rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,50 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/evaluator'
|
4
|
+
require 'rumale/evaluation_measure/precision_recall'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
# This module consists of the classes for model evaluation.
|
8
|
+
module EvaluationMeasure
|
9
|
+
# Recall is a class that calculates the recall of the predicted labels.
|
10
|
+
#
|
11
|
+
# @example
|
12
|
+
# evaluator = Rumale::EvaluationMeasure::Recall.new
|
13
|
+
# puts evaluator.score(ground_truth, predicted)
|
14
|
+
class Recall
|
15
|
+
include Base::Evaluator
|
16
|
+
include EvaluationMeasure::PrecisionRecall
|
17
|
+
|
18
|
+
# Return the average type for calculation of recall.
|
19
|
+
# @return [String] ('binary', 'micro', 'macro')
|
20
|
+
attr_reader :average
|
21
|
+
|
22
|
+
# Create a new evaluation measure calculater for recall score.
|
23
|
+
#
|
24
|
+
# @param average [String] The average type ('binary', 'micro', 'macro')
|
25
|
+
def initialize(average: 'binary')
|
26
|
+
check_params_string(average: average)
|
27
|
+
@average = average
|
28
|
+
end
|
29
|
+
|
30
|
+
# Calculate average recall
|
31
|
+
#
|
32
|
+
# @param y_true [Numo::Int32] (shape: [n_samples]) Ground truth labels.
|
33
|
+
# @param y_pred [Numo::Int32] (shape: [n_samples]) Predicted labels.
|
34
|
+
# @return [Float] Average recall
|
35
|
+
def score(y_true, y_pred)
|
36
|
+
check_label_array(y_true)
|
37
|
+
check_label_array(y_pred)
|
38
|
+
|
39
|
+
case @average
|
40
|
+
when 'binary'
|
41
|
+
recall_each_class(y_true, y_pred).last
|
42
|
+
when 'micro'
|
43
|
+
micro_average_recall(y_true, y_pred)
|
44
|
+
when 'macro'
|
45
|
+
macro_average_recall(y_true, y_pred)
|
46
|
+
end
|
47
|
+
end
|
48
|
+
end
|
49
|
+
end
|
50
|
+
end
|
@@ -0,0 +1,121 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/utils'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/transformer'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
# Module for kernel approximation algorithms.
|
9
|
+
module KernelApproximation
|
10
|
+
# Class for RBF kernel feature mapping.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# transformer = Rumale::KernelApproximation::RBF.new(gamma: 1.0, n_coponents: 128, random_seed: 1)
|
14
|
+
# new_training_samples = transformer.fit_transform(training_samples)
|
15
|
+
# new_testing_samples = transformer.transform(testing_samples)
|
16
|
+
#
|
17
|
+
# *Refernce*:
|
18
|
+
# 1. A. Rahimi and B. Recht, "Random Features for Large-Scale Kernel Machines," Proc. NIPS'07, pp.1177--1184, 2007.
|
19
|
+
class RBF
|
20
|
+
include Base::BaseEstimator
|
21
|
+
include Base::Transformer
|
22
|
+
|
23
|
+
# Return the random matrix for transformation.
|
24
|
+
# @return [Numo::DFloat] (shape: [n_features, n_components])
|
25
|
+
attr_reader :random_mat
|
26
|
+
|
27
|
+
# Return the random vector for transformation.
|
28
|
+
# @return [Numo::DFloat] (shape: [n_components])
|
29
|
+
attr_reader :random_vec
|
30
|
+
|
31
|
+
# Return the random generator for transformation.
|
32
|
+
# @return [Random]
|
33
|
+
attr_reader :rng
|
34
|
+
|
35
|
+
# Create a new transformer for mapping to RBF kernel feature space.
|
36
|
+
#
|
37
|
+
# @param gamma [Float] The parameter of RBF kernel: exp(-gamma * x^2).
|
38
|
+
# @param n_components [Integer] The number of dimensions of the RBF kernel feature space.
|
39
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
40
|
+
def initialize(gamma: 1.0, n_components: 128, random_seed: nil)
|
41
|
+
check_params_float(gamma: gamma)
|
42
|
+
check_params_integer(n_components: n_components)
|
43
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
44
|
+
check_params_positive(gamma: gamma, n_components: n_components)
|
45
|
+
@params = {}
|
46
|
+
@params[:gamma] = gamma
|
47
|
+
@params[:n_components] = n_components
|
48
|
+
@params[:random_seed] = random_seed
|
49
|
+
@params[:random_seed] ||= srand
|
50
|
+
@random_mat = nil
|
51
|
+
@random_vec = nil
|
52
|
+
@rng = Random.new(@params[:random_seed])
|
53
|
+
end
|
54
|
+
|
55
|
+
# Fit the model with given training data.
|
56
|
+
#
|
57
|
+
# @overload fit(x) -> RBF
|
58
|
+
#
|
59
|
+
# @param x [Numo::NArray] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
60
|
+
# This method uses only the number of features of the data.
|
61
|
+
# @return [RBF] The learned transformer itself.
|
62
|
+
def fit(x, _y = nil)
|
63
|
+
check_sample_array(x)
|
64
|
+
|
65
|
+
n_features = x.shape[1]
|
66
|
+
@params[:n_components] = 2 * n_features if @params[:n_components] <= 0
|
67
|
+
@random_mat = Rumale::Utils.rand_normal([n_features, @params[:n_components]], @rng) * (2.0 * @params[:gamma])**0.5
|
68
|
+
n_half_components = @params[:n_components] / 2
|
69
|
+
@random_vec = Numo::DFloat.zeros(@params[:n_components] - n_half_components).concatenate(
|
70
|
+
Numo::DFloat.ones(n_half_components) * (0.5 * Math::PI)
|
71
|
+
)
|
72
|
+
self
|
73
|
+
end
|
74
|
+
|
75
|
+
# Fit the model with training data, and then transform them with the learned model.
|
76
|
+
#
|
77
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
78
|
+
#
|
79
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
80
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
81
|
+
def fit_transform(x, _y = nil)
|
82
|
+
check_sample_array(x)
|
83
|
+
|
84
|
+
fit(x).transform(x)
|
85
|
+
end
|
86
|
+
|
87
|
+
# Transform the given data with the learned model.
|
88
|
+
#
|
89
|
+
# @overload transform(x) -> Numo::DFloat
|
90
|
+
#
|
91
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
92
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
93
|
+
def transform(x)
|
94
|
+
check_sample_array(x)
|
95
|
+
|
96
|
+
n_samples, = x.shape
|
97
|
+
projection = x.dot(@random_mat) + @random_vec.tile(n_samples, 1)
|
98
|
+
Numo::NMath.sin(projection) * ((2.0 / @params[:n_components])**0.5)
|
99
|
+
end
|
100
|
+
|
101
|
+
# Dump marshal data.
|
102
|
+
# @return [Hash] The marshal data about RBF.
|
103
|
+
def marshal_dump
|
104
|
+
{ params: @params,
|
105
|
+
random_mat: @random_mat,
|
106
|
+
random_vec: @random_vec,
|
107
|
+
rng: @rng }
|
108
|
+
end
|
109
|
+
|
110
|
+
# Load marshal data.
|
111
|
+
# @return [nil]
|
112
|
+
def marshal_load(obj)
|
113
|
+
@params = obj[:params]
|
114
|
+
@random_mat = obj[:random_mat]
|
115
|
+
@random_vec = obj[:random_vec]
|
116
|
+
@rng = obj[:rng]
|
117
|
+
nil
|
118
|
+
end
|
119
|
+
end
|
120
|
+
end
|
121
|
+
end
|
@@ -0,0 +1,193 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
|
+
require 'rumale/probabilistic_output'
|
6
|
+
|
7
|
+
module Rumale
|
8
|
+
# This module consists of the classes that implement kernel method-based estimator.
|
9
|
+
module KernelMachine
|
10
|
+
# KernelSVC is a class that implements (Nonlinear) Kernel Support Vector Classifier
|
11
|
+
# with stochastic gradient descent (SGD) optimization.
|
12
|
+
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
13
|
+
#
|
14
|
+
# @example
|
15
|
+
# training_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(training_samples)
|
16
|
+
# estimator =
|
17
|
+
# Rumale::KernelMachine::KernelSVC.new(reg_param: 1.0, max_iter: 1000, random_seed: 1)
|
18
|
+
# estimator.fit(training_kernel_matrix, traininig_labels)
|
19
|
+
# testing_kernel_matrix = Rumale::PairwiseMetric::rbf_kernel(testing_samples, training_samples)
|
20
|
+
# results = estimator.predict(testing_kernel_matrix)
|
21
|
+
#
|
22
|
+
# *Reference*
|
23
|
+
# 1. S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Mathematical Programming, vol. 127 (1), pp. 3--30, 2011.
|
24
|
+
class KernelSVC
|
25
|
+
include Base::BaseEstimator
|
26
|
+
include Base::Classifier
|
27
|
+
|
28
|
+
# Return the weight vector for Kernel SVC.
|
29
|
+
# @return [Numo::DFloat] (shape: [n_classes, n_trainig_sample])
|
30
|
+
attr_reader :weight_vec
|
31
|
+
|
32
|
+
# Return the class labels.
|
33
|
+
# @return [Numo::Int32] (shape: [n_classes])
|
34
|
+
attr_reader :classes
|
35
|
+
|
36
|
+
# Return the random generator for performing random sampling.
|
37
|
+
# @return [Random]
|
38
|
+
attr_reader :rng
|
39
|
+
|
40
|
+
# Create a new classifier with Kernel Support Vector Machine by the SGD optimization.
|
41
|
+
#
|
42
|
+
# @param reg_param [Float] The regularization parameter.
|
43
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
44
|
+
# @param probability [Boolean] The flag indicating whether to perform probability estimation.
|
45
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
46
|
+
def initialize(reg_param: 1.0, max_iter: 1000, probability: false, random_seed: nil)
|
47
|
+
check_params_float(reg_param: reg_param)
|
48
|
+
check_params_integer(max_iter: max_iter)
|
49
|
+
check_params_boolean(probability: probability)
|
50
|
+
check_params_type_or_nil(Integer, random_seed: random_seed)
|
51
|
+
check_params_positive(reg_param: reg_param, max_iter: max_iter)
|
52
|
+
@params = {}
|
53
|
+
@params[:reg_param] = reg_param
|
54
|
+
@params[:max_iter] = max_iter
|
55
|
+
@params[:probability] = probability
|
56
|
+
@params[:random_seed] = random_seed
|
57
|
+
@params[:random_seed] ||= srand
|
58
|
+
@weight_vec = nil
|
59
|
+
@prob_param = nil
|
60
|
+
@classes = nil
|
61
|
+
@rng = Random.new(@params[:random_seed])
|
62
|
+
end
|
63
|
+
|
64
|
+
# Fit the model with given training data.
|
65
|
+
#
|
66
|
+
# @param x [Numo::DFloat] (shape: [n_training_samples, n_training_samples])
|
67
|
+
# The kernel matrix of the training data to be used for fitting the model.
|
68
|
+
# @param y [Numo::Int32] (shape: [n_training_samples]) The labels to be used for fitting the model.
|
69
|
+
# @return [KernelSVC] The learned classifier itself.
|
70
|
+
def fit(x, y)
|
71
|
+
check_sample_array(x)
|
72
|
+
check_label_array(y)
|
73
|
+
check_sample_label_size(x, y)
|
74
|
+
|
75
|
+
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
76
|
+
n_classes = @classes.size
|
77
|
+
_n_samples, n_features = x.shape
|
78
|
+
|
79
|
+
if n_classes > 2
|
80
|
+
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
81
|
+
@prob_param = Numo::DFloat.zeros(n_classes, 2)
|
82
|
+
n_classes.times do |n|
|
83
|
+
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
84
|
+
@weight_vec[n, true] = binary_fit(x, bin_y)
|
85
|
+
@prob_param[n, true] = if @params[:probability]
|
86
|
+
Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec[n, true].transpose), bin_y)
|
87
|
+
else
|
88
|
+
Numo::DFloat[1, 0]
|
89
|
+
end
|
90
|
+
end
|
91
|
+
else
|
92
|
+
negative_label = y.to_a.uniq.min
|
93
|
+
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
94
|
+
@weight_vec = binary_fit(x, bin_y)
|
95
|
+
@prob_param = if @params[:probability]
|
96
|
+
Rumale::ProbabilisticOutput.fit_sigmoid(x.dot(@weight_vec.transpose), bin_y)
|
97
|
+
else
|
98
|
+
Numo::DFloat[1, 0]
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
self
|
103
|
+
end
|
104
|
+
|
105
|
+
# Calculate confidence scores for samples.
|
106
|
+
#
|
107
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
108
|
+
# The kernel matrix between testing samples and training samples to compute the scores.
|
109
|
+
# @return [Numo::DFloat] (shape: [n_testing_samples, n_classes]) Confidence score per sample.
|
110
|
+
def decision_function(x)
|
111
|
+
check_sample_array(x)
|
112
|
+
|
113
|
+
x.dot(@weight_vec.transpose)
|
114
|
+
end
|
115
|
+
|
116
|
+
# Predict class labels for samples.
|
117
|
+
#
|
118
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
119
|
+
# The kernel matrix between testing samples and training samples to predict the labels.
|
120
|
+
# @return [Numo::Int32] (shape: [n_testing_samples]) Predicted class label per sample.
|
121
|
+
def predict(x)
|
122
|
+
check_sample_array(x)
|
123
|
+
|
124
|
+
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
125
|
+
|
126
|
+
n_samples, = x.shape
|
127
|
+
decision_values = decision_function(x)
|
128
|
+
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] })
|
129
|
+
end
|
130
|
+
|
131
|
+
# Predict probability for samples.
|
132
|
+
#
|
133
|
+
# @param x [Numo::DFloat] (shape: [n_testing_samples, n_training_samples])
|
134
|
+
# The kernel matrix between testing samples and training samples to predict the labels.
|
135
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
136
|
+
def predict_proba(x)
|
137
|
+
check_sample_array(x)
|
138
|
+
|
139
|
+
if @classes.size > 2
|
140
|
+
probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
|
141
|
+
return (probs.transpose / probs.sum(axis: 1)).transpose
|
142
|
+
end
|
143
|
+
|
144
|
+
n_samples, = x.shape
|
145
|
+
probs = Numo::DFloat.zeros(n_samples, 2)
|
146
|
+
probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
|
147
|
+
probs[true, 0] = 1.0 - probs[true, 1]
|
148
|
+
probs
|
149
|
+
end
|
150
|
+
|
151
|
+
# Dump marshal data.
|
152
|
+
# @return [Hash] The marshal data about KernelSVC.
|
153
|
+
def marshal_dump
|
154
|
+
{ params: @params,
|
155
|
+
weight_vec: @weight_vec,
|
156
|
+
prob_param: @prob_param,
|
157
|
+
classes: @classes,
|
158
|
+
rng: @rng }
|
159
|
+
end
|
160
|
+
|
161
|
+
# Load marshal data.
|
162
|
+
# @return [nil]
|
163
|
+
def marshal_load(obj)
|
164
|
+
@params = obj[:params]
|
165
|
+
@weight_vec = obj[:weight_vec]
|
166
|
+
@prob_param = obj[:prob_param]
|
167
|
+
@classes = obj[:classes]
|
168
|
+
@rng = obj[:rng]
|
169
|
+
nil
|
170
|
+
end
|
171
|
+
|
172
|
+
private
|
173
|
+
|
174
|
+
def binary_fit(x, bin_y)
|
175
|
+
# Initialize some variables.
|
176
|
+
n_training_samples = x.shape[0]
|
177
|
+
rand_ids = []
|
178
|
+
weight_vec = Numo::DFloat.zeros(n_training_samples)
|
179
|
+
# Start optimization.
|
180
|
+
@params[:max_iter].times do |t|
|
181
|
+
# random sampling
|
182
|
+
rand_ids = [*0...n_training_samples].shuffle(random: @rng) if rand_ids.empty?
|
183
|
+
target_id = rand_ids.shift
|
184
|
+
# update the weight vector
|
185
|
+
func = (weight_vec * bin_y).dot(x[target_id, true].transpose).to_f
|
186
|
+
func *= bin_y[target_id] / (@params[:reg_param] * (t + 1))
|
187
|
+
weight_vec[target_id] += 1.0 if func < 1.0
|
188
|
+
end
|
189
|
+
weight_vec * bin_y
|
190
|
+
end
|
191
|
+
end
|
192
|
+
end
|
193
|
+
end
|
@@ -0,0 +1,89 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/optimizer/nadam'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module LinearModel
|
8
|
+
# BaseLinearModel is an abstract class for implementation of linear estimator
|
9
|
+
# with mini-batch stochastic gradient descent optimization.
|
10
|
+
# This class is used for internal process.
|
11
|
+
class BaseLinearModel
|
12
|
+
include Base::BaseEstimator
|
13
|
+
|
14
|
+
# Initialize a linear estimator.
|
15
|
+
#
|
16
|
+
# @param reg_param [Float] The regularization parameter.
|
17
|
+
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
18
|
+
# @param bias_scale [Float] The scale of the bias term.
|
19
|
+
# @param max_iter [Integer] The maximum number of iterations.
|
20
|
+
# @param batch_size [Integer] The size of the mini batches.
|
21
|
+
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
22
|
+
# If nil is given, Nadam is used.
|
23
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
24
|
+
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
25
|
+
max_iter: 1000, batch_size: 10, optimizer: nil, random_seed: nil)
|
26
|
+
@params = {}
|
27
|
+
@params[:reg_param] = reg_param
|
28
|
+
@params[:fit_bias] = fit_bias
|
29
|
+
@params[:bias_scale] = bias_scale
|
30
|
+
@params[:max_iter] = max_iter
|
31
|
+
@params[:batch_size] = batch_size
|
32
|
+
@params[:optimizer] = optimizer
|
33
|
+
@params[:optimizer] ||= Optimizer::Nadam.new
|
34
|
+
@params[:random_seed] = random_seed
|
35
|
+
@params[:random_seed] ||= srand
|
36
|
+
@weight_vec = nil
|
37
|
+
@bias_term = nil
|
38
|
+
@rng = Random.new(@params[:random_seed])
|
39
|
+
end
|
40
|
+
|
41
|
+
private
|
42
|
+
|
43
|
+
def partial_fit(x, y)
|
44
|
+
# Expand feature vectors for bias term.
|
45
|
+
samples = @params[:fit_bias] ? expand_feature(x) : x
|
46
|
+
# Initialize some variables.
|
47
|
+
n_samples, n_features = samples.shape
|
48
|
+
rand_ids = [*0...n_samples].shuffle(random: @rng)
|
49
|
+
weight = Numo::DFloat.zeros(n_features)
|
50
|
+
optimizer = @params[:optimizer].dup
|
51
|
+
# Optimization.
|
52
|
+
@params[:max_iter].times do |_t|
|
53
|
+
# Random sampling
|
54
|
+
subset_ids = rand_ids.shift(@params[:batch_size])
|
55
|
+
rand_ids.concat(subset_ids)
|
56
|
+
sub_samples = samples[subset_ids, true]
|
57
|
+
sub_targets = y[subset_ids]
|
58
|
+
# Update weight.
|
59
|
+
loss_gradient = calc_loss_gradient(sub_samples, sub_targets, weight)
|
60
|
+
next if loss_gradient.ne(0.0).count.zero?
|
61
|
+
weight = calc_new_weight(optimizer, sub_samples, weight, loss_gradient)
|
62
|
+
end
|
63
|
+
split_weight(weight)
|
64
|
+
end
|
65
|
+
|
66
|
+
def calc_loss_gradient(_x, _y, _weight)
|
67
|
+
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
68
|
+
end
|
69
|
+
|
70
|
+
def calc_new_weight(optimizer, x, weight, loss_gradient)
|
71
|
+
weight_gradient = x.transpose.dot(loss_gradient) / @params[:batch_size] + @params[:reg_param] * weight
|
72
|
+
optimizer.call(weight, weight_gradient)
|
73
|
+
end
|
74
|
+
|
75
|
+
def expand_feature(x)
|
76
|
+
n_samples = x.shape[0]
|
77
|
+
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
78
|
+
end
|
79
|
+
|
80
|
+
def split_weight(weight)
|
81
|
+
if @params[:fit_bias]
|
82
|
+
[weight[0...-1].dup, weight[-1]]
|
83
|
+
else
|
84
|
+
[weight, 0.0]
|
85
|
+
end
|
86
|
+
end
|
87
|
+
end
|
88
|
+
end
|
89
|
+
end
|