rumale 0.8.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.coveralls.yml +1 -0
- data/.gitignore +20 -0
- data/.rspec +3 -0
- data/.rubocop.yml +47 -0
- data/.rubocop_todo.yml +58 -0
- data/.travis.yml +13 -0
- data/CHANGELOG.md +2 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +23 -0
- data/README.md +175 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/lib/rumale.rb +70 -0
- data/lib/rumale/base/base_estimator.rb +13 -0
- data/lib/rumale/base/classifier.rb +36 -0
- data/lib/rumale/base/cluster_analyzer.rb +31 -0
- data/lib/rumale/base/evaluator.rb +17 -0
- data/lib/rumale/base/regressor.rb +36 -0
- data/lib/rumale/base/splitter.rb +21 -0
- data/lib/rumale/base/transformer.rb +22 -0
- data/lib/rumale/clustering/dbscan.rb +125 -0
- data/lib/rumale/clustering/k_means.rb +138 -0
- data/lib/rumale/dataset.rb +110 -0
- data/lib/rumale/decomposition/nmf.rb +141 -0
- data/lib/rumale/decomposition/pca.rb +148 -0
- data/lib/rumale/ensemble/ada_boost_classifier.rb +196 -0
- data/lib/rumale/ensemble/ada_boost_regressor.rb +178 -0
- data/lib/rumale/ensemble/random_forest_classifier.rb +180 -0
- data/lib/rumale/ensemble/random_forest_regressor.rb +141 -0
- data/lib/rumale/evaluation_measure/accuracy.rb +29 -0
- data/lib/rumale/evaluation_measure/f_score.rb +50 -0
- data/lib/rumale/evaluation_measure/log_loss.rb +45 -0
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +29 -0
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +29 -0
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +62 -0
- data/lib/rumale/evaluation_measure/precision.rb +50 -0
- data/lib/rumale/evaluation_measure/precision_recall.rb +91 -0
- data/lib/rumale/evaluation_measure/purity.rb +40 -0
- data/lib/rumale/evaluation_measure/r2_score.rb +43 -0
- data/lib/rumale/evaluation_measure/recall.rb +50 -0
- data/lib/rumale/kernel_approximation/rbf.rb +121 -0
- data/lib/rumale/kernel_machine/kernel_svc.rb +193 -0
- data/lib/rumale/linear_model/base_linear_model.rb +89 -0
- data/lib/rumale/linear_model/lasso.rb +136 -0
- data/lib/rumale/linear_model/linear_regression.rb +110 -0
- data/lib/rumale/linear_model/logistic_regression.rb +159 -0
- data/lib/rumale/linear_model/ridge.rb +110 -0
- data/lib/rumale/linear_model/svc.rb +183 -0
- data/lib/rumale/linear_model/svr.rb +122 -0
- data/lib/rumale/model_selection/cross_validation.rb +123 -0
- data/lib/rumale/model_selection/grid_search_cv.rb +247 -0
- data/lib/rumale/model_selection/k_fold.rb +76 -0
- data/lib/rumale/model_selection/stratified_k_fold.rb +94 -0
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +100 -0
- data/lib/rumale/naive_bayes/naive_bayes.rb +315 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +111 -0
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +93 -0
- data/lib/rumale/optimizer/nadam.rb +90 -0
- data/lib/rumale/optimizer/rmsprop.rb +69 -0
- data/lib/rumale/optimizer/sgd.rb +65 -0
- data/lib/rumale/optimizer/yellow_fin.rb +144 -0
- data/lib/rumale/pairwise_metric.rb +91 -0
- data/lib/rumale/pipeline/pipeline.rb +197 -0
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +99 -0
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +197 -0
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +131 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/label_encoder.rb +94 -0
- data/lib/rumale/preprocessing/min_max_scaler.rb +92 -0
- data/lib/rumale/preprocessing/one_hot_encoder.rb +98 -0
- data/lib/rumale/preprocessing/standard_scaler.rb +86 -0
- data/lib/rumale/probabilistic_output.rb +112 -0
- data/lib/rumale/tree/base_decision_tree.rb +153 -0
- data/lib/rumale/tree/decision_tree_classifier.rb +163 -0
- data/lib/rumale/tree/decision_tree_regressor.rb +135 -0
- data/lib/rumale/tree/node.rb +70 -0
- data/lib/rumale/utils.rb +37 -0
- data/lib/rumale/validation.rb +79 -0
- data/lib/rumale/values.rb +13 -0
- data/lib/rumale/version.rb +6 -0
- data/rumale.gemspec +41 -0
- metadata +204 -0
@@ -0,0 +1,178 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/values'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
require 'rumale/tree/decision_tree_regressor'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# AdaBoostRegressor is a class that implements random forest for regression.
|
11
|
+
# This class uses decision tree for a weak learner.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# estimator =
|
15
|
+
# Rumale::Ensemble::AdaBoostRegressor.new(
|
16
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
17
|
+
# estimator.fit(training_samples, traininig_values)
|
18
|
+
# results = estimator.predict(testing_samples)
|
19
|
+
#
|
20
|
+
# *Reference*
|
21
|
+
# - D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression," Neural Computation 18 (7), pp. 1678--1710, 2006.
|
22
|
+
#
|
23
|
+
class AdaBoostRegressor
|
24
|
+
include Base::BaseEstimator
|
25
|
+
include Base::Regressor
|
26
|
+
|
27
|
+
# Return the set of estimators.
|
28
|
+
# @return [Array<DecisionTreeRegressor>]
|
29
|
+
attr_reader :estimators
|
30
|
+
|
31
|
+
# Return the weight for each weak learner.
|
32
|
+
# @return [Numo::DFloat] (size: n_estimates)
|
33
|
+
attr_reader :estimator_weights
|
34
|
+
|
35
|
+
# Return the importance for each feature.
|
36
|
+
# @return [Numo::DFloat] (size: n_features)
|
37
|
+
attr_reader :feature_importances
|
38
|
+
|
39
|
+
# Return the random generator for random selection of feature index.
|
40
|
+
# @return [Random]
|
41
|
+
attr_reader :rng
|
42
|
+
|
43
|
+
# Create a new regressor with random forest.
|
44
|
+
#
|
45
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
46
|
+
# @param threshold [Float] The threshold for delimiting correct and incorrect predictions. That is constrained to [0, 1]
|
47
|
+
# @param exponent [Float] The exponent for the weight of each weak learner.
|
48
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
49
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
50
|
+
# If nil is given, decision tree grows without concern for depth.
|
51
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
52
|
+
# If nil is given, number of leaves is not limited.
|
53
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
54
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
55
|
+
# If nil is given, split process considers all features.
|
56
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
57
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
58
|
+
def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0,
|
59
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
60
|
+
max_features: nil, random_seed: nil)
|
61
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
62
|
+
max_features: max_features, random_seed: random_seed)
|
63
|
+
check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
64
|
+
check_params_float(threshold: threshold, exponent: exponent)
|
65
|
+
check_params_string(criterion: criterion)
|
66
|
+
check_params_positive(n_estimators: n_estimators, threshold: threshold, exponent: exponent,
|
67
|
+
max_depth: max_depth,
|
68
|
+
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
69
|
+
max_features: max_features)
|
70
|
+
@params = {}
|
71
|
+
@params[:n_estimators] = n_estimators
|
72
|
+
@params[:threshold] = threshold
|
73
|
+
@params[:exponent] = exponent
|
74
|
+
@params[:criterion] = criterion
|
75
|
+
@params[:max_depth] = max_depth
|
76
|
+
@params[:max_leaf_nodes] = max_leaf_nodes
|
77
|
+
@params[:min_samples_leaf] = min_samples_leaf
|
78
|
+
@params[:max_features] = max_features
|
79
|
+
@params[:random_seed] = random_seed
|
80
|
+
@params[:random_seed] ||= srand
|
81
|
+
@estimators = nil
|
82
|
+
@feature_importances = nil
|
83
|
+
@rng = Random.new(@params[:random_seed])
|
84
|
+
end
|
85
|
+
|
86
|
+
# Fit the model with given training data.
|
87
|
+
#
|
88
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
89
|
+
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
90
|
+
# @return [AdaBoostRegressor] The learned regressor itself.
|
91
|
+
def fit(x, y) # rubocop:disable Metrics/AbcSize
|
92
|
+
check_sample_array(x)
|
93
|
+
check_tvalue_array(y)
|
94
|
+
check_sample_tvalue_size(x, y)
|
95
|
+
# Check target values
|
96
|
+
raise ArgumentError, 'Expect target value vector to be 1-D arrray' unless y.shape.size == 1
|
97
|
+
# Initialize some variables.
|
98
|
+
n_samples, n_features = x.shape
|
99
|
+
@params[:max_features] = n_features unless @params[:max_features].is_a?(Integer)
|
100
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
101
|
+
observation_weights = Numo::DFloat.zeros(n_samples) + 1.fdiv(n_samples)
|
102
|
+
@estimators = []
|
103
|
+
@estimator_weights = []
|
104
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
105
|
+
# Construct forest.
|
106
|
+
@params[:n_estimators].times do |_t|
|
107
|
+
# Fit weak learner.
|
108
|
+
ids = Rumale::Utils.choice_ids(n_samples, observation_weights, @rng)
|
109
|
+
tree = Tree::DecisionTreeRegressor.new(
|
110
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
111
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
112
|
+
max_features: @params[:max_features], random_seed: @rng.rand(Rumale::Values.int_max)
|
113
|
+
)
|
114
|
+
tree.fit(x[ids, true], y[ids])
|
115
|
+
p = tree.predict(x)
|
116
|
+
# Calculate errors.
|
117
|
+
abs_err = ((p - y) / y).abs
|
118
|
+
err = observation_weights[abs_err.gt(@params[:threshold])].sum
|
119
|
+
break if err <= 0.0
|
120
|
+
# Calculate weight.
|
121
|
+
beta = err**@params[:exponent]
|
122
|
+
weight = Math.log(1.fdiv(beta))
|
123
|
+
# Store model.
|
124
|
+
@estimators.push(tree)
|
125
|
+
@estimator_weights.push(weight)
|
126
|
+
@feature_importances += weight * tree.feature_importances
|
127
|
+
# Update observation weights.
|
128
|
+
update = Numo::DFloat.ones(n_samples)
|
129
|
+
update[abs_err.le(@params[:threshold])] = beta
|
130
|
+
observation_weights *= update
|
131
|
+
observation_weights = observation_weights.clip(1.0e-15, nil)
|
132
|
+
sum_observation_weights = observation_weights.sum
|
133
|
+
break if sum_observation_weights.zero?
|
134
|
+
observation_weights /= sum_observation_weights
|
135
|
+
end
|
136
|
+
@estimator_weights = Numo::DFloat.asarray(@estimator_weights)
|
137
|
+
@feature_importances /= @estimator_weights.sum
|
138
|
+
self
|
139
|
+
end
|
140
|
+
|
141
|
+
# Predict values for samples.
|
142
|
+
#
|
143
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
144
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
145
|
+
def predict(x)
|
146
|
+
check_sample_array(x)
|
147
|
+
n_samples, = x.shape
|
148
|
+
predictions = Numo::DFloat.zeros(n_samples)
|
149
|
+
@estimators.size.times do |t|
|
150
|
+
predictions += @estimator_weights[t] * @estimators[t].predict(x)
|
151
|
+
end
|
152
|
+
sum_weight = @estimator_weights.sum
|
153
|
+
predictions / sum_weight
|
154
|
+
end
|
155
|
+
|
156
|
+
# Dump marshal data.
|
157
|
+
# @return [Hash] The marshal data about AdaBoostRegressor.
|
158
|
+
def marshal_dump
|
159
|
+
{ params: @params,
|
160
|
+
estimators: @estimators,
|
161
|
+
estimator_weights: @estimator_weights,
|
162
|
+
feature_importances: @feature_importances,
|
163
|
+
rng: @rng }
|
164
|
+
end
|
165
|
+
|
166
|
+
# Load marshal data.
|
167
|
+
# @return [nil]
|
168
|
+
def marshal_load(obj)
|
169
|
+
@params = obj[:params]
|
170
|
+
@estimators = obj[:estimators]
|
171
|
+
@estimator_weights = obj[:estimator_weights]
|
172
|
+
@feature_importances = obj[:feature_importances]
|
173
|
+
@rng = obj[:rng]
|
174
|
+
nil
|
175
|
+
end
|
176
|
+
end
|
177
|
+
end
|
178
|
+
end
|
@@ -0,0 +1,180 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/values'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/classifier'
|
6
|
+
require 'rumale/tree/decision_tree_classifier'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
# This module consists of the classes that implement ensemble-based methods.
|
10
|
+
module Ensemble
|
11
|
+
# RandomForestClassifier is a class that implements random forest for classification.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# estimator =
|
15
|
+
# Rumale::Ensemble::RandomForestClassifier.new(
|
16
|
+
# n_estimators: 10, criterion: 'gini', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
17
|
+
# estimator.fit(training_samples, traininig_labels)
|
18
|
+
# results = estimator.predict(testing_samples)
|
19
|
+
#
|
20
|
+
class RandomForestClassifier
|
21
|
+
include Base::BaseEstimator
|
22
|
+
include Base::Classifier
|
23
|
+
|
24
|
+
# Return the set of estimators.
|
25
|
+
# @return [Array<DecisionTreeClassifier>]
|
26
|
+
attr_reader :estimators
|
27
|
+
|
28
|
+
# Return the class labels.
|
29
|
+
# @return [Numo::Int32] (size: n_classes)
|
30
|
+
attr_reader :classes
|
31
|
+
|
32
|
+
# Return the importance for each feature.
|
33
|
+
# @return [Numo::DFloat] (size: n_features)
|
34
|
+
attr_reader :feature_importances
|
35
|
+
|
36
|
+
# Return the random generator for random selection of feature index.
|
37
|
+
# @return [Random]
|
38
|
+
attr_reader :rng
|
39
|
+
|
40
|
+
# Create a new classifier with random forest.
|
41
|
+
#
|
42
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
43
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
44
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
45
|
+
# If nil is given, decision tree grows without concern for depth.
|
46
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
47
|
+
# If nil is given, number of leaves is not limited.
|
48
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
49
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
50
|
+
# If nil is given, split process considers all features.
|
51
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
52
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
53
|
+
def initialize(n_estimators: 10,
|
54
|
+
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
55
|
+
max_features: nil, random_seed: nil)
|
56
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
57
|
+
max_features: max_features, random_seed: random_seed)
|
58
|
+
check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
59
|
+
check_params_string(criterion: criterion)
|
60
|
+
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
61
|
+
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
62
|
+
max_features: max_features)
|
63
|
+
@params = {}
|
64
|
+
@params[:n_estimators] = n_estimators
|
65
|
+
@params[:criterion] = criterion
|
66
|
+
@params[:max_depth] = max_depth
|
67
|
+
@params[:max_leaf_nodes] = max_leaf_nodes
|
68
|
+
@params[:min_samples_leaf] = min_samples_leaf
|
69
|
+
@params[:max_features] = max_features
|
70
|
+
@params[:random_seed] = random_seed
|
71
|
+
@params[:random_seed] ||= srand
|
72
|
+
@estimators = nil
|
73
|
+
@classes = nil
|
74
|
+
@feature_importances = nil
|
75
|
+
@rng = Random.new(@params[:random_seed])
|
76
|
+
end
|
77
|
+
|
78
|
+
# Fit the model with given training data.
|
79
|
+
#
|
80
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
81
|
+
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
82
|
+
# @return [RandomForestClassifier] The learned classifier itself.
|
83
|
+
def fit(x, y)
|
84
|
+
check_sample_array(x)
|
85
|
+
check_label_array(y)
|
86
|
+
check_sample_label_size(x, y)
|
87
|
+
# Initialize some variables.
|
88
|
+
n_samples, n_features = x.shape
|
89
|
+
@params[:max_features] = Math.sqrt(n_features).to_i unless @params[:max_features].is_a?(Integer)
|
90
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
91
|
+
@classes = Numo::Int32.asarray(y.to_a.uniq.sort)
|
92
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
93
|
+
# Construct forest.
|
94
|
+
@estimators = Array.new(@params[:n_estimators]) do
|
95
|
+
tree = Tree::DecisionTreeClassifier.new(
|
96
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
97
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
98
|
+
max_features: @params[:max_features], random_seed: @rng.rand(Rumale::Values.int_max)
|
99
|
+
)
|
100
|
+
bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
|
101
|
+
tree.fit(x[bootstrap_ids, true], y[bootstrap_ids])
|
102
|
+
@feature_importances += tree.feature_importances
|
103
|
+
tree
|
104
|
+
end
|
105
|
+
@feature_importances /= @feature_importances.sum
|
106
|
+
self
|
107
|
+
end
|
108
|
+
|
109
|
+
# Predict class labels for samples.
|
110
|
+
#
|
111
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
112
|
+
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
113
|
+
def predict(x)
|
114
|
+
check_sample_array(x)
|
115
|
+
n_samples, = x.shape
|
116
|
+
n_classes = @classes.size
|
117
|
+
classes_arr = @classes.to_a
|
118
|
+
ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
|
119
|
+
@estimators.each do |tree|
|
120
|
+
predicted = tree.predict(x)
|
121
|
+
n_samples.times do |n|
|
122
|
+
class_id = classes_arr.index(predicted[n])
|
123
|
+
ballot_box[n, class_id] += 1.0 unless class_id.nil?
|
124
|
+
end
|
125
|
+
end
|
126
|
+
Numo::Int32[*Array.new(n_samples) { |n| @classes[ballot_box[n, true].max_index] }]
|
127
|
+
end
|
128
|
+
|
129
|
+
# Predict probability for samples.
|
130
|
+
#
|
131
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
132
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
133
|
+
def predict_proba(x)
|
134
|
+
check_sample_array(x)
|
135
|
+
n_samples, = x.shape
|
136
|
+
n_classes = @classes.size
|
137
|
+
classes_arr = @classes.to_a
|
138
|
+
ballot_box = Numo::DFloat.zeros(n_samples, n_classes)
|
139
|
+
@estimators.each do |tree|
|
140
|
+
probs = tree.predict_proba(x)
|
141
|
+
tree.classes.size.times do |n|
|
142
|
+
class_id = classes_arr.index(tree.classes[n])
|
143
|
+
ballot_box[true, class_id] += probs[true, n] unless class_id.nil?
|
144
|
+
end
|
145
|
+
end
|
146
|
+
(ballot_box.transpose / ballot_box.sum(axis: 1)).transpose
|
147
|
+
end
|
148
|
+
|
149
|
+
# Return the index of the leaf that each sample reached.
|
150
|
+
#
|
151
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
152
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
153
|
+
def apply(x)
|
154
|
+
check_sample_array(x)
|
155
|
+
Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
|
156
|
+
end
|
157
|
+
|
158
|
+
# Dump marshal data.
|
159
|
+
# @return [Hash] The marshal data about RandomForestClassifier.
|
160
|
+
def marshal_dump
|
161
|
+
{ params: @params,
|
162
|
+
estimators: @estimators,
|
163
|
+
classes: @classes,
|
164
|
+
feature_importances: @feature_importances,
|
165
|
+
rng: @rng }
|
166
|
+
end
|
167
|
+
|
168
|
+
# Load marshal data.
|
169
|
+
# @return [nil]
|
170
|
+
def marshal_load(obj)
|
171
|
+
@params = obj[:params]
|
172
|
+
@estimators = obj[:estimators]
|
173
|
+
@classes = obj[:classes]
|
174
|
+
@feature_importances = obj[:feature_importances]
|
175
|
+
@rng = obj[:rng]
|
176
|
+
nil
|
177
|
+
end
|
178
|
+
end
|
179
|
+
end
|
180
|
+
end
|
@@ -0,0 +1,141 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/values'
|
4
|
+
require 'rumale/base/base_estimator'
|
5
|
+
require 'rumale/base/regressor'
|
6
|
+
require 'rumale/tree/decision_tree_regressor'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module Ensemble
|
10
|
+
# RandomForestRegressor is a class that implements random forest for regression
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# estimator =
|
14
|
+
# Rumale::Ensemble::RandomForestRegressor.new(
|
15
|
+
# n_estimators: 10, criterion: 'mse', max_depth: 3, max_leaf_nodes: 10, min_samples_leaf: 5, random_seed: 1)
|
16
|
+
# estimator.fit(training_samples, traininig_values)
|
17
|
+
# results = estimator.predict(testing_samples)
|
18
|
+
#
|
19
|
+
class RandomForestRegressor
|
20
|
+
include Base::BaseEstimator
|
21
|
+
include Base::Regressor
|
22
|
+
|
23
|
+
# Return the set of estimators.
|
24
|
+
# @return [Array<DecisionTreeRegressor>]
|
25
|
+
attr_reader :estimators
|
26
|
+
|
27
|
+
# Return the importance for each feature.
|
28
|
+
# @return [Numo::DFloat] (size: n_features)
|
29
|
+
attr_reader :feature_importances
|
30
|
+
|
31
|
+
# Return the random generator for random selection of feature index.
|
32
|
+
# @return [Random]
|
33
|
+
attr_reader :rng
|
34
|
+
|
35
|
+
# Create a new regressor with random forest.
|
36
|
+
#
|
37
|
+
# @param n_estimators [Integer] The numeber of decision trees for contructing random forest.
|
38
|
+
# @param criterion [String] The function to evalue spliting point. Supported criteria are 'gini' and 'entropy'.
|
39
|
+
# @param max_depth [Integer] The maximum depth of the tree.
|
40
|
+
# If nil is given, decision tree grows without concern for depth.
|
41
|
+
# @param max_leaf_nodes [Integer] The maximum number of leaves on decision tree.
|
42
|
+
# If nil is given, number of leaves is not limited.
|
43
|
+
# @param min_samples_leaf [Integer] The minimum number of samples at a leaf node.
|
44
|
+
# @param max_features [Integer] The number of features to consider when searching optimal split point.
|
45
|
+
# If nil is given, split process considers all features.
|
46
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
47
|
+
# It is used to randomly determine the order of features when deciding spliting point.
|
48
|
+
def initialize(n_estimators: 10,
|
49
|
+
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
50
|
+
max_features: nil, random_seed: nil)
|
51
|
+
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
52
|
+
max_features: max_features, random_seed: random_seed)
|
53
|
+
check_params_integer(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
54
|
+
check_params_string(criterion: criterion)
|
55
|
+
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
56
|
+
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
57
|
+
max_features: max_features)
|
58
|
+
@params = {}
|
59
|
+
@params[:n_estimators] = n_estimators
|
60
|
+
@params[:criterion] = criterion
|
61
|
+
@params[:max_depth] = max_depth
|
62
|
+
@params[:max_leaf_nodes] = max_leaf_nodes
|
63
|
+
@params[:min_samples_leaf] = min_samples_leaf
|
64
|
+
@params[:max_features] = max_features
|
65
|
+
@params[:random_seed] = random_seed
|
66
|
+
@params[:random_seed] ||= srand
|
67
|
+
@estimators = nil
|
68
|
+
@feature_importances = nil
|
69
|
+
@rng = Random.new(@params[:random_seed])
|
70
|
+
end
|
71
|
+
|
72
|
+
# Fit the model with given training data.
|
73
|
+
#
|
74
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
75
|
+
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
76
|
+
# @return [RandomForestRegressor] The learned regressor itself.
|
77
|
+
def fit(x, y)
|
78
|
+
check_sample_array(x)
|
79
|
+
check_tvalue_array(y)
|
80
|
+
check_sample_tvalue_size(x, y)
|
81
|
+
# Initialize some variables.
|
82
|
+
n_samples, n_features = x.shape
|
83
|
+
@params[:max_features] = Math.sqrt(n_features).to_i unless @params[:max_features].is_a?(Integer)
|
84
|
+
@params[:max_features] = [[1, @params[:max_features]].max, n_features].min
|
85
|
+
@feature_importances = Numo::DFloat.zeros(n_features)
|
86
|
+
single_target = y.shape[1].nil?
|
87
|
+
# Construct forest.
|
88
|
+
@estimators = Array.new(@params[:n_estimators]) do
|
89
|
+
tree = Tree::DecisionTreeRegressor.new(
|
90
|
+
criterion: @params[:criterion], max_depth: @params[:max_depth],
|
91
|
+
max_leaf_nodes: @params[:max_leaf_nodes], min_samples_leaf: @params[:min_samples_leaf],
|
92
|
+
max_features: @params[:max_features], random_seed: @rng.rand(Rumale::Values.int_max)
|
93
|
+
)
|
94
|
+
bootstrap_ids = Array.new(n_samples) { @rng.rand(0...n_samples) }
|
95
|
+
tree.fit(x[bootstrap_ids, true], single_target ? y[bootstrap_ids] : y[bootstrap_ids, true])
|
96
|
+
@feature_importances += tree.feature_importances
|
97
|
+
tree
|
98
|
+
end
|
99
|
+
@feature_importances /= @feature_importances.sum
|
100
|
+
self
|
101
|
+
end
|
102
|
+
|
103
|
+
# Predict values for samples.
|
104
|
+
#
|
105
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
106
|
+
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
107
|
+
def predict(x)
|
108
|
+
check_sample_array(x)
|
109
|
+
@estimators.map { |est| est.predict(x) }.reduce(&:+) / @params[:n_estimators]
|
110
|
+
end
|
111
|
+
|
112
|
+
# Return the index of the leaf that each sample reached.
|
113
|
+
#
|
114
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to assign each leaf.
|
115
|
+
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
116
|
+
def apply(x)
|
117
|
+
check_sample_array(x)
|
118
|
+
Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
|
119
|
+
end
|
120
|
+
|
121
|
+
# Dump marshal data.
|
122
|
+
# @return [Hash] The marshal data about RandomForestRegressor.
|
123
|
+
def marshal_dump
|
124
|
+
{ params: @params,
|
125
|
+
estimators: @estimators,
|
126
|
+
feature_importances: @feature_importances,
|
127
|
+
rng: @rng }
|
128
|
+
end
|
129
|
+
|
130
|
+
# Load marshal data.
|
131
|
+
# @return [nil]
|
132
|
+
def marshal_load(obj)
|
133
|
+
@params = obj[:params]
|
134
|
+
@estimators = obj[:estimators]
|
135
|
+
@feature_importances = obj[:feature_importances]
|
136
|
+
@rng = obj[:rng]
|
137
|
+
nil
|
138
|
+
end
|
139
|
+
end
|
140
|
+
end
|
141
|
+
end
|