rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,110 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'csv'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
# Module for loading and saving a dataset file.
|
7
|
+
module Dataset
|
8
|
+
class << self
|
9
|
+
# Load a dataset with the libsvm file format into Numo::NArray.
|
10
|
+
#
|
11
|
+
# @param filename [String] A path to a dataset file.
|
12
|
+
# @param zero_based [Boolean] Whether the column index starts from 0 (true) or 1 (false).
|
13
|
+
# @param dtype [Numo::NArray] Data type of Numo::NArray for features to be loaded.
|
14
|
+
#
|
15
|
+
# @return [Array<Numo::NArray>]
|
16
|
+
# Returns array containing the (n_samples x n_features) matrix for feature vectors
|
17
|
+
# and (n_samples) vector for labels or target values.
|
18
|
+
def load_libsvm_file(filename, zero_based: false, dtype: Numo::DFloat)
|
19
|
+
ftvecs = []
|
20
|
+
labels = []
|
21
|
+
n_features = 0
|
22
|
+
CSV.foreach(filename, col_sep: "\s", headers: false) do |line|
|
23
|
+
label, ftvec, max_idx = parse_libsvm_line(line, zero_based)
|
24
|
+
labels.push(label)
|
25
|
+
ftvecs.push(ftvec)
|
26
|
+
n_features = max_idx if n_features < max_idx
|
27
|
+
end
|
28
|
+
[convert_to_matrix(ftvecs, n_features, dtype), Numo::NArray.asarray(labels)]
|
29
|
+
end
|
30
|
+
|
31
|
+
# Dump the dataset with the libsvm file format.
|
32
|
+
#
|
33
|
+
# @param data [Numo::NArray] (shape: [n_samples, n_features]) matrix consisting of feature vectors.
|
34
|
+
# @param labels [Numo::NArray] (shape: [n_samples]) matrix consisting of labels or target values.
|
35
|
+
# @param filename [String] A path to the output libsvm file.
|
36
|
+
# @param zero_based [Boolean] Whether the column index starts from 0 (true) or 1 (false).
|
37
|
+
def dump_libsvm_file(data, labels, filename, zero_based: false)
|
38
|
+
n_samples = [data.shape[0], labels.shape[0]].min
|
39
|
+
single_label = labels.shape[1].nil?
|
40
|
+
label_type = detect_dtype(labels)
|
41
|
+
value_type = detect_dtype(data)
|
42
|
+
File.open(filename, 'w') do |file|
|
43
|
+
n_samples.times do |n|
|
44
|
+
label = single_label ? labels[n] : labels[n, true].to_a
|
45
|
+
file.puts(dump_libsvm_line(label, data[n, true],
|
46
|
+
label_type, value_type, zero_based))
|
47
|
+
end
|
48
|
+
end
|
49
|
+
end
|
50
|
+
|
51
|
+
private
|
52
|
+
|
53
|
+
def parse_libsvm_line(line, zero_based)
|
54
|
+
label = parse_label(line.shift)
|
55
|
+
adj_idx = zero_based == false ? 1 : 0
|
56
|
+
max_idx = -1
|
57
|
+
ftvec = []
|
58
|
+
while (el = line.shift)
|
59
|
+
idx, val = el.split(':')
|
60
|
+
idx = idx.to_i - adj_idx
|
61
|
+
val = val.to_i.to_s == val ? val.to_i : val.to_f
|
62
|
+
max_idx = idx if max_idx < idx
|
63
|
+
ftvec.push([idx, val])
|
64
|
+
end
|
65
|
+
[label, ftvec, max_idx]
|
66
|
+
end
|
67
|
+
|
68
|
+
def parse_label(label)
|
69
|
+
lbl_arr = label.split(',').map { |lbl| lbl.to_i.to_s == lbl ? lbl.to_i : lbl.to_f }
|
70
|
+
lbl_arr.size > 1 ? lbl_arr : lbl_arr[0]
|
71
|
+
end
|
72
|
+
|
73
|
+
def convert_to_matrix(data, n_features, dtype)
|
74
|
+
mat = []
|
75
|
+
data.each do |ft|
|
76
|
+
vec = Array.new(n_features) { 0 }
|
77
|
+
ft.each { |el| vec[el[0]] = el[1] }
|
78
|
+
mat.push(vec)
|
79
|
+
end
|
80
|
+
dtype.asarray(mat)
|
81
|
+
end
|
82
|
+
|
83
|
+
def detect_dtype(data)
|
84
|
+
arr_type_str = Numo::NArray.array_type(data).to_s
|
85
|
+
type = '%s'
|
86
|
+
type = '%d' if ['Numo::Int8', 'Numo::Int16', 'Numo::Int32', 'Numo::Int64'].include?(arr_type_str)
|
87
|
+
type = '%d' if ['Numo::UInt8', 'Numo::UInt16', 'Numo::UInt32', 'Numo::UInt64'].include?(arr_type_str)
|
88
|
+
type = '%.10g' if ['Numo::SFloat', 'Numo::DFloat'].include?(arr_type_str)
|
89
|
+
type
|
90
|
+
end
|
91
|
+
|
92
|
+
def dump_libsvm_line(label, ftvec, label_type, value_type, zero_based)
|
93
|
+
line = dump_label(label, label_type.to_s)
|
94
|
+
ftvec.to_a.each_with_index do |val, n|
|
95
|
+
idx = n + (zero_based == false ? 1 : 0)
|
96
|
+
line += format(" %d:#{value_type}", idx, val) if val != 0.0
|
97
|
+
end
|
98
|
+
line
|
99
|
+
end
|
100
|
+
|
101
|
+
def dump_label(label, label_type_str)
|
102
|
+
if label.is_a?(Array)
|
103
|
+
label.map { |lbl| format(label_type_str, lbl) }.join(',')
|
104
|
+
else
|
105
|
+
format(label_type_str, label)
|
106
|
+
end
|
107
|
+
end
|
108
|
+
end
|
109
|
+
end
|
110
|
+
end
|
@@ -0,0 +1,141 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/utils'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/transformer'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
module Decomposition
|
9
|
+
# NMF is a class that implements Non-negative Matrix Factorization.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# decomposer = Rumale::Decomposition::NMF.new(n_components: 2)
|
13
|
+
# representaion = decomposer.fit_transform(samples)
|
14
|
+
#
|
15
|
+
# *Reference*
|
16
|
+
# - W. Xu, X. Liu, and Y.Gong, "Document Clustering Based On Non-negative Matrix Factorization," Proc. SIGIR' 03 , pp. 267--273, 2003.
|
17
|
+
class NMF
|
18
|
+
include Base::BaseEstimator
|
19
|
+
include Base::Transformer
|
20
|
+
|
21
|
+
# Returns the factorization matrix.
|
22
|
+
# @return [Numo::DFloat] (shape: [n_components, n_features])
|
23
|
+
attr_reader :components
|
24
|
+
|
25
|
+
# Return the random generator.
|
26
|
+
# @return [Random]
|
27
|
+
attr_reader :rng
|
28
|
+
|
29
|
+
# Create a new transformer with NMF.
|
30
|
+
#
|
31
|
+
# @param n_components [Integer] The number of components.
|
32
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
33
|
+
# @param tol [Float] The tolerance of termination criterion.
|
34
|
+
# @param eps [Float] A small value close to zero to avoid zero division error.
|
35
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
36
|
+
def initialize(n_components: 2, max_iter: 500, tol: 1.0e-4, eps: 1.0e-16, random_seed: nil)
|
37
|
+
check_params_integer(n_components: n_components, max_iter: max_iter)
|
38
|
+
check_params_float(tol: tol, eps: eps)
|
39
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
40
|
+
check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol, eps: eps)
|
41
|
+
@params = {}
|
42
|
+
@params[:n_components] = n_components
|
43
|
+
@params[:max_iter] = max_iter
|
44
|
+
@params[:tol] = tol
|
45
|
+
@params[:eps] = eps
|
46
|
+
@params[:random_seed] = random_seed
|
47
|
+
@params[:random_seed] ||= srand
|
48
|
+
@components = nil
|
49
|
+
@rng = Random.new(@params[:random_seed])
|
50
|
+
end
|
51
|
+
|
52
|
+
# Fit the model with given training data.
|
53
|
+
#
|
54
|
+
# @overload fit(x) -> NMF
|
55
|
+
#
|
56
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
57
|
+
# @return [NMF] The learned transformer itself.
|
58
|
+
def fit(x, _y = nil)
|
59
|
+
check_sample_array(x)
|
60
|
+
partial_fit(x)
|
61
|
+
self
|
62
|
+
end
|
63
|
+
|
64
|
+
# Fit the model with training data, and then transform them with the learned model.
|
65
|
+
#
|
66
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
67
|
+
#
|
68
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
69
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
70
|
+
def fit_transform(x, _y = nil)
|
71
|
+
check_sample_array(x)
|
72
|
+
partial_fit(x)
|
73
|
+
end
|
74
|
+
|
75
|
+
# Transform the given data with the learned model.
|
76
|
+
#
|
77
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
78
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
79
|
+
def transform(x)
|
80
|
+
check_sample_array(x)
|
81
|
+
partial_fit(x, false)
|
82
|
+
end
|
83
|
+
|
84
|
+
# Inverse transform the given transformed data with the learned model.
|
85
|
+
#
|
86
|
+
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
|
87
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
|
88
|
+
def inverse_transform(z)
|
89
|
+
check_sample_array(z)
|
90
|
+
z.dot(@components)
|
91
|
+
end
|
92
|
+
|
93
|
+
# Dump marshal data.
|
94
|
+
# @return [Hash] The marshal data.
|
95
|
+
def marshal_dump
|
96
|
+
{ params: @params,
|
97
|
+
components: @components,
|
98
|
+
rng: @rng }
|
99
|
+
end
|
100
|
+
|
101
|
+
# Load marshal data.
|
102
|
+
# @return [nil]
|
103
|
+
def marshal_load(obj)
|
104
|
+
@params = obj[:params]
|
105
|
+
@components = obj[:components]
|
106
|
+
@rng = obj[:rng]
|
107
|
+
nil
|
108
|
+
end
|
109
|
+
|
110
|
+
private
|
111
|
+
|
112
|
+
def partial_fit(x, update_comps = true)
|
113
|
+
# initialize some variables.
|
114
|
+
n_samples, n_features = x.shape
|
115
|
+
scale = Math.sqrt(x.mean / @params[:n_components])
|
116
|
+
@components = Rumale::Utils.rand_uniform([@params[:n_components], n_features], @rng) * scale if update_comps
|
117
|
+
coefficients = Rumale::Utils.rand_uniform([n_samples, @params[:n_components]], @rng) * scale
|
118
|
+
# optimization.
|
119
|
+
@params[:max_iter].times do
|
120
|
+
# update
|
121
|
+
if update_comps
|
122
|
+
nume = coefficients.transpose.dot(x)
|
123
|
+
deno = coefficients.transpose.dot(coefficients).dot(@components) + @params[:eps]
|
124
|
+
@components *= (nume / deno)
|
125
|
+
end
|
126
|
+
nume = x.dot(@components.transpose)
|
127
|
+
deno = coefficients.dot(@components).dot(@components.transpose) + @params[:eps]
|
128
|
+
coefficients *= (nume / deno)
|
129
|
+
# normalize
|
130
|
+
norm = Numo::NMath.sqrt((@components**2).sum(1)) + @params[:eps]
|
131
|
+
@components /= norm.expand_dims(1) if update_comps
|
132
|
+
coefficients *= norm
|
133
|
+
# check convergence
|
134
|
+
err = ((x - coefficients.dot(@components))**2).sum(1).mean
|
135
|
+
break if err < @params[:tol]
|
136
|
+
end
|
137
|
+
coefficients
|
138
|
+
end
|
139
|
+
end
|
140
|
+
end
|
141
|
+
end
|
@@ -0,0 +1,148 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# Module for matrix decomposition algorithms.
|
8
|
+
module Decomposition
|
9
|
+
# PCA is a class that implements Principal Component Analysis.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# decomposer = Rumale::Decomposition::PCA.new(n_components: 2)
|
13
|
+
# representaion = decomposer.fit_transform(samples)
|
14
|
+
#
|
15
|
+
# *Reference*
|
16
|
+
# - A. Sharma and K K. Paliwal, "Fast principal component analysis using fixed-point algorithm," Pattern Recognition Letters, 28, pp. 1151--1155, 2007.
|
17
|
+
class PCA
|
18
|
+
include Base::BaseEstimator
|
19
|
+
include Base::Transformer
|
20
|
+
|
21
|
+
# Returns the principal components.
|
22
|
+
# @return [Numo::DFloat] (shape: [n_components, n_features])
|
23
|
+
attr_reader :components
|
24
|
+
|
25
|
+
# Returns the mean vector.
|
26
|
+
# @return [Numo::DFloat] (shape: [n_features]
|
27
|
+
attr_reader :mean
|
28
|
+
|
29
|
+
# Return the random generator.
|
30
|
+
# @return [Random]
|
31
|
+
attr_reader :rng
|
32
|
+
|
33
|
+
# Create a new transformer with PCA.
|
34
|
+
#
|
35
|
+
# @param n_components [Integer] The number of principal components.
|
36
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
37
|
+
# @param tol [Float] The tolerance of termination criterion.
|
38
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
39
|
+
def initialize(n_components: 2, max_iter: 100, tol: 1.0e-4, random_seed: nil)
|
40
|
+
check_params_integer(n_components: n_components, max_iter: max_iter)
|
41
|
+
check_params_float(tol: tol)
|
42
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
43
|
+
check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol)
|
44
|
+
@params = {}
|
45
|
+
@params[:n_components] = n_components
|
46
|
+
@params[:max_iter] = max_iter
|
47
|
+
@params[:tol] = tol
|
48
|
+
@params[:random_seed] = random_seed
|
49
|
+
@params[:random_seed] ||= srand
|
50
|
+
@components = nil
|
51
|
+
@mean = nil
|
52
|
+
@rng = Random.new(@params[:random_seed])
|
53
|
+
end
|
54
|
+
|
55
|
+
# Fit the model with given training data.
|
56
|
+
#
|
57
|
+
# @overload fit(x) -> PCA
|
58
|
+
#
|
59
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
60
|
+
# @return [PCA] The learned transformer itself.
|
61
|
+
def fit(x, _y = nil)
|
62
|
+
check_sample_array(x)
|
63
|
+
# initialize some variables.
|
64
|
+
@components = nil
|
65
|
+
n_samples, n_features = x.shape
|
66
|
+
# centering.
|
67
|
+
@mean = x.mean(0)
|
68
|
+
centered_x = x - @mean
|
69
|
+
# optimization.
|
70
|
+
covariance_mat = centered_x.transpose.dot(centered_x) / (n_samples - 1)
|
71
|
+
@params[:n_components].times do
|
72
|
+
comp_vec = random_vec(n_features)
|
73
|
+
@params[:max_iter].times do
|
74
|
+
updated = orthogonalize(covariance_mat.dot(comp_vec))
|
75
|
+
break if (updated.dot(comp_vec) - 1).abs < @params[:tol]
|
76
|
+
comp_vec = updated
|
77
|
+
end
|
78
|
+
@components = @components.nil? ? comp_vec : Numo::NArray.vstack([@components, comp_vec])
|
79
|
+
end
|
80
|
+
self
|
81
|
+
end
|
82
|
+
|
83
|
+
# Fit the model with training data, and then transform them with the learned model.
|
84
|
+
#
|
85
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
86
|
+
#
|
87
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
89
|
+
def fit_transform(x, _y = nil)
|
90
|
+
check_sample_array(x)
|
91
|
+
fit(x).transform(x)
|
92
|
+
end
|
93
|
+
|
94
|
+
# Transform the given data with the learned model.
|
95
|
+
#
|
96
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
97
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
98
|
+
def transform(x)
|
99
|
+
check_sample_array(x)
|
100
|
+
(x - @mean).dot(@components.transpose)
|
101
|
+
end
|
102
|
+
|
103
|
+
# Inverse transform the given transformed data with the learned model.
|
104
|
+
#
|
105
|
+
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
|
106
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
|
107
|
+
def inverse_transform(z)
|
108
|
+
check_sample_array(z)
|
109
|
+
c = @components.shape[1].nil? ? @components.expand_dims(0) : @components
|
110
|
+
z.dot(c) + @mean
|
111
|
+
end
|
112
|
+
|
113
|
+
# Dump marshal data.
|
114
|
+
# @return [Hash] The marshal data.
|
115
|
+
def marshal_dump
|
116
|
+
{ params: @params,
|
117
|
+
components: @components,
|
118
|
+
mean: @mean,
|
119
|
+
rng: @rng }
|
120
|
+
end
|
121
|
+
|
122
|
+
# Load marshal data.
|
123
|
+
# @return [nil]
|
124
|
+
def marshal_load(obj)
|
125
|
+
@params = obj[:params]
|
126
|
+
@components = obj[:components]
|
127
|
+
@mean = obj[:mean]
|
128
|
+
@rng = obj[:rng]
|
129
|
+
nil
|
130
|
+
end
|
131
|
+
|
132
|
+
private
|
133
|
+
|
134
|
+
def orthogonalize(pcvec)
|
135
|
+
unless @components.nil?
|
136
|
+
delta = @components.dot(pcvec) * @components.transpose
|
137
|
+
delta = delta.sum(1) unless delta.shape[1].nil?
|
138
|
+
pcvec -= delta
|
139
|
+
end
|
140
|
+
pcvec / Math.sqrt((pcvec**2).sum.abs) + 1.0e-12
|
141
|
+
end
|
142
|
+
|
143
|
+
def random_vec(n_features)
|
144
|
+
Numo::DFloat[*(Array.new(n_features) { @rng.rand })]
|
145
|
+
end
|
146
|
+
end
|
147
|
+
end
|
148
|
+
end
|
@@ -0,0 +1,196 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/values'
|
4
|
+
require 'rumale/utils'
|
5
|
+
require 'rumale/base/base_estimator'
|
6
|
+
require 'rumale/base/classifier'
|
7
|
+
require 'rumale/tree/decision_tree_classifier'
|
8
|
+
|
9
|
+
module Rumale
|
10
|
+
module Ensemble
|
11
|
+
# AdaBoostClassifier is a class that implements AdaBoost (SAMME.R) for classification.
|
12
|
+
# This class uses decision tree for a weak learner.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# estimator =
|
16
|
+
# Rumale::Ensemble::AdaBoostClassifier.new(
|
17
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
18
|
+
# estimator.fit(training_samples, traininig_labels)
|
19
|
+
# results = estimator.predict(testing_samples)
|
20
|
+
#
|
21
|
+
# *Reference*
|
22
|
+
# - J. Zhu, S. Rosset, H. Zou, and T.Hashie, "Multi-class AdaBoost," Technical Report No. 430, Department of Statistics, University of Michigan, 2005.
|
23
|
+
class AdaBoostClassifier
|
24
|
+
include Base::BaseEstimator
|
25
|
+
include Base::Classifier
|
26
|
+
|
27
|
+
# Return the set of estimators.
|
28
|
+
# @return [Array<DecisionTreeClassifier>]
|
29
|
+
attr_reader :estimators
|
30
|
+
|
31
|
+
# Return the class labels.
|
32
|
+
# @return [Numo::Int32] (size: n_classes)
|
33
|
+
attr_reader :classes
|
34
|
+
|
35
|
+
# Return the importance for each feature.
|
36
|
+
# @return [Numo::DFloat] (size: n_features)
|
37
|
+
attr_reader :feature_importances
|
38
|
+
|
39
|
+
# Return the random generator for random selection of feature index.
|
40
|
+
# @return [Random]
|
41
|
+
attr_reader :rng
|
42
|
+
|
43
|
+
# Create a new classifier with AdaBoost.
|
44
|
+
#
|
45
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
46
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
47
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
48
|
+
# If nil is given, decision tree grows without concern for depth.
|
49
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
50
|
+
# If nil is given, number of leaves is not limited.
|
51
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
52
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
53
|
+
# If nil is given, split process considers all features.
|
54
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
56
|
+
def initialize(n_estimators: 50,
|
57
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
58
|
+
max_features: nil, random_seed: nil)
|
59
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
60
|
+
max_features: max_features, random_seed: random_seed)
|
61
|
+
check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
62
|
+
check_params_string(criterion: criterion)
|
63
|
+
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
64
|
+
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
65
|
+
max_features: max_features)
|
66
|
+
@params = {}
|
67
|
+
@params[:n_estimators] = n_estimators
|
68
|
+
@params[:criterion] = criterion
|
69
|
+
@params[:max_depth] = max_depth
|
70
|
+
@params[:max_leaf_nodes] = max_leaf_nodes
|
71
|
+
@params[:min_samples_leaf] = min_samples_leaf
|
72
|
+
@params[:max_features] = max_features
|
73
|
+
@params[:random_seed] = random_seed
|
74
|
+
@params[:random_seed] ||= srand
|
75
|
+
@estimators = nil
|
76
|
+
@classes = nil
|
77
|
+
@feature_importances = nil
|
78
|
+
@rng = Random.new(@params[:random_seed])
|
79
|
+
end
|
80
|
+
|
81
|
+
# Fit the model with given training data.
|
82
|
+
#
|
83
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
84
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
85
|
+
# @return [AdaBoostClassifier] The learned classifier itself.
|
86
|
+
def fit(x, y) # rubocop:disable Metrics/AbcSize
|
87
|
+
check_sample_array(x)
|
88
|
+
check_label_array(y)
|
89
|
+
check_sample_label_size(x, y)
|
90
|
+
## Initialize some variables.
|
91
|
+
n_samples, n_features = x.shape
|
92
|
+
@estimators = []
|
93
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
94
|
+
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
95
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
96
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
97
|
+
n_classes = @classes.shape[0]
|
98
|
+
## Boosting.
|
99
|
+
classes_arr = @classes.to_a
|
100
|
+
y_codes = Numo::DFloat.zeros(n_samples, n_classes) - 1.fdiv(n_classes - 1)
|
101
|
+
n_samples.times { |n| y_codes[n, classes_arr.index(y[n])] = 1.0 }
|
102
|
+
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
103
|
+
@params[:n_estimators].times do |_t|
|
104
|
+
# Fit classfier.
|
105
|
+
ids = Rumale::Utils.choice_ids(n_samples, observation_weights, @rng)
|
106
|
+
break if y[ids].to_a.uniq.size != n_classes
|
107
|
+
tree = Tree::DecisionTreeClassifier.new(
|
108
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
109
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
110
|
+
max_features: @params[:max_features], random_seed: @rng.rand(Rumale::Values.int_max)
|
111
|
+
)
|
112
|
+
tree.fit(x[ids, true], y[ids])
|
113
|
+
# Calculate estimator error.
|
114
|
+
proba = tree.predict_proba(x).clip(1.0e-15, nil)
|
115
|
+
p = Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[proba[n, true].max_index] })
|
116
|
+
inds = p.ne(y)
|
117
|
+
error = (observation_weights * inds).sum / observation_weights.sum
|
118
|
+
# Store model.
|
119
|
+
@estimators.push(tree)
|
120
|
+
@feature_importances += tree.feature_importances
|
121
|
+
break if error.zero?
|
122
|
+
# Update observation weights.
|
123
|
+
log_proba = Numo::NMath.log(proba)
|
124
|
+
observation_weights *= Numo::NMath.exp(-1.0 * (n_classes - 1).fdiv(n_classes) * (y_codes * log_proba).sum(1))
|
125
|
+
observation_weights = observation_weights.clip(1.0e-15, nil)
|
126
|
+
sum_observation_weights = observation_weights.sum
|
127
|
+
break if sum_observation_weights.zero?
|
128
|
+
observation_weights /= sum_observation_weights
|
129
|
+
end
|
130
|
+
@feature_importances /= @feature_importances.sum
|
131
|
+
self
|
132
|
+
end
|
133
|
+
|
134
|
+
# Calculate confidence scores for samples.
|
135
|
+
#
|
136
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
137
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
138
|
+
def decision_function(x)
|
139
|
+
check_sample_array(x)
|
140
|
+
n_samples, = x.shape
|
141
|
+
n_classes = @classes.size
|
142
|
+
sum_probs = Numo::DFloat.zeros(n_samples, n_classes)
|
143
|
+
@estimators.each do |tree|
|
144
|
+
log_proba = Numo::NMath.log(tree.predict_proba(x).clip(1.0e-15, nil))
|
145
|
+
sum_probs += (n_classes - 1) * (log_proba - 1.fdiv(n_classes) * Numo::DFloat[log_proba.sum(1)].transpose)
|
146
|
+
end
|
147
|
+
sum_probs /= @estimators.size
|
148
|
+
end
|
149
|
+
|
150
|
+
# Predict class labels for samples.
|
151
|
+
#
|
152
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
153
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
154
|
+
def predict(x)
|
155
|
+
check_sample_array(x)
|
156
|
+
n_samples, = x.shape
|
157
|
+
probs = decision_function(x)
|
158
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
|
159
|
+
end
|
160
|
+
|
161
|
+
# Predict probability for samples.
|
162
|
+
#
|
163
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
164
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
165
|
+
def predict_proba(x)
|
166
|
+
check_sample_array(x)
|
167
|
+
n_classes = @classes.size
|
168
|
+
probs = Numo::NMath.exp(1.fdiv(n_classes - 1) * decision_function(x))
|
169
|
+
sum_probs = probs.sum(1)
|
170
|
+
probs /= Numo::DFloat[sum_probs].transpose
|
171
|
+
probs
|
172
|
+
end
|
173
|
+
|
174
|
+
# Dump marshal data.
|
175
|
+
# @return [Hash] The marshal data about AdaBoostClassifier.
|
176
|
+
def marshal_dump
|
177
|
+
{ params: @params,
|
178
|
+
estimators: @estimators,
|
179
|
+
classes: @classes,
|
180
|
+
feature_importances: @feature_importances,
|
181
|
+
rng: @rng }
|
182
|
+
end
|
183
|
+
|
184
|
+
# Load marshal data.
|
185
|
+
# @return [nil]
|
186
|
+
def marshal_load(obj)
|
187
|
+
@params = obj[:params]
|
188
|
+
@estimators = obj[:estimators]
|
189
|
+
@classes = obj[:classes]
|
190
|
+
@feature_importances = obj[:feature_importances]
|
191
|
+
@rng = obj[:rng]
|
192
|
+
nil
|
193
|
+
end
|
194
|
+
end
|
195
|
+
end
|
196
|
+
end
|