rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,183 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/linear_model/base_linear_model'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/probabilistic_output'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
# This module consists of the classes that implement generalized linear models.
|
9
|
+
module LinearModel
|
10
|
+
# SVC is a class that implements Support Vector Classifier
|
11
|
+
# with mini-batch stochastic gradient descent optimization.
|
12
|
+
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# estimator =
|
16
|
+
# Rumale::LinearModel::SVC.new(reg_param: 1.0, max_iter: 1000, batch_size: 20, random_seed: 1)
|
17
|
+
# estimator.fit(training_samples, traininig_labels)
|
18
|
+
# results = estimator.predict(testing_samples)
|
19
|
+
#
|
20
|
+
# *Reference*
|
21
|
+
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
22
|
+
class SVC < BaseLinearModel
|
23
|
+
include Base::Classifier
|
24
|
+
|
25
|
+
# Return the weight vector for SVC.
|
26
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
27
|
+
attr_reader :weight_vec
|
28
|
+
|
29
|
+
# Return the bias term (a.k.a. intercept) for SVC.
|
30
|
+
# @return [Numo::DFloat] (shape: [n_classes])
|
31
|
+
attr_reader :bias_term
|
32
|
+
|
33
|
+
# Return the class labels.
|
34
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
35
|
+
attr_reader :classes
|
36
|
+
|
37
|
+
# Return the random generator for performing random sampling.
|
38
|
+
# @return [Random]
|
39
|
+
attr_reader :rng
|
40
|
+
|
41
|
+
# Create a new classifier with Support Vector Machine by the SGD optimization.
|
42
|
+
#
|
43
|
+
# @param reg_param [Float] The regularization parameter.
|
44
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
45
|
+
# @param bias_scale [Float] The scale of the bias term.
|
46
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
47
|
+
# @param batch_size [Integer] The size of the mini batches.
|
48
|
+
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
49
|
+
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
50
|
+
# If nil is given, Nadam is used.
|
51
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
52
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
53
|
+
max_iter: 1000, batch_size: 20, probability: false, optimizer: nil, random_seed: nil)
|
54
|
+
check_params_float(reg_param: reg_param, bias_scale: bias_scale)
|
55
|
+
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
56
|
+
check_params_boolean(fit_bias: fit_bias, probability: probability)
|
57
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
58
|
+
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
|
59
|
+
keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h
|
60
|
+
keywd_args.delete(:probability)
|
61
|
+
super(keywd_args)
|
62
|
+
@params[:probability] = probability
|
63
|
+
@prob_param = nil
|
64
|
+
@classes = nil
|
65
|
+
end
|
66
|
+
|
67
|
+
# Fit the model with given training data.
|
68
|
+
#
|
69
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
70
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
71
|
+
# @return [SVC] The learned classifier itself.
|
72
|
+
def fit(x, y)
|
73
|
+
check_sample_array(x)
|
74
|
+
check_label_array(y)
|
75
|
+
check_sample_label_size(x, y)
|
76
|
+
|
77
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
78
|
+
n_classes = @classes.size
|
79
|
+
n_features = x.shape[1]
|
80
|
+
|
81
|
+
if n_classes > 2
|
82
|
+
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
83
|
+
@bias_term = Numo::DFloat.zeros(n_classes)
|
84
|
+
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
85
|
+
n_classes.times do |n|
|
86
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
87
|
+
@weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
88
|
+
@prob_param[n, true] = if @params[:probability]
|
89
|
+
Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec[n, true].transpose) + @bias_term[n], bin_y)
|
90
|
+
else
|
91
|
+
Numo::DFloat[1, 0]
|
92
|
+
end
|
93
|
+
end
|
94
|
+
else
|
95
|
+
negative_label = y.to_a.uniq.min
|
96
|
+
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
97
|
+
@weight_vec, @bias_term = partial_fit(x, bin_y)
|
98
|
+
@prob_param = if @params[:probability]
|
99
|
+
Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose) + @bias_term, bin_y)
|
100
|
+
else
|
101
|
+
Numo::DFloat[1, 0]
|
102
|
+
end
|
103
|
+
end
|
104
|
+
|
105
|
+
self
|
106
|
+
end
|
107
|
+
|
108
|
+
# Calculate confidence scores for samples.
|
109
|
+
#
|
110
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
111
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
112
|
+
def decision_function(x)
|
113
|
+
check_sample_array(x)
|
114
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
115
|
+
end
|
116
|
+
|
117
|
+
# Predict class labels for samples.
|
118
|
+
#
|
119
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
120
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
121
|
+
def predict(x)
|
122
|
+
check_sample_array(x)
|
123
|
+
|
124
|
+
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
125
|
+
|
126
|
+
n_samples, = x.shape
|
127
|
+
decision_values = decision_function(x)
|
128
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
129
|
+
end
|
130
|
+
|
131
|
+
# Predict probability for samples.
|
132
|
+
#
|
133
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
134
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
135
|
+
def predict_proba(x)
|
136
|
+
check_sample_array(x)
|
137
|
+
|
138
|
+
if @classes.size > 2
|
139
|
+
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
140
|
+
return (probs.transpose / probs.sum(axis: 1)).transpose
|
141
|
+
end
|
142
|
+
|
143
|
+
n_samples, = x.shape
|
144
|
+
probs = Numo::DFloat.zeros(n_samples, 2)
|
145
|
+
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
146
|
+
probs[true, 0] = 1.0 - probs[true, 1]
|
147
|
+
probs
|
148
|
+
end
|
149
|
+
|
150
|
+
# Dump marshal data.
|
151
|
+
# @return [Hash] The marshal data about SVC.
|
152
|
+
def marshal_dump
|
153
|
+
{ params: @params,
|
154
|
+
weight_vec: @weight_vec,
|
155
|
+
bias_term: @bias_term,
|
156
|
+
prob_param: @prob_param,
|
157
|
+
classes: @classes,
|
158
|
+
rng: @rng }
|
159
|
+
end
|
160
|
+
|
161
|
+
# Load marshal data.
|
162
|
+
# @return [nil]
|
163
|
+
def marshal_load(obj)
|
164
|
+
@params = obj[:params]
|
165
|
+
@weight_vec = obj[:weight_vec]
|
166
|
+
@bias_term = obj[:bias_term]
|
167
|
+
@prob_param = obj[:prob_param]
|
168
|
+
@classes = obj[:classes]
|
169
|
+
@rng = obj[:rng]
|
170
|
+
nil
|
171
|
+
end
|
172
|
+
|
173
|
+
private
|
174
|
+
|
175
|
+
def calc_loss_gradient(x, y, weight)
|
176
|
+
target_ids = (x.dot(weight) * y).lt(1.0).where
|
177
|
+
grad = Numo::DFloat.zeros(@params[:batch_size])
|
178
|
+
grad[target_ids] = -y[target_ids]
|
179
|
+
grad
|
180
|
+
end
|
181
|
+
end
|
182
|
+
end
|
183
|
+
end
|
@@ -0,0 +1,122 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/linear_model/base_linear_model'
|
4
|
+
require 'rumale/base/regressor'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module LinearModel
|
8
|
+
# SVR is a class that implements Support Vector Regressor
|
9
|
+
# with mini-batch stochastic gradient descent optimization.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# estimator =
|
13
|
+
# Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1)
|
14
|
+
# estimator.fit(training_samples, traininig_target_values)
|
15
|
+
# results = estimator.predict(testing_samples)
|
16
|
+
#
|
17
|
+
# *Reference*
|
18
|
+
# 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
19
|
+
class SVR < BaseLinearModel
|
20
|
+
include Base::Regressor
|
21
|
+
|
22
|
+
# Return the weight vector for SVR.
|
23
|
+
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
24
|
+
attr_reader :weight_vec
|
25
|
+
|
26
|
+
# Return the bias term (a.k.a. intercept) for SVR.
|
27
|
+
# @return [Numo::DFloat] (shape: [n_outputs])
|
28
|
+
attr_reader :bias_term
|
29
|
+
|
30
|
+
# Return the random generator for performing random sampling.
|
31
|
+
# @return [Random]
|
32
|
+
attr_reader :rng
|
33
|
+
|
34
|
+
# Create a new regressor with Support Vector Machine by the SGD optimization.
|
35
|
+
#
|
36
|
+
# @param reg_param [Float] The regularization parameter.
|
37
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
38
|
+
# @param bias_scale [Float] The scale of the bias term.
|
39
|
+
# @param epsilon [Float] The margin of tolerance.
|
40
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
41
|
+
# @param batch_size [Integer] The size of the mini batches.
|
42
|
+
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
43
|
+
# If nil is given, Nadam is used.
|
44
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
45
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1,
|
46
|
+
max_iter: 1000, batch_size: 20, optimizer: nil, random_seed: nil)
|
47
|
+
check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon)
|
48
|
+
check_params_integer(max_iter: max_iter, batch_size: batch_size)
|
49
|
+
check_params_boolean(fit_bias: fit_bias)
|
50
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
51
|
+
check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
|
52
|
+
max_iter: max_iter, batch_size: batch_size)
|
53
|
+
keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h
|
54
|
+
keywd_args.delete(:epsilon)
|
55
|
+
super(keywd_args)
|
56
|
+
@params[:epsilon] = epsilon
|
57
|
+
end
|
58
|
+
|
59
|
+
# Fit the model with given training data.
|
60
|
+
#
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
62
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
63
|
+
# @return [SVR] The learned regressor itself.
|
64
|
+
def fit(x, y)
|
65
|
+
check_sample_array(x)
|
66
|
+
check_tvalue_array(y)
|
67
|
+
check_sample_tvalue_size(x, y)
|
68
|
+
|
69
|
+
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
70
|
+
n_features = x.shape[1]
|
71
|
+
|
72
|
+
if n_outputs > 1
|
73
|
+
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
74
|
+
@bias_term = Numo::DFloat.zeros(n_outputs)
|
75
|
+
n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
76
|
+
else
|
77
|
+
@weight_vec, @bias_term = partial_fit(x, y)
|
78
|
+
end
|
79
|
+
|
80
|
+
self
|
81
|
+
end
|
82
|
+
|
83
|
+
# Predict values for samples.
|
84
|
+
#
|
85
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
86
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
87
|
+
def predict(x)
|
88
|
+
check_sample_array(x)
|
89
|
+
x.dot(@weight_vec.transpose) + @bias_term
|
90
|
+
end
|
91
|
+
|
92
|
+
# Dump marshal data.
|
93
|
+
# @return [Hash] The marshal data about SVR.
|
94
|
+
def marshal_dump
|
95
|
+
{ params: @params,
|
96
|
+
weight_vec: @weight_vec,
|
97
|
+
bias_term: @bias_term,
|
98
|
+
rng: @rng }
|
99
|
+
end
|
100
|
+
|
101
|
+
# Load marshal data.
|
102
|
+
# @return [nil]
|
103
|
+
def marshal_load(obj)
|
104
|
+
@params = obj[:params]
|
105
|
+
@weight_vec = obj[:weight_vec]
|
106
|
+
@bias_term = obj[:bias_term]
|
107
|
+
@rng = obj[:rng]
|
108
|
+
nil
|
109
|
+
end
|
110
|
+
|
111
|
+
private
|
112
|
+
|
113
|
+
def calc_loss_gradient(x, y, weight)
|
114
|
+
z = x.dot(weight)
|
115
|
+
grad = Numo::DFloat.zeros(@params[:batch_size])
|
116
|
+
grad[(z - y).gt(@params[:epsilon]).where] = 1
|
117
|
+
grad[(y - z).gt(@params[:epsilon]).where] = -1
|
118
|
+
grad
|
119
|
+
end
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
@@ -0,0 +1,123 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
require 'rumale/base/regressor'
|
7
|
+
require 'rumale/base/splitter'
|
8
|
+
require 'rumale/base/evaluator'
|
9
|
+
require 'rumale/evaluation_measure/log_loss'
|
10
|
+
|
11
|
+
module Rumale
|
12
|
+
# This module consists of the classes for model validation techniques.
|
13
|
+
module ModelSelection
|
14
|
+
# CrossValidation is a class that evaluates a given classifier with cross-validation method.
|
15
|
+
#
|
16
|
+
# @example
|
17
|
+
# svc = Rumale::LinearModel::SVC.new
|
18
|
+
# kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
19
|
+
# cv = Rumale::ModelSelection::CrossValidation.new(estimator: svc, splitter: kf)
|
20
|
+
# report = cv.perform(samples, lables)
|
21
|
+
# mean_test_score = report[:test_score].inject(:+) / kf.n_splits
|
22
|
+
#
|
23
|
+
class CrossValidation
|
24
|
+
include Validation
|
25
|
+
|
26
|
+
# Return the classifier of which performance is evaluated.
|
27
|
+
# @return [Classifier]
|
28
|
+
attr_reader :estimator
|
29
|
+
|
30
|
+
# Return the splitter that divides dataset.
|
31
|
+
# @return [Splitter]
|
32
|
+
attr_reader :splitter
|
33
|
+
|
34
|
+
# Return the evaluator that calculates score.
|
35
|
+
# @return [Evaluator]
|
36
|
+
attr_reader :evaluator
|
37
|
+
|
38
|
+
# Return the flag indicating whether to caculate the score of training dataset.
|
39
|
+
# @return [Boolean]
|
40
|
+
attr_reader :return_train_score
|
41
|
+
|
42
|
+
# Create a new evaluator with cross-validation method.
|
43
|
+
#
|
44
|
+
# @param estimator [Classifier] The classifier of which performance is evaluated.
|
45
|
+
# @param splitter [Splitter] The splitter that divides dataset to training and testing dataset.
|
46
|
+
# @param evaluator [Evaluator] The evaluator that calculates score of estimator results.
|
47
|
+
# @param return_train_score [Boolean] The flag indicating whether to calculate the score of training dataset.
|
48
|
+
def initialize(estimator: nil, splitter: nil, evaluator: nil, return_train_score: false)
|
49
|
+
check_params_type(Rumale::Base::BaseEstimator, estimator: estimator)
|
50
|
+
check_params_type(Rumale::Base::Splitter, splitter: splitter)
|
51
|
+
check_params_type_or_nil(Rumale::Base::Evaluator, evaluator: evaluator)
|
52
|
+
check_params_boolean(return_train_score: return_train_score)
|
53
|
+
@estimator = estimator
|
54
|
+
@splitter = splitter
|
55
|
+
@evaluator = evaluator
|
56
|
+
@return_train_score = return_train_score
|
57
|
+
end
|
58
|
+
|
59
|
+
# Perform the evalution of given classifier with cross-validation method.
|
60
|
+
#
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
62
|
+
# The dataset to be used to evaluate the estimator.
|
63
|
+
# @param y [Numo::Int32 / Numo::DFloat] (shape: [n_samples] / [n_samples, n_outputs])
|
64
|
+
# The labels to be used to evaluate the classifier / The target values to be used to evaluate the regressor.
|
65
|
+
# @return [Hash] The report summarizing the results of cross-validation.
|
66
|
+
# * :fit_time (Array<Float>) The calculation times of fitting the estimator for each split.
|
67
|
+
# * :test_score (Array<Float>) The scores of testing dataset for each split.
|
68
|
+
# * :train_score (Array<Float>) The scores of training dataset for each split. This option is nil if
|
69
|
+
# the return_train_score is false.
|
70
|
+
def perform(x, y)
|
71
|
+
check_sample_array(x)
|
72
|
+
if @estimator.is_a?(Rumale::Base::Classifier)
|
73
|
+
check_label_array(y)
|
74
|
+
check_sample_label_size(x, y)
|
75
|
+
end
|
76
|
+
if @estimator.is_a?(Rumale::Base::Regressor)
|
77
|
+
check_tvalue_array(y)
|
78
|
+
check_sample_tvalue_size(x, y)
|
79
|
+
end
|
80
|
+
# Initialize the report of cross validation.
|
81
|
+
report = { test_score: [], train_score: nil, fit_time: [] }
|
82
|
+
report[:train_score] = [] if @return_train_score
|
83
|
+
# Evaluate the estimator on each split.
|
84
|
+
@splitter.split(x, y).each do |train_ids, test_ids|
|
85
|
+
# Split dataset into training and testing dataset.
|
86
|
+
feature_ids = !kernel_machine? || train_ids
|
87
|
+
train_x = x[train_ids, feature_ids]
|
88
|
+
train_y = y.shape[1].nil? ? y[train_ids] : y[train_ids, true]
|
89
|
+
test_x = x[test_ids, feature_ids]
|
90
|
+
test_y = y.shape[1].nil? ? y[test_ids] : y[test_ids, true]
|
91
|
+
# Fit the estimator.
|
92
|
+
start_time = Time.now.to_i
|
93
|
+
@estimator.fit(train_x, train_y)
|
94
|
+
# Calculate scores and prepare the report.
|
95
|
+
report[:fit_time].push(Time.now.to_i - start_time)
|
96
|
+
if @evaluator.nil?
|
97
|
+
report[:test_score].push(@estimator.score(test_x, test_y))
|
98
|
+
report[:train_score].push(@estimator.score(train_x, train_y)) if @return_train_score
|
99
|
+
elsif log_loss?
|
100
|
+
report[:test_score].push(@evaluator.score(test_y, @estimator.predict_proba(test_x)))
|
101
|
+
report[:train_score].push(@evaluator.score(train_y, @estimator.predict_proba(train_x))) if @return_train_score
|
102
|
+
else
|
103
|
+
report[:test_score].push(@evaluator.score(test_y, @estimator.predict(test_x)))
|
104
|
+
report[:train_score].push(@evaluator.score(train_y, @estimator.predict(train_x))) if @return_train_score
|
105
|
+
end
|
106
|
+
end
|
107
|
+
report
|
108
|
+
end
|
109
|
+
|
110
|
+
private
|
111
|
+
|
112
|
+
def kernel_machine?
|
113
|
+
class_name = @estimator.class.to_s
|
114
|
+
class_name = @estimator.params[:estimator].class.to_s if class_name.include?('Multiclass')
|
115
|
+
class_name.include?('KernelMachine')
|
116
|
+
end
|
117
|
+
|
118
|
+
def log_loss?
|
119
|
+
@evaluator.is_a?(Rumale::EvaluationMeasure::LogLoss)
|
120
|
+
end
|
121
|
+
end
|
122
|
+
end
|
123
|
+
end
|
@@ -0,0 +1,247 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/validation'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/evaluator'
|
6
|
+
require 'rumale/base/splitter'
|
7
|
+
require 'rumale/pipeline/pipeline'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module ModelSelection
|
11
|
+
# GridSearchCV is a class that performs hyperparameter optimization with grid search method.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# rfc = Rumale::Ensemble::RandomForestClassifier.new(random_seed: 1)
|
15
|
+
# pg = { n_estimators: [5, 10], max_depth: [3, 5], max_leaf_nodes: [15, 31] }
|
16
|
+
# kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
17
|
+
# gs = Rumale::ModelSelection::GridSearchCV.new(estimator: rfc, param_grid: pg, splitter: kf)
|
18
|
+
# gs.fit(samples, labels)
|
19
|
+
# p gs.cv_results
|
20
|
+
# p gs.best_params
|
21
|
+
#
|
22
|
+
# @example
|
23
|
+
# rbf = Rumale::KernelApproximation::RBF.new(random_seed: 1)
|
24
|
+
# svc = Rumale::LinearModel::SVC.new(random_seed: 1)
|
25
|
+
# pipe = Rumale::Pipeline::Pipeline.new(steps: { rbf: rbf, svc: svc })
|
26
|
+
# pg = { rbf__gamma: [32.0, 1.0], rbf__n_components: [4, 128], svc__reg_param: [16.0, 0.1] }
|
27
|
+
# kf = Rumale::ModelSelection::StratifiedKFold.new(n_splits: 5)
|
28
|
+
# gs = Rumale::ModelSelection::GridSearchCV.new(estimator: pipe, param_grid: pg, splitter: kf)
|
29
|
+
# gs.fit(samples, labels)
|
30
|
+
# p gs.cv_results
|
31
|
+
# p gs.best_params
|
32
|
+
#
|
33
|
+
class GridSearchCV
|
34
|
+
include Base::BaseEstimator
|
35
|
+
include Validation
|
36
|
+
|
37
|
+
# Return the result of cross validation for each parameter.
|
38
|
+
# @return [Hash]
|
39
|
+
attr_reader :cv_results
|
40
|
+
|
41
|
+
# Return the score of the estimator learned with the best parameter.
|
42
|
+
# @return [Float]
|
43
|
+
attr_reader :best_score
|
44
|
+
|
45
|
+
# Return the best parameter set.
|
46
|
+
# @return [Hash]
|
47
|
+
attr_reader :best_params
|
48
|
+
|
49
|
+
# Return the index of the best parameter.
|
50
|
+
# @return [Integer]
|
51
|
+
attr_reader :best_index
|
52
|
+
|
53
|
+
# Return the estimator learned with the best parameter.
|
54
|
+
# @return [Estimator]
|
55
|
+
attr_reader :best_estimator
|
56
|
+
|
57
|
+
# Create a new grid search method.
|
58
|
+
#
|
59
|
+
# @param estimator [Classifier/Regresor] The estimator to be searched for optimal parameters with grid search method.
|
60
|
+
# @param param_grid [Array<Hash>] The parameter sets is represented with array of hash that
|
61
|
+
# consists of parameter names as keys and array of parameter values as values.
|
62
|
+
# @param splitter [Splitter] The splitter that divides dataset to training and testing dataset on cross validation.
|
63
|
+
# @param evaluator [Evaluator] The evaluator that calculates score of estimator results on cross validation.
|
64
|
+
# If nil is given, the score method of estimator is used to evaluation.
|
65
|
+
# @param greater_is_better [Boolean] The flag that indicates whether the estimator is better as
|
66
|
+
# evaluation score is larger.
|
67
|
+
def initialize(estimator: nil, param_grid: nil, splitter: nil, evaluator: nil, greater_is_better: true)
|
68
|
+
check_params_type(Rumale::Base::BaseEstimator, estimator: estimator)
|
69
|
+
check_params_type(Rumale::Base::Splitter, splitter: splitter)
|
70
|
+
check_params_type_or_nil(Rumale::Base::Evaluator, evaluator: evaluator)
|
71
|
+
check_params_boolean(greater_is_better: greater_is_better)
|
72
|
+
@params = {}
|
73
|
+
@params[:param_grid] = valid_param_grid(param_grid)
|
74
|
+
@params[:estimator] = Marshal.load(Marshal.dump(estimator))
|
75
|
+
@params[:splitter] = Marshal.load(Marshal.dump(splitter))
|
76
|
+
@params[:evaluator] = Marshal.load(Marshal.dump(evaluator))
|
77
|
+
@params[:greater_is_better] = greater_is_better
|
78
|
+
@cv_results = nil
|
79
|
+
@best_score = nil
|
80
|
+
@best_params = nil
|
81
|
+
@best_index = nil
|
82
|
+
@best_estimator = nil
|
83
|
+
end
|
84
|
+
|
85
|
+
# Fit the model with given training data and all sets of parameters.
|
86
|
+
#
|
87
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
|
89
|
+
# @return [GridSearchCV] The learned estimator with grid search.
|
90
|
+
def fit(x, y)
|
91
|
+
check_sample_array(x)
|
92
|
+
|
93
|
+
init_attrs
|
94
|
+
|
95
|
+
param_combinations.each do |prm_set|
|
96
|
+
prm_set.each do |prms|
|
97
|
+
report = perform_cross_validation(x, y, prms)
|
98
|
+
store_cv_result(prms, report)
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
find_best_params
|
103
|
+
|
104
|
+
@best_estimator = configurated_estimator(@best_params)
|
105
|
+
@best_estimator.fit(x, y)
|
106
|
+
self
|
107
|
+
end
|
108
|
+
|
109
|
+
# Call the decision_function method of learned estimator with the best parameter.
|
110
|
+
#
|
111
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
112
|
+
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
113
|
+
def decision_function(x)
|
114
|
+
check_sample_array(x)
|
115
|
+
@best_estimator.decision_function(x)
|
116
|
+
end
|
117
|
+
|
118
|
+
# Call the predict method of learned estimator with the best parameter.
|
119
|
+
#
|
120
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
|
121
|
+
# @return [Numo::NArray] Predicted results.
|
122
|
+
def predict(x)
|
123
|
+
check_sample_array(x)
|
124
|
+
@best_estimator.predict(x)
|
125
|
+
end
|
126
|
+
|
127
|
+
# Call the predict_log_proba method of learned estimator with the best parameter.
|
128
|
+
#
|
129
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
|
130
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
|
131
|
+
def predict_log_proba(x)
|
132
|
+
check_sample_array(x)
|
133
|
+
@best_estimator.predict_log_proba(x)
|
134
|
+
end
|
135
|
+
|
136
|
+
# Call the predict_proba method of learned estimator with the best parameter.
|
137
|
+
#
|
138
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
139
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
140
|
+
def predict_proba(x)
|
141
|
+
check_sample_array(x)
|
142
|
+
@best_estimator.predict_proba(x)
|
143
|
+
end
|
144
|
+
|
145
|
+
# Call the score method of learned estimator with the best parameter.
|
146
|
+
#
|
147
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data.
|
148
|
+
# @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
|
149
|
+
# @return [Float] The score of estimator.
|
150
|
+
def score(x, y)
|
151
|
+
check_sample_array(x)
|
152
|
+
@best_estimator.score(x, y)
|
153
|
+
end
|
154
|
+
|
155
|
+
# Dump marshal data.
|
156
|
+
# @return [Hash] The marshal data about GridSearchCV.
|
157
|
+
def marshal_dump
|
158
|
+
{ params: @params,
|
159
|
+
cv_results: @cv_results,
|
160
|
+
best_score: @best_score,
|
161
|
+
best_params: @best_params,
|
162
|
+
best_index: @best_index,
|
163
|
+
best_estimator: @best_estimator }
|
164
|
+
end
|
165
|
+
|
166
|
+
# Load marshal data.
|
167
|
+
# @return [nil]
|
168
|
+
def marshal_load(obj)
|
169
|
+
@params = obj[:params]
|
170
|
+
@cv_results = obj[:cv_results]
|
171
|
+
@best_score = obj[:best_score]
|
172
|
+
@best_params = obj[:best_params]
|
173
|
+
@best_index = obj[:best_index]
|
174
|
+
@best_estimator = obj[:best_estimator]
|
175
|
+
nil
|
176
|
+
end
|
177
|
+
|
178
|
+
private
|
179
|
+
|
180
|
+
def valid_param_grid(grid)
|
181
|
+
raise TypeError, 'Expect class of param_grid to be Hash or Array' unless grid.is_a?(Hash) || grid.is_a?(Array)
|
182
|
+
grid = [grid] if grid.is_a?(Hash)
|
183
|
+
grid.each do |h|
|
184
|
+
raise TypeError, 'Expect class of elements in param_grid to be Hash' unless h.is_a?(Hash)
|
185
|
+
raise TypeError, 'Expect class of parameter values in param_grid to be Array' unless h.values.all? { |v| v.is_a?(Array) }
|
186
|
+
end
|
187
|
+
grid
|
188
|
+
end
|
189
|
+
|
190
|
+
def param_combinations
|
191
|
+
@param_combinations ||= @params[:param_grid].map do |prm|
|
192
|
+
x = Hash[prm.sort].map { |k, v| [k].product(v) }
|
193
|
+
x[0].product(*x[1...x.size]).map { |v| Hash[v] }
|
194
|
+
end
|
195
|
+
end
|
196
|
+
|
197
|
+
def perform_cross_validation(x, y, prms)
|
198
|
+
est = configurated_estimator(prms)
|
199
|
+
cv = CrossValidation.new(estimator: est, splitter: @params[:splitter],
|
200
|
+
evaluator: @params[:evaluator], return_train_score: true)
|
201
|
+
cv.perform(x, y)
|
202
|
+
end
|
203
|
+
|
204
|
+
def configurated_estimator(prms)
|
205
|
+
estimator = Marshal.load(Marshal.dump(@params[:estimator]))
|
206
|
+
if @params[:estimator].is_a?(Rumale::Pipeline::Pipeline)
|
207
|
+
prms.each do |k, v|
|
208
|
+
est_name, prm_name = k.to_s.split('__')
|
209
|
+
estimator.steps[est_name.to_sym].params[prm_name.to_sym] = v
|
210
|
+
end
|
211
|
+
else
|
212
|
+
prms.each { |k, v| estimator.params[k] = v }
|
213
|
+
end
|
214
|
+
estimator
|
215
|
+
end
|
216
|
+
|
217
|
+
def init_attrs
|
218
|
+
@cv_results = %i[mean_test_score std_test_score
|
219
|
+
mean_train_score std_train_score
|
220
|
+
mean_fit_time std_fit_time params].map { |v| [v, []] }.to_h
|
221
|
+
@best_score = nil
|
222
|
+
@best_params = nil
|
223
|
+
@best_index = nil
|
224
|
+
@best_estimator = nil
|
225
|
+
end
|
226
|
+
|
227
|
+
def store_cv_result(prms, report)
|
228
|
+
test_scores = Numo::DFloat[*report[:test_score]]
|
229
|
+
train_scores = Numo::DFloat[*report[:train_score]]
|
230
|
+
fit_times = Numo::DFloat[*report[:fit_time]]
|
231
|
+
@cv_results[:mean_test_score].push(test_scores.mean)
|
232
|
+
@cv_results[:std_test_score].push(test_scores.stddev)
|
233
|
+
@cv_results[:mean_train_score].push(train_scores.mean)
|
234
|
+
@cv_results[:std_train_score].push(train_scores.stddev)
|
235
|
+
@cv_results[:mean_fit_time].push(fit_times.mean)
|
236
|
+
@cv_results[:std_fit_time].push(fit_times.stddev)
|
237
|
+
@cv_results[:params].push(prms)
|
238
|
+
end
|
239
|
+
|
240
|
+
def find_best_params
|
241
|
+
@best_score = @params[:greater_is_better] ? @cv_results[:mean_test_score].max : @cv_results[:mean_test_score].min
|
242
|
+
@best_index = @cv_results[:mean_test_score].index(@best_score)
|
243
|
+
@best_params = @cv_results[:params][@best_index]
|
244
|
+
end
|
245
|
+
end
|
246
|
+
end
|
247
|
+
end
|