rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,86 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# This module consists of the classes that perform preprocessings.
|
8
|
+
module Preprocessing
|
9
|
+
# Normalize samples by centering and scaling to unit variance.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# normalizer = Rumale::Preprocessing::StandardScaler.new
|
13
|
+
# new_training_samples = normalizer.fit_transform(training_samples)
|
14
|
+
# new_testing_samples = normalizer.transform(testing_samples)
|
15
|
+
class StandardScaler
|
16
|
+
include Base::BaseEstimator
|
17
|
+
include Base::Transformer
|
18
|
+
|
19
|
+
# Return the vector consists of the mean value for each feature.
|
20
|
+
# @return [Numo::DFloat] (shape: [n_features])
|
21
|
+
attr_reader :mean_vec
|
22
|
+
|
23
|
+
# Return the vector consists of the standard deviation for each feature.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_features])
|
25
|
+
attr_reader :std_vec
|
26
|
+
|
27
|
+
# Create a new normalizer for centering and scaling to unit variance.
|
28
|
+
def initialize
|
29
|
+
@params = {}
|
30
|
+
@mean_vec = nil
|
31
|
+
@std_vec = nil
|
32
|
+
end
|
33
|
+
|
34
|
+
# Calculate the mean value and standard deviation of each feature for scaling.
|
35
|
+
#
|
36
|
+
# @overload fit(x) -> StandardScaler
|
37
|
+
#
|
38
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
39
|
+
# The samples to calculate the mean values and standard deviations.
|
40
|
+
# @return [StandardScaler]
|
41
|
+
def fit(x, _y = nil)
|
42
|
+
check_sample_array(x)
|
43
|
+
@mean_vec = x.mean(0)
|
44
|
+
@std_vec = x.stddev(0)
|
45
|
+
self
|
46
|
+
end
|
47
|
+
|
48
|
+
# Calculate the mean values and standard deviations, and then normalize samples using them.
|
49
|
+
#
|
50
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
51
|
+
#
|
52
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
53
|
+
# The samples to calculate the mean values and standard deviations.
|
54
|
+
# @return [Numo::DFloat] The scaled samples.
|
55
|
+
def fit_transform(x, _y = nil)
|
56
|
+
check_sample_array(x)
|
57
|
+
fit(x).transform(x)
|
58
|
+
end
|
59
|
+
|
60
|
+
# Perform standardization the given samples.
|
61
|
+
#
|
62
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled.
|
63
|
+
# @return [Numo::DFloat] The scaled samples.
|
64
|
+
def transform(x)
|
65
|
+
check_sample_array(x)
|
66
|
+
n_samples, = x.shape
|
67
|
+
(x - @mean_vec.tile(n_samples, 1)) / @std_vec.tile(n_samples, 1)
|
68
|
+
end
|
69
|
+
|
70
|
+
# Dump marshal data.
|
71
|
+
# @return [Hash] The marshal data about StandardScaler.
|
72
|
+
def marshal_dump
|
73
|
+
{ mean_vec: @mean_vec,
|
74
|
+
std_vec: @std_vec }
|
75
|
+
end
|
76
|
+
|
77
|
+
# Load marshal data.
|
78
|
+
# @return [nil]
|
79
|
+
def marshal_load(obj)
|
80
|
+
@mean_vec = obj[:mean_vec]
|
81
|
+
@std_vec = obj[:std_vec]
|
82
|
+
nil
|
83
|
+
end
|
84
|
+
end
|
85
|
+
end
|
86
|
+
end
|
@@ -0,0 +1,112 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Rumale
|
4
|
+
# Module for calculating posterior class probabilities with SVM outputs.
|
5
|
+
# This module is used for internal processes.
|
6
|
+
#
|
7
|
+
# @example
|
8
|
+
# estimator = Rumale::LinearModel::SVC.new
|
9
|
+
# estimator.fit(x, bin_y)
|
10
|
+
# df = estimator.decision_function(x)
|
11
|
+
# params = Rumale::ProbabilisticOutput.fit_sigmoid(df, bin_y)
|
12
|
+
# probs = 1 / (Numo::NMath.exp(params[0] * df + params[1]) + 1)
|
13
|
+
#
|
14
|
+
# *Reference*
|
15
|
+
# 1. J C. Platt, "Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods," Adv. Large Margin Classifiers, pp. 61--74, 2000.
|
16
|
+
# 1. H-T Lin, C-J Lin, and R C.Weng, "A Note on Platt's Probabilistic Outputs for Support Vector Machines," J. Machine Learning, Vol. 63 (3), pp. 267--276, 2007.
|
17
|
+
module ProbabilisticOutput
|
18
|
+
class << self
|
19
|
+
# Fit the probabilistic model for binary SVM outputs.
|
20
|
+
#
|
21
|
+
# @param df [Numo::DFloat] (shape: [n_samples]) The outputs of decision function to be used for fitting the model.
|
22
|
+
# @param bin_y [Numo::Int32] (shape: [n_samples]) The binary labels to be used for fitting the model.
|
23
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
24
|
+
# @param min_step [Float] The minimum step of Newton's method.
|
25
|
+
# @param sigma [Float] The parameter to avoid hessian matrix from becoming singular matrix.
|
26
|
+
# @return [Numo::DFloat] (shape: 2) The parameters of the model.
|
27
|
+
def fit_sigmoid(df, bin_y, max_iter = 100, min_step = 1e-10, sigma = 1e-12)
|
28
|
+
# Initialize some variables.
|
29
|
+
n_samples = bin_y.size
|
30
|
+
negative_label = bin_y.to_a.uniq.min
|
31
|
+
pos = bin_y.ne(negative_label)
|
32
|
+
neg = bin_y.eq(negative_label)
|
33
|
+
n_pos_samples = pos.count
|
34
|
+
n_neg_samples = neg.count
|
35
|
+
target_probs = Numo::DFloat.zeros(n_samples)
|
36
|
+
target_probs[pos] = (n_pos_samples + 1) / (n_pos_samples + 2.0)
|
37
|
+
target_probs[neg] = 1 / (n_neg_samples + 2.0)
|
38
|
+
alpha = 0.0
|
39
|
+
beta = Math.log((n_neg_samples + 1) / (n_pos_samples + 1.0))
|
40
|
+
err = error_function(target_probs, df, alpha, beta)
|
41
|
+
# Optimize parameters for class porbability calculation.
|
42
|
+
old_grad_vec = Numo::DFloat.zeros(2)
|
43
|
+
max_iter.times do
|
44
|
+
# Calculate gradient and hessian matrix.
|
45
|
+
probs = predicted_probs(df, alpha, beta)
|
46
|
+
grad_vec = gradient(target_probs, probs, df)
|
47
|
+
hess_mat = hessian_matrix(probs, df, sigma)
|
48
|
+
break if grad_vec.abs.lt(1e-5).count == 2
|
49
|
+
break if (old_grad_vec - grad_vec).abs.sum < 1e-5
|
50
|
+
old_grad_vec = grad_vec
|
51
|
+
# Calculate Newton directions.
|
52
|
+
dirs_vec = directions(grad_vec, hess_mat)
|
53
|
+
grad_dir = grad_vec.dot(dirs_vec)
|
54
|
+
stepsize = 2.0
|
55
|
+
while stepsize >= min_step
|
56
|
+
stepsize *= 0.5
|
57
|
+
new_alpha = alpha + stepsize * dirs_vec[0]
|
58
|
+
new_beta = beta + stepsize * dirs_vec[1]
|
59
|
+
new_err = error_function(target_probs, df, new_alpha, new_beta)
|
60
|
+
next unless new_err < err + 0.0001 * stepsize * grad_dir
|
61
|
+
alpha = new_alpha
|
62
|
+
beta = new_beta
|
63
|
+
err = new_err
|
64
|
+
break
|
65
|
+
end
|
66
|
+
end
|
67
|
+
Numo::DFloat[alpha, beta]
|
68
|
+
end
|
69
|
+
|
70
|
+
private
|
71
|
+
|
72
|
+
def error_function(target_probs, df, alpha, beta)
|
73
|
+
fn = alpha * df + beta
|
74
|
+
pos = fn.ge(0.0)
|
75
|
+
neg = fn.lt(0.0)
|
76
|
+
err = 0.0
|
77
|
+
err += (target_probs[pos] * fn[pos] + Numo::NMath.log(1 + Numo::NMath.exp(-fn[pos]))).sum if pos.count.positive?
|
78
|
+
err += ((target_probs[neg] - 1) * fn[neg] + Numo::NMath.log(1 + Numo::NMath.exp(fn[neg]))).sum if neg.count.positive?
|
79
|
+
err
|
80
|
+
end
|
81
|
+
|
82
|
+
def predicted_probs(df, alpha, beta)
|
83
|
+
fn = alpha * df + beta
|
84
|
+
pos = fn.ge(0.0)
|
85
|
+
neg = fn.lt(0.0)
|
86
|
+
probs = Numo::DFloat.zeros(df.shape[0])
|
87
|
+
probs[pos] = Numo::NMath.exp(-fn[pos]) / (1 + Numo::NMath.exp(-fn[pos])) if pos.count.positive?
|
88
|
+
probs[neg] = 1 / (1 + Numo::NMath.exp(fn[neg])) if neg.count.positive?
|
89
|
+
probs
|
90
|
+
end
|
91
|
+
|
92
|
+
def gradient(target_probs, probs, df)
|
93
|
+
sub = target_probs - probs
|
94
|
+
Numo::DFloat[(df * sub).sum, sub.sum]
|
95
|
+
end
|
96
|
+
|
97
|
+
def hessian_matrix(probs, df, sigma)
|
98
|
+
sub = probs * (1 - probs)
|
99
|
+
h11 = (df * df * sub).sum + sigma
|
100
|
+
h22 = sub.sum + sigma
|
101
|
+
h21 = (df * sub).sum
|
102
|
+
Numo::DFloat[[h11, h21], [h21, h22]]
|
103
|
+
end
|
104
|
+
|
105
|
+
def directions(grad_vec, hess_mat)
|
106
|
+
det = hess_mat[0, 0] * hess_mat[1, 1] - hess_mat[0, 1] * hess_mat[1, 0]
|
107
|
+
inv_hess_mat = Numo::DFloat[[hess_mat[1, 1], -hess_mat[0, 1]], [-hess_mat[1, 0], hess_mat[0, 0]]] / det
|
108
|
+
-inv_hess_mat.dot(grad_vec)
|
109
|
+
end
|
110
|
+
end
|
111
|
+
end
|
112
|
+
end
|
@@ -0,0 +1,153 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/tree/node'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# This module consists of the classes that implement tree models.
|
8
|
+
module Tree
|
9
|
+
# BaseDecisionTree is an abstract class for implementation of decision tree-based estimator.
|
10
|
+
# This class is used internally.
|
11
|
+
class BaseDecisionTree
|
12
|
+
include Base::BaseEstimator
|
13
|
+
|
14
|
+
# Initialize a decision tree-based estimator.
|
15
|
+
#
|
16
|
+
# @param criterion [String] The function to evalue spliting point.
|
17
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
18
|
+
# If nil is given, decision tree grows without concern for depth.
|
19
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
20
|
+
# If nil is given, number of leaves is not limited.
|
21
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
22
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
23
|
+
# If nil is given, split process considers all features.
|
24
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
25
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
26
|
+
def initialize(criterion: nil, max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil, random_seed: nil)
|
27
|
+
@params = {}
|
28
|
+
@params[:criterion] = criterion
|
29
|
+
@params[:max_depth] = max_depth
|
30
|
+
@params[:max_leaf_nodes] = max_leaf_nodes
|
31
|
+
@params[:min_samples_leaf] = min_samples_leaf
|
32
|
+
@params[:max_features] = max_features
|
33
|
+
@params[:random_seed] = random_seed
|
34
|
+
@params[:random_seed] ||= srand
|
35
|
+
@tree = nil
|
36
|
+
@feature_importances = nil
|
37
|
+
@n_leaves = nil
|
38
|
+
@rng = Random.new(@params[:random_seed])
|
39
|
+
end
|
40
|
+
|
41
|
+
# Return the index of the leaf that each sample reached.
|
42
|
+
#
|
43
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
44
|
+
# @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample.
|
45
|
+
def apply(x)
|
46
|
+
check_sample_array(x)
|
47
|
+
Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
|
48
|
+
end
|
49
|
+
|
50
|
+
private
|
51
|
+
|
52
|
+
def apply_at_node(node, sample)
|
53
|
+
return node.leaf_id if node.leaf
|
54
|
+
return apply_at_node(node.left, sample) if node.right.nil?
|
55
|
+
return apply_at_node(node.right, sample) if node.left.nil?
|
56
|
+
if sample[node.feature_id] <= node.threshold
|
57
|
+
apply_at_node(node.left, sample)
|
58
|
+
else
|
59
|
+
apply_at_node(node.right, sample)
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
def build_tree(x, y)
|
64
|
+
y = y.expand_dims(1).dup if y.shape[1].nil?
|
65
|
+
@tree = grow_node(0, x, y, impurity(y))
|
66
|
+
nil
|
67
|
+
end
|
68
|
+
|
69
|
+
def grow_node(depth, x, y, whole_impurity)
|
70
|
+
unless @params[:max_leaf_nodes].nil?
|
71
|
+
return nil if @n_leaves >= @params[:max_leaf_nodes]
|
72
|
+
end
|
73
|
+
|
74
|
+
n_samples, n_features = x.shape
|
75
|
+
return nil if n_samples <= @params[:min_samples_leaf]
|
76
|
+
|
77
|
+
node = Node.new(depth: depth, impurity: whole_impurity, n_samples: n_samples)
|
78
|
+
|
79
|
+
return put_leaf(node, y) if stop_growing?(y)
|
80
|
+
|
81
|
+
unless @params[:max_depth].nil?
|
82
|
+
return put_leaf(node, y) if depth == @params[:max_depth]
|
83
|
+
end
|
84
|
+
|
85
|
+
feature_id, threshold, left_ids, right_ids, left_impurity, right_impurity, gain =
|
86
|
+
rand_ids(n_features).map { |f_id| [f_id, *best_split(x[true, f_id], y, whole_impurity)] }.max_by(&:last)
|
87
|
+
|
88
|
+
return put_leaf(node, y) if gain.nil? || gain.zero?
|
89
|
+
|
90
|
+
node.left = grow_node(depth + 1, x[left_ids, true], y[left_ids, true], left_impurity)
|
91
|
+
node.right = grow_node(depth + 1, x[right_ids, true], y[right_ids, true], right_impurity)
|
92
|
+
|
93
|
+
return put_leaf(node, y) if node.left.nil? && node.right.nil?
|
94
|
+
|
95
|
+
node.feature_id = feature_id
|
96
|
+
node.threshold = threshold
|
97
|
+
node.leaf = false
|
98
|
+
node
|
99
|
+
end
|
100
|
+
|
101
|
+
def stop_growing?(_y)
|
102
|
+
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
103
|
+
end
|
104
|
+
|
105
|
+
def put_leaf(_node, _y)
|
106
|
+
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
107
|
+
end
|
108
|
+
|
109
|
+
def rand_ids(n)
|
110
|
+
[*0...n].sample(@params[:max_features], random: @rng)
|
111
|
+
end
|
112
|
+
|
113
|
+
def best_split(features, targets, whole_impurity)
|
114
|
+
n_samples = targets.shape[0]
|
115
|
+
features.to_a.uniq.sort.each_cons(2).map do |l, r|
|
116
|
+
threshold = 0.5 * (l + r)
|
117
|
+
left_ids = features.le(threshold).where
|
118
|
+
right_ids = features.gt(threshold).where
|
119
|
+
left_impurity = impurity(targets[left_ids, true])
|
120
|
+
right_impurity = impurity(targets[right_ids, true])
|
121
|
+
gain = whole_impurity -
|
122
|
+
left_impurity * left_ids.size.fdiv(n_samples) -
|
123
|
+
right_impurity * right_ids.size.fdiv(n_samples)
|
124
|
+
[threshold, left_ids, right_ids, left_impurity, right_impurity, gain]
|
125
|
+
end.max_by(&:last)
|
126
|
+
end
|
127
|
+
|
128
|
+
def impurity(_targets)
|
129
|
+
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
130
|
+
end
|
131
|
+
|
132
|
+
def eval_importance(n_samples, n_features)
|
133
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
134
|
+
eval_importance_at_node(@tree)
|
135
|
+
@feature_importances /= n_samples
|
136
|
+
normalizer = @feature_importances.sum
|
137
|
+
@feature_importances /= normalizer if normalizer > 0.0
|
138
|
+
nil
|
139
|
+
end
|
140
|
+
|
141
|
+
def eval_importance_at_node(node)
|
142
|
+
return nil if node.leaf
|
143
|
+
return nil if node.left.nil? || node.right.nil?
|
144
|
+
gain = node.n_samples * node.impurity -
|
145
|
+
node.left.n_samples * node.left.impurity -
|
146
|
+
node.right.n_samples * node.right.impurity
|
147
|
+
@feature_importances[node.feature_id] += gain
|
148
|
+
eval_importance_at_node(node.left)
|
149
|
+
eval_importance_at_node(node.right)
|
150
|
+
end
|
151
|
+
end
|
152
|
+
end
|
153
|
+
end
|
@@ -0,0 +1,163 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/tree/base_decision_tree'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Tree
|
8
|
+
# DecisionTreeClassifier is a class that implements decision tree for classification.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# estimator =
|
12
|
+
# Rumale::Tree::DecisionTreeClassifier.new(
|
13
|
+
# criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
14
|
+
# estimator.fit(training_samples, traininig_labels)
|
15
|
+
# results = estimator.predict(testing_samples)
|
16
|
+
#
|
17
|
+
class DecisionTreeClassifier < BaseDecisionTree
|
18
|
+
include Base::Classifier
|
19
|
+
|
20
|
+
# Return the class labels.
|
21
|
+
# @return [Numo::Int32] (size: n_classes)
|
22
|
+
attr_reader :classes
|
23
|
+
|
24
|
+
# Return the importance for each feature.
|
25
|
+
# @return [Numo::DFloat] (size: n_features)
|
26
|
+
attr_reader :feature_importances
|
27
|
+
|
28
|
+
# Return the learned tree.
|
29
|
+
# @return [Node]
|
30
|
+
attr_reader :tree
|
31
|
+
|
32
|
+
# Return the random generator for random selection of feature index.
|
33
|
+
# @return [Random]
|
34
|
+
attr_reader :rng
|
35
|
+
|
36
|
+
# Return the labels assigned each leaf.
|
37
|
+
# @return [Numo::Int32] (size: n_leafs)
|
38
|
+
attr_reader :leaf_labels
|
39
|
+
|
40
|
+
# Create a new classifier with decision tree algorithm.
|
41
|
+
#
|
42
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
43
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
44
|
+
# If nil is given, decision tree grows without concern for depth.
|
45
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
46
|
+
# If nil is given, number of leaves is not limited.
|
47
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
48
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
49
|
+
# If nil is given, split process considers all features.
|
50
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
51
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
52
|
+
def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
53
|
+
random_seed: nil)
|
54
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
55
|
+
max_features: max_features, random_seed: random_seed)
|
56
|
+
check_params_integer(min_samples_leaf: min_samples_leaf)
|
57
|
+
check_params_string(criterion: criterion)
|
58
|
+
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
59
|
+
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
60
|
+
super
|
61
|
+
@leaf_labels = nil
|
62
|
+
end
|
63
|
+
|
64
|
+
# Fit the model with given training data.
|
65
|
+
#
|
66
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
67
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
68
|
+
# @return [DecisionTreeClassifier] The learned classifier itself.
|
69
|
+
def fit(x, y)
|
70
|
+
check_sample_array(x)
|
71
|
+
check_label_array(y)
|
72
|
+
check_sample_label_size(x, y)
|
73
|
+
n_samples, n_features = x.shape
|
74
|
+
@params[:max_features] = n_features if @params[:max_features].nil?
|
75
|
+
@params[:max_features] = [@params[:max_features], n_features].min
|
76
|
+
uniq_y = y.to_a.uniq.sort
|
77
|
+
@classes = Numo::Int32.asarray(uniq_y)
|
78
|
+
@n_leaves = 0
|
79
|
+
@leaf_labels = []
|
80
|
+
build_tree(x, y.map { |v| uniq_y.index(v) })
|
81
|
+
eval_importance(n_samples, n_features)
|
82
|
+
@leaf_labels = Numo::Int32[*@leaf_labels]
|
83
|
+
self
|
84
|
+
end
|
85
|
+
|
86
|
+
# Predict class labels for samples.
|
87
|
+
#
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
89
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
90
|
+
def predict(x)
|
91
|
+
check_sample_array(x)
|
92
|
+
@leaf_labels[apply(x)]
|
93
|
+
end
|
94
|
+
|
95
|
+
# Predict probability for samples.
|
96
|
+
#
|
97
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
98
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
99
|
+
def predict_proba(x)
|
100
|
+
check_sample_array(x)
|
101
|
+
Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_proba_at_node(@tree, x[n, true]) })]
|
102
|
+
end
|
103
|
+
|
104
|
+
# Dump marshal data.
|
105
|
+
# @return [Hash] The marshal data about DecisionTreeClassifier
|
106
|
+
def marshal_dump
|
107
|
+
{ params: @params,
|
108
|
+
classes: @classes,
|
109
|
+
tree: @tree,
|
110
|
+
feature_importances: @feature_importances,
|
111
|
+
leaf_labels: @leaf_labels,
|
112
|
+
rng: @rng }
|
113
|
+
end
|
114
|
+
|
115
|
+
# Load marshal data.
|
116
|
+
# @return [nil]
|
117
|
+
def marshal_load(obj)
|
118
|
+
@params = obj[:params]
|
119
|
+
@classes = obj[:classes]
|
120
|
+
@tree = obj[:tree]
|
121
|
+
@feature_importances = obj[:feature_importances]
|
122
|
+
@leaf_labels = obj[:leaf_labels]
|
123
|
+
@rng = obj[:rng]
|
124
|
+
nil
|
125
|
+
end
|
126
|
+
|
127
|
+
private
|
128
|
+
|
129
|
+
def predict_proba_at_node(node, sample)
|
130
|
+
return node.probs if node.leaf
|
131
|
+
return predict_proba_at_node(node.left, sample) if node.right.nil?
|
132
|
+
return predict_proba_at_node(node.right, sample) if node.left.nil?
|
133
|
+
if sample[node.feature_id] <= node.threshold
|
134
|
+
predict_proba_at_node(node.left, sample)
|
135
|
+
else
|
136
|
+
predict_proba_at_node(node.right, sample)
|
137
|
+
end
|
138
|
+
end
|
139
|
+
|
140
|
+
def stop_growing?(y)
|
141
|
+
y.flatten.to_a.uniq.size == 1
|
142
|
+
end
|
143
|
+
|
144
|
+
def put_leaf(node, y)
|
145
|
+
node.probs = y.flatten.bincount(minlength: @classes.size) / node.n_samples.to_f
|
146
|
+
node.leaf = true
|
147
|
+
node.leaf_id = @n_leaves
|
148
|
+
@n_leaves += 1
|
149
|
+
@leaf_labels.push(@classes[node.probs.max_index])
|
150
|
+
node
|
151
|
+
end
|
152
|
+
|
153
|
+
def impurity(y)
|
154
|
+
posterior_probs = y.flatten.bincount / y.size.to_f
|
155
|
+
if @params[:criterion] == 'entropy'
|
156
|
+
-(posterior_probs * Numo::NMath.log(posterior_probs + 1)).sum
|
157
|
+
else
|
158
|
+
1.0 - (posterior_probs * posterior_probs).sum
|
159
|
+
end
|
160
|
+
end
|
161
|
+
end
|
162
|
+
end
|
163
|
+
end
|