @param feature_id [Integer] The feature index used for evaluation.
|
22
|
+
# @param threshold [Float] The threshold value of the feature for splitting the node.
|
23
|
+
def initialize(depth: 0, impurity: 0.0, n_samples: 0, probs: 0.0,
|
24
|
+
leaf: true, leaf_id: 0,
|
25
|
+
left: nil, right: nil, feature_id: 0, threshold: 0.0)
|
26
|
+
@depth = depth
|
27
|
+
@impurity = impurity
|
28
|
+
@n_samples = n_samples
|
29
|
+
@probs = probs
|
30
|
+
@leaf = leaf
|
31
|
+
@leaf_id = leaf_id
|
32
|
+
@left = left
|
33
|
+
@right = right
|
34
|
+
@feature_id = feature_id
|
35
|
+
@threshold = threshold
|
36
|
+
end
|
37
|
+
|
38
|
+
# Dump marshal data.
|
39
|
+
# @return [Hash] The marshal data about Node
|
40
|
+
def marshal_dump
|
41
|
+
{ depth: @depth,
|
42
|
+
impurity: @impurity,
|
43
|
+
n_samples: @n_samples,
|
44
|
+
probs: @probs,
|
45
|
+
leaf: @leaf,
|
46
|
+
leaf_id: @leaf_id,
|
47
|
+
left: @left,
|
48
|
+
right: @right,
|
49
|
+
feature_id: @feature_id,
|
50
|
+
threshold: @threshold }
|
51
|
+
end
|
52
|
+
|
53
|
+
# Load marshal data.
|
54
|
+
# @return [nil]
|
55
|
+
def marshal_load(obj)
|
56
|
+
@depth = obj[:depth]
|
57
|
+
@impurity = obj[:impurity]
|
58
|
+
@n_samples = obj[:n_samples]
|
59
|
+
@probs = obj[:probs]
|
60
|
+
@leaf = obj[:leaf]
|
61
|
+
@leaf_id = obj[:leaf_id]
|
62
|
+
@left = obj[:left]
|
63
|
+
@right = obj[:right]
|
64
|
+
@feature_id = obj[:feature_id]
|
65
|
+
@threshold = obj[:threshold]
|
66
|
+
nil
|
67
|
+
end
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
data/lib/rumale/utils.rb
ADDED
@@ -0,0 +1,37 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Rumale
|
4
|
+
# @!visibility private
|
5
|
+
module Utils
|
6
|
+
module_function
|
7
|
+
|
8
|
+
# @!visibility private
|
9
|
+
def choice_ids(size, probs, rng = nil)
|
10
|
+
rng ||= Random.new
|
11
|
+
Array.new(size) do
|
12
|
+
target = rng.rand
|
13
|
+
chosen = 0
|
14
|
+
probs.each_with_index do |p, idx|
|
15
|
+
break (chosen = idx) if target <= p
|
16
|
+
target -= p
|
17
|
+
end
|
18
|
+
chosen
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
# @!visibility private
|
23
|
+
def rand_uniform(shape, rng = nil)
|
24
|
+
rng ||= Random.new
|
25
|
+
rnd_vals = Array.new(shape.inject(:*)) { rng.rand }
|
26
|
+
Numo::DFloat.asarray(rnd_vals).reshape(shape[0], shape[1])
|
27
|
+
end
|
28
|
+
|
29
|
+
# @!visibility private
|
30
|
+
def rand_normal(shape, rng = nil, mu = 0.0, sigma = 1.0)
|
31
|
+
rng ||= Random.new
|
32
|
+
a = rand_uniform(shape, rng)
|
33
|
+
b = rand_uniform(shape, rng)
|
34
|
+
(Numo::NMath.sqrt(Numo::NMath.log(a) * -2.0) * Numo::NMath.sin(b * 2.0 * Math::PI)) * sigma + mu
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,79 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Rumale
|
4
|
+
# @!visibility private
|
5
|
+
module Validation
|
6
|
+
module_function
|
7
|
+
|
8
|
+
# @!visibility private
|
9
|
+
def check_sample_array(x)
|
10
|
+
raise TypeError, 'Expect class of sample matrix to be Numo::DFloat' unless x.is_a?(Numo::DFloat)
|
11
|
+
raise ArgumentError, 'Expect sample matrix to be 2-D array' unless x.shape.size == 2
|
12
|
+
nil
|
13
|
+
end
|
14
|
+
|
15
|
+
# @!visibility private
|
16
|
+
def check_label_array(y)
|
17
|
+
raise TypeError, 'Expect class of label vector to be Numo::Int32' unless y.is_a?(Numo::Int32)
|
18
|
+
raise ArgumentError, 'Expect label vector to be 1-D arrray' unless y.shape.size == 1
|
19
|
+
nil
|
20
|
+
end
|
21
|
+
|
22
|
+
# @!visibility private
|
23
|
+
def check_tvalue_array(y)
|
24
|
+
raise TypeError, 'Expect class of target value vector to be Numo::DFloat' unless y.is_a?(Numo::DFloat)
|
25
|
+
nil
|
26
|
+
end
|
27
|
+
|
28
|
+
# @!visibility private
|
29
|
+
def check_sample_label_size(x, y)
|
30
|
+
raise ArgumentError, 'Expect to have the same number of samples for sample matrix and label vector' unless x.shape[0] == y.shape[0]
|
31
|
+
nil
|
32
|
+
end
|
33
|
+
|
34
|
+
# @!visibility private
|
35
|
+
def check_sample_tvalue_size(x, y)
|
36
|
+
raise ArgumentError, 'Expect to have the same number of samples for sample matrix and target value vector' unless x.shape[0] == y.shape[0]
|
37
|
+
nil
|
38
|
+
end
|
39
|
+
|
40
|
+
# @!visibility private
|
41
|
+
def check_params_type(type, params = {})
|
42
|
+
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type}" unless v.is_a?(type) }
|
43
|
+
nil
|
44
|
+
end
|
45
|
+
|
46
|
+
# @!visibility private
|
47
|
+
def check_params_type_or_nil(type, params = {})
|
48
|
+
params.each { |k, v| raise TypeError, "Expect class of #{k} to be #{type} or nil" unless v.is_a?(type) || v.is_a?(NilClass) }
|
49
|
+
nil
|
50
|
+
end
|
51
|
+
|
52
|
+
# @!visibility private
|
53
|
+
def check_params_float(params = {})
|
54
|
+
check_params_type(Float, params)
|
55
|
+
end
|
56
|
+
|
57
|
+
# @!visibility private
|
58
|
+
def check_params_integer(params = {})
|
59
|
+
check_params_type(Integer, params)
|
60
|
+
end
|
61
|
+
|
62
|
+
# @!visibility private
|
63
|
+
def check_params_string(params = {})
|
64
|
+
check_params_type(String, params)
|
65
|
+
end
|
66
|
+
|
67
|
+
# @!visibility private
|
68
|
+
def check_params_boolean(params = {})
|
69
|
+
params.each { |k, v| raise TypeError, "Expect class of #{k} to be Boolean" unless v.is_a?(FalseClass) || v.is_a?(TrueClass) }
|
70
|
+
nil
|
71
|
+
end
|
72
|
+
|
73
|
+
# @!visibility private
|
74
|
+
def check_params_positive(params = {})
|
75
|
+
params.reject { |_, v| v.nil? }.each { |k, v| raise ArgumentError, "Expect #{k} to be positive value" if v.negative? }
|
76
|
+
nil
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
data/rumale.gemspec
ADDED
@@ -0,0 +1,41 @@
|
|
1
|
+
lib = File.expand_path('lib', __dir__)
|
2
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
3
|
+
require 'rumale/version'
|
4
|
+
|
5
|
+
Gem::Specification.new do |spec|
|
6
|
+
spec.name = 'rumale'
|
7
|
+
spec.version = Rumale::VERSION
|
8
|
+
spec.authors = ['yoshoku']
|
9
|
+
spec.email = ['yoshoku@outlook.com']
|
10
|
+
|
11
|
+
spec.summary = <<MSG
|
12
|
+
Rumale is a machine learninig library in Ruby.
|
13
|
+
Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python.
|
14
|
+
MSG
|
15
|
+
spec.description = <<MSG
|
16
|
+
Rumale is a machine learninig library in Ruby.
|
17
|
+
Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python.
|
18
|
+
Rumale currently supports Linear / Kernel Support Vector Machine,
|
19
|
+
Logistic Regression, Linear Regression, Ridge, Lasso, Factorization Machine,
|
20
|
+
Naive Bayes, Decision Tree, AdaBoost, Random Forest, K-nearest neighbor algorithm,
|
21
|
+
K-Means, DBSCAN, Principal Component Analysis, and Non-negative Matrix Factorization.
|
22
|
+
MSG
|
23
|
+
spec.homepage = 'https://github.com/yoshoku/Rumale'
|
24
|
+
spec.license = 'BSD-2-Clause'
|
25
|
+
|
26
|
+
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
27
|
+
f.match(%r{^(test|spec|features)/})
|
28
|
+
end
|
29
|
+
spec.bindir = 'exe'
|
30
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
31
|
+
spec.require_paths = ['lib']
|
32
|
+
|
33
|
+
spec.required_ruby_version = '>= 2.3'
|
34
|
+
|
35
|
+
spec.add_runtime_dependency 'numo-narray', '>= 0.9.1'
|
36
|
+
|
37
|
+
spec.add_development_dependency 'bundler', '>= 1.16'
|
38
|
+
spec.add_development_dependency 'coveralls', '~> 0.8'
|
39
|
+
spec.add_development_dependency 'rake', '~> 12.0'
|
40
|
+
spec.add_development_dependency 'rspec', '~> 3.0'
|
41
|
+
end
|
metadata
ADDED
@@ -0,0 +1,204 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rumale
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.8.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- yoshoku
|
8
|
+
autorequire:
|
9
|
+
bindir: exe
|
10
|
+
cert_chain: []
|
11
|
+
date: 2019-03-01 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: numo-narray
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.9.1
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.9.1
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.16'
|
34
|
+
type: :development
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.16'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: coveralls
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - "~>"
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0.8'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - "~>"
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0.8'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rake
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - "~>"
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '12.0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - "~>"
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '12.0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: rspec
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - "~>"
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '3.0'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - "~>"
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '3.0'
|
83
|
+
description: |
|
84
|
+
Rumale is a machine learninig library in Ruby.
|
85
|
+
Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python.
|
86
|
+
Rumale currently supports Linear / Kernel Support Vector Machine,
|
87
|
+
Logistic Regression, Linear Regression, Ridge, Lasso, Factorization Machine,
|
88
|
+
Naive Bayes, Decision Tree, AdaBoost, Random Forest, K-nearest neighbor algorithm,
|
89
|
+
K-Means, DBSCAN, Principal Component Analysis, and Non-negative Matrix Factorization.
|
90
|
+
email:
|
91
|
+
- yoshoku@outlook.com
|
92
|
+
executables: []
|
93
|
+
extensions: []
|
94
|
+
extra_rdoc_files: []
|
95
|
+
files:
|
96
|
+
- ".coveralls.yml"
|
97
|
+
- ".gitignore"
|
98
|
+
- ".rspec"
|
99
|
+
- ".rubocop.yml"
|
100
|
+
- ".rubocop_todo.yml"
|
101
|
+
- ".travis.yml"
|
102
|
+
- CHANGELOG.md
|
103
|
+
- CODE_OF_CONDUCT.md
|
104
|
+
- Gemfile
|
105
|
+
- LICENSE.txt
|
106
|
+
- README.md
|
107
|
+
- Rakefile
|
108
|
+
- bin/console
|
109
|
+
- bin/setup
|
110
|
+
- lib/rumale.rb
|
111
|
+
- lib/rumale/base/base_estimator.rb
|
112
|
+
- lib/rumale/base/classifier.rb
|
113
|
+
- lib/rumale/base/cluster_analyzer.rb
|
114
|
+
- lib/rumale/base/evaluator.rb
|
115
|
+
- lib/rumale/base/regressor.rb
|
116
|
+
- lib/rumale/base/splitter.rb
|
117
|
+
- lib/rumale/base/transformer.rb
|
118
|
+
- lib/rumale/clustering/dbscan.rb
|
119
|
+
- lib/rumale/clustering/k_means.rb
|
120
|
+
- lib/rumale/dataset.rb
|
121
|
+
- lib/rumale/decomposition/nmf.rb
|
122
|
+
- lib/rumale/decomposition/pca.rb
|
123
|
+
- lib/rumale/ensemble/ada_boost_classifier.rb
|
124
|
+
- lib/rumale/ensemble/ada_boost_regressor.rb
|
125
|
+
- lib/rumale/ensemble/random_forest_classifier.rb
|
126
|
+
- lib/rumale/ensemble/random_forest_regressor.rb
|
127
|
+
- lib/rumale/evaluation_measure/accuracy.rb
|
128
|
+
- lib/rumale/evaluation_measure/f_score.rb
|
129
|
+
- lib/rumale/evaluation_measure/log_loss.rb
|
130
|
+
- lib/rumale/evaluation_measure/mean_absolute_error.rb
|
131
|
+
- lib/rumale/evaluation_measure/mean_squared_error.rb
|
132
|
+
- lib/rumale/evaluation_measure/normalized_mutual_information.rb
|
133
|
+
- lib/rumale/evaluation_measure/precision.rb
|
134
|
+
- lib/rumale/evaluation_measure/precision_recall.rb
|
135
|
+
- lib/rumale/evaluation_measure/purity.rb
|
136
|
+
- lib/rumale/evaluation_measure/r2_score.rb
|
137
|
+
- lib/rumale/evaluation_measure/recall.rb
|
138
|
+
- lib/rumale/kernel_approximation/rbf.rb
|
139
|
+
- lib/rumale/kernel_machine/kernel_svc.rb
|
140
|
+
- lib/rumale/linear_model/base_linear_model.rb
|
141
|
+
- lib/rumale/linear_model/lasso.rb
|
142
|
+
- lib/rumale/linear_model/linear_regression.rb
|
143
|
+
- lib/rumale/linear_model/logistic_regression.rb
|
144
|
+
- lib/rumale/linear_model/ridge.rb
|
145
|
+
- lib/rumale/linear_model/svc.rb
|
146
|
+
- lib/rumale/linear_model/svr.rb
|
147
|
+
- lib/rumale/model_selection/cross_validation.rb
|
148
|
+
- lib/rumale/model_selection/grid_search_cv.rb
|
149
|
+
- lib/rumale/model_selection/k_fold.rb
|
150
|
+
- lib/rumale/model_selection/stratified_k_fold.rb
|
151
|
+
- lib/rumale/multiclass/one_vs_rest_classifier.rb
|
152
|
+
- lib/rumale/naive_bayes/naive_bayes.rb
|
153
|
+
- lib/rumale/nearest_neighbors/k_neighbors_classifier.rb
|
154
|
+
- lib/rumale/nearest_neighbors/k_neighbors_regressor.rb
|
155
|
+
- lib/rumale/optimizer/nadam.rb
|
156
|
+
- lib/rumale/optimizer/rmsprop.rb
|
157
|
+
- lib/rumale/optimizer/sgd.rb
|
158
|
+
- lib/rumale/optimizer/yellow_fin.rb
|
159
|
+
- lib/rumale/pairwise_metric.rb
|
160
|
+
- lib/rumale/pipeline/pipeline.rb
|
161
|
+
- lib/rumale/polynomial_model/base_factorization_machine.rb
|
162
|
+
- lib/rumale/polynomial_model/factorization_machine_classifier.rb
|
163
|
+
- lib/rumale/polynomial_model/factorization_machine_regressor.rb
|
164
|
+
- lib/rumale/preprocessing/l2_normalizer.rb
|
165
|
+
- lib/rumale/preprocessing/label_encoder.rb
|
166
|
+
- lib/rumale/preprocessing/min_max_scaler.rb
|
167
|
+
- lib/rumale/preprocessing/one_hot_encoder.rb
|
168
|
+
- lib/rumale/preprocessing/standard_scaler.rb
|
169
|
+
- lib/rumale/probabilistic_output.rb
|
170
|
+
- lib/rumale/tree/base_decision_tree.rb
|
171
|
+
- lib/rumale/tree/decision_tree_classifier.rb
|
172
|
+
- lib/rumale/tree/decision_tree_regressor.rb
|
173
|
+
- lib/rumale/tree/node.rb
|
174
|
+
- lib/rumale/utils.rb
|
175
|
+
- lib/rumale/validation.rb
|
176
|
+
- lib/rumale/values.rb
|
177
|
+
- lib/rumale/version.rb
|
178
|
+
- rumale.gemspec
|
179
|
+
homepage: https://github.com/yoshoku/Rumale
|
180
|
+
licenses:
|
181
|
+
- BSD-2-Clause
|
182
|
+
metadata: {}
|
183
|
+
post_install_message:
|
184
|
+
rdoc_options: []
|
185
|
+
require_paths:
|
186
|
+
- lib
|
187
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
188
|
+
requirements:
|
189
|
+
- - ">="
|
190
|
+
- !ruby/object:Gem::Version
|
191
|
+
version: '2.3'
|
192
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
193
|
+
requirements:
|
194
|
+
- - ">="
|
195
|
+
- !ruby/object:Gem::Version
|
196
|
+
version: '0'
|
197
|
+
requirements: []
|
198
|
+
rubyforge_project:
|
199
|
+
rubygems_version: 2.5.2.3
|
200
|
+
signing_key:
|
201
|
+
specification_version: 4
|
202
|
+
summary: Rumale is a machine learninig library in Ruby. Rumale provides machine learning
|
203
|
+
algorithms with interfaces similar to Scikit-Learn in Python.
|
204
|
+
test_files: []
|