geographiclib 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (87) hide show
  1. checksums.yaml +7 -0
  2. data/AUTHORS +12 -0
  3. data/LICENSE +24 -0
  4. data/ext/geographiclib/Accumulator.cpp +23 -0
  5. data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
  6. data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
  7. data/ext/geographiclib/CassiniSoldner.cpp +89 -0
  8. data/ext/geographiclib/CircularEngine.cpp +96 -0
  9. data/ext/geographiclib/DMS.cpp +381 -0
  10. data/ext/geographiclib/Ellipsoid.cpp +125 -0
  11. data/ext/geographiclib/EllipticFunction.cpp +512 -0
  12. data/ext/geographiclib/GARS.cpp +122 -0
  13. data/ext/geographiclib/GeoCoords.cpp +175 -0
  14. data/ext/geographiclib/Geocentric.cpp +172 -0
  15. data/ext/geographiclib/Geodesic.cpp +1908 -0
  16. data/ext/geographiclib/GeodesicExact.cpp +927 -0
  17. data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
  18. data/ext/geographiclib/GeodesicLine.cpp +321 -0
  19. data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
  20. data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
  21. data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
  22. data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
  23. data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
  24. data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
  25. data/ext/geographiclib/GeographicLib/Config.h +12 -0
  26. data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
  27. data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
  28. data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
  29. data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
  30. data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
  31. data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
  32. data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
  33. data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
  34. data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
  35. data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
  36. data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
  37. data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
  38. data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
  39. data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
  40. data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
  41. data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
  42. data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
  43. data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
  44. data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
  45. data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
  46. data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
  47. data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
  48. data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
  49. data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
  50. data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
  51. data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
  52. data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
  53. data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
  54. data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
  55. data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
  56. data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
  57. data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
  58. data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
  59. data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
  60. data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
  61. data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
  62. data/ext/geographiclib/Geohash.cpp +102 -0
  63. data/ext/geographiclib/Geoid.cpp +509 -0
  64. data/ext/geographiclib/Georef.cpp +135 -0
  65. data/ext/geographiclib/Gnomonic.cpp +85 -0
  66. data/ext/geographiclib/GravityCircle.cpp +129 -0
  67. data/ext/geographiclib/GravityModel.cpp +360 -0
  68. data/ext/geographiclib/LambertConformalConic.cpp +456 -0
  69. data/ext/geographiclib/LocalCartesian.cpp +62 -0
  70. data/ext/geographiclib/MGRS.cpp +461 -0
  71. data/ext/geographiclib/MagneticCircle.cpp +52 -0
  72. data/ext/geographiclib/MagneticModel.cpp +269 -0
  73. data/ext/geographiclib/Math.cpp +63 -0
  74. data/ext/geographiclib/NormalGravity.cpp +262 -0
  75. data/ext/geographiclib/OSGB.cpp +167 -0
  76. data/ext/geographiclib/PolarStereographic.cpp +108 -0
  77. data/ext/geographiclib/PolygonArea.cpp +204 -0
  78. data/ext/geographiclib/Rhumb.cpp +383 -0
  79. data/ext/geographiclib/SphericalEngine.cpp +477 -0
  80. data/ext/geographiclib/TransverseMercator.cpp +603 -0
  81. data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
  82. data/ext/geographiclib/UTMUPS.cpp +296 -0
  83. data/ext/geographiclib/Utility.cpp +61 -0
  84. data/ext/geographiclib/extconf.rb +3 -0
  85. data/ext/geographiclib/geographiclib.cpp +62 -0
  86. data/lib/geographiclib.rb +20 -0
  87. metadata +140 -0
@@ -0,0 +1,927 @@
1
+ /**
2
+ * \file GeodesicExact.cpp
3
+ * \brief Implementation for GeographicLib::GeodesicExact class
4
+ *
5
+ * Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
6
+ * under the MIT/X11 License. For more information, see
7
+ * http://geographiclib.sourceforge.net/
8
+ *
9
+ * This is a reformulation of the geodesic problem. The notation is as
10
+ * follows:
11
+ * - at a general point (no suffix or 1 or 2 as suffix)
12
+ * - phi = latitude
13
+ * - beta = latitude on auxiliary sphere
14
+ * - omega = longitude on auxiliary sphere
15
+ * - lambda = longitude
16
+ * - alpha = azimuth of great circle
17
+ * - sigma = arc length along great circle
18
+ * - s = distance
19
+ * - tau = scaled distance (= sigma at multiples of pi/2)
20
+ * - at northwards equator crossing
21
+ * - beta = phi = 0
22
+ * - omega = lambda = 0
23
+ * - alpha = alpha0
24
+ * - sigma = s = 0
25
+ * - a 12 suffix means a difference, e.g., s12 = s2 - s1.
26
+ * - s and c prefixes mean sin and cos
27
+ **********************************************************************/
28
+
29
+ #include <GeographicLib/GeodesicExact.hpp>
30
+ #include <GeographicLib/GeodesicLineExact.hpp>
31
+
32
+ #if defined(_MSC_VER)
33
+ // Squelch warnings about potentially uninitialized local variables and
34
+ // constant conditional expressions
35
+ # pragma warning (disable: 4701 4127)
36
+ #endif
37
+
38
+ namespace GeographicLib {
39
+
40
+ using namespace std;
41
+
42
+ GeodesicExact::GeodesicExact(real a, real f)
43
+ : maxit2_(maxit1_ + Math::digits() + 10)
44
+ // Underflow guard. We require
45
+ // tiny_ * epsilon() > 0
46
+ // tiny_ + epsilon() == epsilon()
47
+ , tiny_(sqrt(numeric_limits<real>::min()))
48
+ , tol0_(numeric_limits<real>::epsilon())
49
+ // Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse
50
+ // case 52.784459512564 0 -52.784459512563990912 179.634407464943777557
51
+ // which otherwise failed for Visual Studio 10 (Release and Debug)
52
+ , tol1_(200 * tol0_)
53
+ , tol2_(sqrt(tol0_))
54
+ , tolb_(tol0_ * tol2_) // Check on bisection interval
55
+ , xthresh_(1000 * tol2_)
56
+ , _a(a)
57
+ , _f(f)
58
+ , _f1(1 - _f)
59
+ , _e2(_f * (2 - _f))
60
+ , _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2)
61
+ , _n(_f / ( 2 - _f))
62
+ , _b(_a * _f1)
63
+ // The Geodesic class substitutes atanh(sqrt(e2)) for asinh(sqrt(ep2)) in
64
+ // the definition of _c2. The latter is more accurate for very oblate
65
+ // ellipsoids (which the Geodesic class does not attempt to handle). Of
66
+ // course, the area calculation in GeodesicExact is still based on a
67
+ // series and so only holds for moderately oblate (or prolate)
68
+ // ellipsoids.
69
+ , _c2((Math::sq(_a) + Math::sq(_b) *
70
+ (_f == 0 ? 1 :
71
+ (_f > 0 ? Math::asinh(sqrt(_ep2)) : atan(sqrt(-_e2))) /
72
+ sqrt(abs(_e2))))/2) // authalic radius squared
73
+ // The sig12 threshold for "really short". Using the auxiliary sphere
74
+ // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
75
+ // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
76
+ // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a
77
+ // given f and sig12, the max error occurs for lines near the pole. If
78
+ // the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
79
+ // increases by a factor of 2.) Setting this equal to epsilon gives
80
+ // sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100)
81
+ // and max(0.001, abs(f)) stops etol2 getting too large in the nearly
82
+ // spherical case.
83
+ , _etol2(0.1 * tol2_ /
84
+ sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
85
+ {
86
+ if (!(Math::isfinite(_a) && _a > 0))
87
+ throw GeographicErr("Major radius is not positive");
88
+ if (!(Math::isfinite(_b) && _b > 0))
89
+ throw GeographicErr("Minor radius is not positive");
90
+ C4coeff();
91
+ }
92
+
93
+ const GeodesicExact& GeodesicExact::WGS84() {
94
+ static const GeodesicExact wgs84(Constants::WGS84_a(),
95
+ Constants::WGS84_f());
96
+ return wgs84;
97
+ }
98
+
99
+ Math::real GeodesicExact::CosSeries(real sinx, real cosx,
100
+ const real c[], int n) {
101
+ // Evaluate
102
+ // y = sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
103
+ // using Clenshaw summation.
104
+ // Approx operation count = (n + 5) mult and (2 * n + 2) add
105
+ c += n ; // Point to one beyond last element
106
+ real
107
+ ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
108
+ y0 = n & 1 ? *--c : 0, y1 = 0; // accumulators for sum
109
+ // Now n is even
110
+ n /= 2;
111
+ while (n--) {
112
+ // Unroll loop x 2, so accumulators return to their original role
113
+ y1 = ar * y0 - y1 + *--c;
114
+ y0 = ar * y1 - y0 + *--c;
115
+ }
116
+ return cosx * (y0 - y1); // cos(x) * (y0 - y1)
117
+ }
118
+
119
+ GeodesicLineExact GeodesicExact::Line(real lat1, real lon1, real azi1,
120
+ unsigned caps) const {
121
+ return GeodesicLineExact(*this, lat1, lon1, azi1, caps);
122
+ }
123
+
124
+ Math::real GeodesicExact::GenDirect(real lat1, real lon1, real azi1,
125
+ bool arcmode, real s12_a12,
126
+ unsigned outmask,
127
+ real& lat2, real& lon2, real& azi2,
128
+ real& s12, real& m12,
129
+ real& M12, real& M21,
130
+ real& S12) const {
131
+ // Automatically supply DISTANCE_IN if necessary
132
+ if (!arcmode) outmask |= DISTANCE_IN;
133
+ return GeodesicLineExact(*this, lat1, lon1, azi1, outmask)
134
+ . // Note the dot!
135
+ GenPosition(arcmode, s12_a12, outmask,
136
+ lat2, lon2, azi2, s12, m12, M12, M21, S12);
137
+ }
138
+
139
+ GeodesicLineExact GeodesicExact::GenDirectLine(real lat1, real lon1,
140
+ real azi1,
141
+ bool arcmode, real s12_a12,
142
+ unsigned caps) const {
143
+ azi1 = Math::AngNormalize(azi1);
144
+ real salp1, calp1;
145
+ // Guard against underflow in salp0. Also -0 is converted to +0.
146
+ Math::sincosd(Math::AngRound(azi1), salp1, calp1);
147
+ // Automatically supply DISTANCE_IN if necessary
148
+ if (!arcmode) caps |= DISTANCE_IN;
149
+ return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1,
150
+ caps, arcmode, s12_a12);
151
+ }
152
+
153
+ GeodesicLineExact GeodesicExact::DirectLine(real lat1, real lon1,
154
+ real azi1, real s12,
155
+ unsigned caps) const {
156
+ return GenDirectLine(lat1, lon1, azi1, false, s12, caps);
157
+ }
158
+
159
+ GeodesicLineExact GeodesicExact::ArcDirectLine(real lat1, real lon1,
160
+ real azi1, real a12,
161
+ unsigned caps) const {
162
+ return GenDirectLine(lat1, lon1, azi1, true, a12, caps);
163
+ }
164
+
165
+ Math::real GeodesicExact::GenInverse(real lat1, real lon1,
166
+ real lat2, real lon2,
167
+ unsigned outmask, real& s12,
168
+ real& salp1, real& calp1,
169
+ real& salp2, real& calp2,
170
+ real& m12, real& M12, real& M21,
171
+ real& S12) const {
172
+ // Compute longitude difference (AngDiff does this carefully). Result is
173
+ // in [-180, 180] but -180 is only for west-going geodesics. 180 is for
174
+ // east-going and meridional geodesics.
175
+ real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s);
176
+ // Make longitude difference positive.
177
+ int lonsign = lon12 >= 0 ? 1 : -1;
178
+ // If very close to being on the same half-meridian, then make it so.
179
+ lon12 = lonsign * Math::AngRound(lon12);
180
+ lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s);
181
+ real
182
+ lam12 = lon12 * Math::degree(),
183
+ slam12, clam12;
184
+ if (lon12 > 90) {
185
+ Math::sincosd(lon12s, slam12, clam12);
186
+ clam12 = -clam12;
187
+ } else
188
+ Math::sincosd(lon12, slam12, clam12);
189
+
190
+ // If really close to the equator, treat as on equator.
191
+ lat1 = Math::AngRound(Math::LatFix(lat1));
192
+ lat2 = Math::AngRound(Math::LatFix(lat2));
193
+ // Swap points so that point with higher (abs) latitude is point 1
194
+ // If one latitude is a nan, then it becomes lat1.
195
+ int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
196
+ if (swapp < 0) {
197
+ lonsign *= -1;
198
+ swap(lat1, lat2);
199
+ }
200
+ // Make lat1 <= 0
201
+ int latsign = lat1 < 0 ? 1 : -1;
202
+ lat1 *= latsign;
203
+ lat2 *= latsign;
204
+ // Now we have
205
+ //
206
+ // 0 <= lon12 <= 180
207
+ // -90 <= lat1 <= 0
208
+ // lat1 <= lat2 <= -lat1
209
+ //
210
+ // longsign, swapp, latsign register the transformation to bring the
211
+ // coordinates to this canonical form. In all cases, 1 means no change was
212
+ // made. We make these transformations so that there are few cases to
213
+ // check, e.g., on verifying quadrants in atan2. In addition, this
214
+ // enforces some symmetries in the results returned.
215
+
216
+ real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
217
+ // Initialize for the meridian. No longitude calculation is done in this
218
+ // case to let the parameter default to 0.
219
+ EllipticFunction E(-_ep2);
220
+
221
+ Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1;
222
+ // Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12
223
+ // will be <= 2*tiny for two points at the same pole.
224
+ Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
225
+
226
+ Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1;
227
+ // Ensure cbet2 = +epsilon at poles
228
+ Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);
229
+
230
+ // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
231
+ // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
232
+ // a better measure. This logic is used in assigning calp2 in Lambda12.
233
+ // Sometimes these quantities vanish and in that case we force bet2 = +/-
234
+ // bet1 exactly. An example where is is necessary is the inverse problem
235
+ // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
236
+ // which failed with Visual Studio 10 (Release and Debug)
237
+
238
+ if (cbet1 < -sbet1) {
239
+ if (cbet2 == cbet1)
240
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
241
+ } else {
242
+ if (abs(sbet2) == -sbet1)
243
+ cbet2 = cbet1;
244
+ }
245
+
246
+ real
247
+ dn1 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet1)) :
248
+ sqrt(1 - _e2 * Math::sq(cbet1)) / _f1),
249
+ dn2 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet2)) :
250
+ sqrt(1 - _e2 * Math::sq(cbet2)) / _f1);
251
+
252
+ real a12, sig12;
253
+
254
+ bool meridian = lat1 == -90 || slam12 == 0;
255
+
256
+ if (meridian) {
257
+
258
+ // Endpoints are on a single full meridian, so the geodesic might lie on
259
+ // a meridian.
260
+
261
+ calp1 = clam12; salp1 = slam12; // Head to the target longitude
262
+ calp2 = 1; salp2 = 0; // At the target we're heading north
263
+
264
+ real
265
+ // tan(bet) = tan(sig) * cos(alp)
266
+ ssig1 = sbet1, csig1 = calp1 * cbet1,
267
+ ssig2 = sbet2, csig2 = calp2 * cbet2;
268
+
269
+ // sig12 = sig2 - sig1
270
+ sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
271
+ csig1 * csig2 + ssig1 * ssig2);
272
+ {
273
+ real dummy;
274
+ Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
275
+ cbet1, cbet2, outmask | REDUCEDLENGTH,
276
+ s12x, m12x, dummy, M12, M21);
277
+ }
278
+ // Add the check for sig12 since zero length geodesics might yield m12 <
279
+ // 0. Test case was
280
+ //
281
+ // echo 20.001 0 20.001 0 | GeodSolve -i
282
+ //
283
+ // In fact, we will have sig12 > pi/2 for meridional geodesic which is
284
+ // not a shortest path.
285
+ if (sig12 < 1 || m12x >= 0) {
286
+ // Need at least 2, to handle 90 0 90 180
287
+ if (sig12 < 3 * tiny_)
288
+ sig12 = m12x = s12x = 0;
289
+ m12x *= _b;
290
+ s12x *= _b;
291
+ a12 = sig12 / Math::degree();
292
+ } else
293
+ // m12 < 0, i.e., prolate and too close to anti-podal
294
+ meridian = false;
295
+ }
296
+
297
+ // somg12 > 1 marks that it needs to be calculated
298
+ real omg12 = 0, somg12 = 2, comg12 = 0;
299
+ if (!meridian &&
300
+ sbet1 == 0 && // and sbet2 == 0
301
+ (_f <= 0 || lon12s >= _f * 180)) {
302
+
303
+ // Geodesic runs along equator
304
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
305
+ s12x = _a * lam12;
306
+ sig12 = omg12 = lam12 / _f1;
307
+ m12x = _b * sin(sig12);
308
+ if (outmask & GEODESICSCALE)
309
+ M12 = M21 = cos(sig12);
310
+ a12 = lon12 / _f1;
311
+
312
+ } else if (!meridian) {
313
+
314
+ // Now point1 and point2 belong within a hemisphere bounded by a
315
+ // meridian and geodesic is neither meridional or equatorial.
316
+
317
+ // Figure a starting point for Newton's method
318
+ real dnm;
319
+ sig12 = InverseStart(E, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
320
+ lam12, slam12, clam12,
321
+ salp1, calp1, salp2, calp2, dnm);
322
+
323
+ if (sig12 >= 0) {
324
+ // Short lines (InverseStart sets salp2, calp2, dnm)
325
+ s12x = sig12 * _b * dnm;
326
+ m12x = Math::sq(dnm) * _b * sin(sig12 / dnm);
327
+ if (outmask & GEODESICSCALE)
328
+ M12 = M21 = cos(sig12 / dnm);
329
+ a12 = sig12 / Math::degree();
330
+ omg12 = lam12 / (_f1 * dnm);
331
+ } else {
332
+
333
+ // Newton's method. This is a straightforward solution of f(alp1) =
334
+ // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
335
+ // root in the interval (0, pi) and its derivative is positive at the
336
+ // root. Thus f(alp) is positive for alp > alp1 and negative for alp <
337
+ // alp1. During the course of the iteration, a range (alp1a, alp1b) is
338
+ // maintained which brackets the root and with each evaluation of
339
+ // f(alp) the range is shrunk, if possible. Newton's method is
340
+ // restarted whenever the derivative of f is negative (because the new
341
+ // value of alp1 is then further from the solution) or if the new
342
+ // estimate of alp1 lies outside (0,pi); in this case, the new starting
343
+ // guess is taken to be (alp1a + alp1b) / 2.
344
+ //
345
+ // initial values to suppress warnings (if loop is executed 0 times)
346
+ real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0;
347
+ unsigned numit = 0;
348
+ // Bracketing range
349
+ real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
350
+ for (bool tripn = false, tripb = false;
351
+ numit < maxit2_ || GEOGRAPHICLIB_PANIC;
352
+ ++numit) {
353
+ // 1/4 meridan = 10e6 m and random input. max err is estimated max
354
+ // error in nm (checking solution of inverse problem by direct
355
+ // solution). iter is mean and sd of number of iterations
356
+ //
357
+ // max iter
358
+ // log2(b/a) err mean sd
359
+ // -7 387 5.33 3.68
360
+ // -6 345 5.19 3.43
361
+ // -5 269 5.00 3.05
362
+ // -4 210 4.76 2.44
363
+ // -3 115 4.55 1.87
364
+ // -2 69 4.35 1.38
365
+ // -1 36 4.05 1.03
366
+ // 0 15 0.01 0.13
367
+ // 1 25 5.10 1.53
368
+ // 2 96 5.61 2.09
369
+ // 3 318 6.02 2.74
370
+ // 4 985 6.24 3.22
371
+ // 5 2352 6.32 3.44
372
+ // 6 6008 6.30 3.45
373
+ // 7 19024 6.19 3.30
374
+ real dv;
375
+ real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
376
+ slam12, clam12,
377
+ salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
378
+ E, somg12, comg12, numit < maxit1_, dv);
379
+ // Reversed test to allow escape with NaNs
380
+ if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break;
381
+ // Update bracketing values
382
+ if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
383
+ { salp1b = salp1; calp1b = calp1; }
384
+ else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
385
+ { salp1a = salp1; calp1a = calp1; }
386
+ if (numit < maxit1_ && dv > 0) {
387
+ real
388
+ dalp1 = -v/dv;
389
+ real
390
+ sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
391
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
392
+ if (nsalp1 > 0 && abs(dalp1) < Math::pi()) {
393
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
394
+ salp1 = nsalp1;
395
+ Math::norm(salp1, calp1);
396
+ // In some regimes we don't get quadratic convergence because
397
+ // slope -> 0. So use convergence conditions based on epsilon
398
+ // instead of sqrt(epsilon).
399
+ tripn = abs(v) <= 16 * tol0_;
400
+ continue;
401
+ }
402
+ }
403
+ // Either dv was not postive or updated value was outside legal
404
+ // range. Use the midpoint of the bracket as the next estimate.
405
+ // This mechanism is not needed for the WGS84 ellipsoid, but it does
406
+ // catch problems with more eccentric ellipsoids. Its efficacy is
407
+ // such for the WGS84 test set with the starting guess set to alp1 =
408
+ // 90deg:
409
+ // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
410
+ // WGS84 and random input: mean = 4.74, sd = 0.99
411
+ salp1 = (salp1a + salp1b)/2;
412
+ calp1 = (calp1a + calp1b)/2;
413
+ Math::norm(salp1, calp1);
414
+ tripn = false;
415
+ tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
416
+ abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
417
+ }
418
+ {
419
+ real dummy;
420
+ Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
421
+ cbet1, cbet2, outmask, s12x, m12x, dummy, M12, M21);
422
+ }
423
+ m12x *= _b;
424
+ s12x *= _b;
425
+ a12 = sig12 / Math::degree();
426
+ }
427
+ }
428
+
429
+ if (outmask & DISTANCE)
430
+ s12 = 0 + s12x; // Convert -0 to 0
431
+
432
+ if (outmask & REDUCEDLENGTH)
433
+ m12 = 0 + m12x; // Convert -0 to 0
434
+
435
+ if (outmask & AREA) {
436
+ real
437
+ // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
438
+ salp0 = salp1 * cbet1,
439
+ calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
440
+ real alp12;
441
+ if (calp0 != 0 && salp0 != 0) {
442
+ real
443
+ // From Lambda12: tan(bet) = tan(sig) * cos(alp)
444
+ ssig1 = sbet1, csig1 = calp1 * cbet1,
445
+ ssig2 = sbet2, csig2 = calp2 * cbet2,
446
+ k2 = Math::sq(calp0) * _ep2,
447
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
448
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
449
+ A4 = Math::sq(_a) * calp0 * salp0 * _e2;
450
+ Math::norm(ssig1, csig1);
451
+ Math::norm(ssig2, csig2);
452
+ real C4a[nC4_];
453
+ C4f(eps, C4a);
454
+ real
455
+ B41 = CosSeries(ssig1, csig1, C4a, nC4_),
456
+ B42 = CosSeries(ssig2, csig2, C4a, nC4_);
457
+ S12 = A4 * (B42 - B41);
458
+ } else
459
+ // Avoid problems with indeterminate sig1, sig2 on equator
460
+ S12 = 0;
461
+
462
+ if (!meridian) {
463
+ if (somg12 > 1) {
464
+ somg12 = sin(omg12); comg12 = cos(omg12);
465
+ } else
466
+ Math::norm(somg12, comg12);
467
+ }
468
+
469
+ if (!meridian &&
470
+ // omg12 < 3/4 * pi
471
+ comg12 > -real(0.7071) && // Long difference not too big
472
+ sbet2 - sbet1 < real(1.75)) { // Lat difference not too big
473
+ // Use tan(Gamma/2) = tan(omg12/2)
474
+ // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
475
+ // with tan(x/2) = sin(x)/(1+cos(x))
476
+ real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
477
+ alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
478
+ domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
479
+ } else {
480
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
481
+ real
482
+ salp12 = salp2 * calp1 - calp2 * salp1,
483
+ calp12 = calp2 * calp1 + salp2 * salp1;
484
+ // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
485
+ // salp12 = -0 and alp12 = -180. However this depends on the sign
486
+ // being attached to 0 correctly. The following ensures the correct
487
+ // behavior.
488
+ if (salp12 == 0 && calp12 < 0) {
489
+ salp12 = tiny_ * calp1;
490
+ calp12 = -1;
491
+ }
492
+ alp12 = atan2(salp12, calp12);
493
+ }
494
+ S12 += _c2 * alp12;
495
+ S12 *= swapp * lonsign * latsign;
496
+ // Convert -0 to 0
497
+ S12 += 0;
498
+ }
499
+
500
+ // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
501
+ if (swapp < 0) {
502
+ swap(salp1, salp2);
503
+ swap(calp1, calp2);
504
+ if (outmask & GEODESICSCALE)
505
+ swap(M12, M21);
506
+ }
507
+
508
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
509
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
510
+
511
+ // Returned value in [0, 180]
512
+ return a12;
513
+ }
514
+
515
+ Math::real GeodesicExact::GenInverse(real lat1, real lon1,
516
+ real lat2, real lon2,
517
+ unsigned outmask,
518
+ real& s12, real& azi1, real& azi2,
519
+ real& m12, real& M12, real& M21,
520
+ real& S12)
521
+ const {
522
+ outmask &= OUT_MASK;
523
+ real salp1, calp1, salp2, calp2,
524
+ a12 = GenInverse(lat1, lon1, lat2, lon2,
525
+ outmask, s12, salp1, calp1, salp2, calp2,
526
+ m12, M12, M21, S12);
527
+ if (outmask & AZIMUTH) {
528
+ azi1 = Math::atan2d(salp1, calp1);
529
+ azi2 = Math::atan2d(salp2, calp2);
530
+ }
531
+ return a12;
532
+ }
533
+
534
+ GeodesicLineExact GeodesicExact::InverseLine(real lat1, real lon1,
535
+ real lat2, real lon2,
536
+ unsigned caps) const {
537
+ real t, salp1, calp1, salp2, calp2,
538
+ a12 = GenInverse(lat1, lon1, lat2, lon2,
539
+ // No need to specify AZIMUTH here
540
+ 0u, t, salp1, calp1, salp2, calp2,
541
+ t, t, t, t),
542
+ azi1 = Math::atan2d(salp1, calp1);
543
+ // Ensure that a12 can be converted to a distance
544
+ if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE;
545
+ return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1, caps,
546
+ true, a12);
547
+ }
548
+
549
+ void GeodesicExact::Lengths(const EllipticFunction& E,
550
+ real sig12,
551
+ real ssig1, real csig1, real dn1,
552
+ real ssig2, real csig2, real dn2,
553
+ real cbet1, real cbet2, unsigned outmask,
554
+ real& s12b, real& m12b, real& m0,
555
+ real& M12, real& M21) const {
556
+ // Return m12b = (reduced length)/_b; also calculate s12b = distance/_b,
557
+ // and m0 = coefficient of secular term in expression for reduced length.
558
+
559
+ outmask &= OUT_ALL;
560
+ // outmask & DISTANCE: set s12b
561
+ // outmask & REDUCEDLENGTH: set m12b & m0
562
+ // outmask & GEODESICSCALE: set M12 & M21
563
+
564
+ // It's OK to have repeated dummy arguments,
565
+ // e.g., s12b = m0 = M12 = M21 = dummy
566
+
567
+ if (outmask & DISTANCE)
568
+ // Missing a factor of _b
569
+ s12b = E.E() / (Math::pi() / 2) *
570
+ (sig12 + (E.deltaE(ssig2, csig2, dn2) - E.deltaE(ssig1, csig1, dn1)));
571
+ if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
572
+ real
573
+ m0x = - E.k2() * E.D() / (Math::pi() / 2),
574
+ J12 = m0x *
575
+ (sig12 + (E.deltaD(ssig2, csig2, dn2) - E.deltaD(ssig1, csig1, dn1)));
576
+ if (outmask & REDUCEDLENGTH) {
577
+ m0 = m0x;
578
+ // Missing a factor of _b. Add parens around (csig1 * ssig2) and
579
+ // (ssig1 * csig2) to ensure accurate cancellation in the case of
580
+ // coincident points.
581
+ m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
582
+ csig1 * csig2 * J12;
583
+ }
584
+ if (outmask & GEODESICSCALE) {
585
+ real csig12 = csig1 * csig2 + ssig1 * ssig2;
586
+ real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
587
+ M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
588
+ M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
589
+ }
590
+ }
591
+ }
592
+
593
+ Math::real GeodesicExact::Astroid(real x, real y) {
594
+ // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
595
+ // This solution is adapted from Geocentric::Reverse.
596
+ real k;
597
+ real
598
+ p = Math::sq(x),
599
+ q = Math::sq(y),
600
+ r = (p + q - 1) / 6;
601
+ if ( !(q == 0 && r <= 0) ) {
602
+ real
603
+ // Avoid possible division by zero when r = 0 by multiplying equations
604
+ // for s and t by r^3 and r, resp.
605
+ S = p * q / 4, // S = r^3 * s
606
+ r2 = Math::sq(r),
607
+ r3 = r * r2,
608
+ // The discriminant of the quadratic equation for T3. This is zero on
609
+ // the evolute curve p^(1/3)+q^(1/3) = 1
610
+ disc = S * (S + 2 * r3);
611
+ real u = r;
612
+ if (disc >= 0) {
613
+ real T3 = S + r3;
614
+ // Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
615
+ // of precision due to cancellation. The result is unchanged because
616
+ // of the way the T is used in definition of u.
617
+ T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
618
+ // N.B. cbrt always returns the real root. cbrt(-8) = -2.
619
+ real T = Math::cbrt(T3); // T = r * t
620
+ // T can be zero; but then r2 / T -> 0.
621
+ u += T + (T ? r2 / T : 0);
622
+ } else {
623
+ // T is complex, but the way u is defined the result is real.
624
+ real ang = atan2(sqrt(-disc), -(S + r3));
625
+ // There are three possible cube roots. We choose the root which
626
+ // avoids cancellation. Note that disc < 0 implies that r < 0.
627
+ u += 2 * r * cos(ang / 3);
628
+ }
629
+ real
630
+ v = sqrt(Math::sq(u) + q), // guaranteed positive
631
+ // Avoid loss of accuracy when u < 0.
632
+ uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive
633
+ w = (uv - q) / (2 * v); // positive?
634
+ // Rearrange expression for k to avoid loss of accuracy due to
635
+ // subtraction. Division by 0 not possible because uv > 0, w >= 0.
636
+ k = uv / (sqrt(uv + Math::sq(w)) + w); // guaranteed positive
637
+ } else { // q == 0 && r <= 0
638
+ // y = 0 with |x| <= 1. Handle this case directly.
639
+ // for y small, positive root is k = abs(y)/sqrt(1-x^2)
640
+ k = 0;
641
+ }
642
+ return k;
643
+ }
644
+
645
+ Math::real GeodesicExact::InverseStart(EllipticFunction& E,
646
+ real sbet1, real cbet1, real dn1,
647
+ real sbet2, real cbet2, real dn2,
648
+ real lam12, real slam12, real clam12,
649
+ real& salp1, real& calp1,
650
+ // Only updated if return val >= 0
651
+ real& salp2, real& calp2,
652
+ // Only updated for short lines
653
+ real& dnm)
654
+ const {
655
+ // Return a starting point for Newton's method in salp1 and calp1 (function
656
+ // value is -1). If Newton's method doesn't need to be used, return also
657
+ // salp2 and calp2 and function value is sig12.
658
+ real
659
+ sig12 = -1, // Return value
660
+ // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
661
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
662
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
663
+ #if defined(__GNUC__) && __GNUC__ == 4 && \
664
+ (__GNUC_MINOR__ < 6 || defined(__MINGW32__))
665
+ // Volatile declaration needed to fix inverse cases
666
+ // 88.202499451857 0 -88.202499451857 179.981022032992859592
667
+ // 89.262080389218 0 -89.262080389218 179.992207982775375662
668
+ // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
669
+ // which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
670
+ // and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw).
671
+ real sbet12a;
672
+ {
673
+ GEOGRAPHICLIB_VOLATILE real xx1 = sbet2 * cbet1;
674
+ GEOGRAPHICLIB_VOLATILE real xx2 = cbet2 * sbet1;
675
+ sbet12a = xx1 + xx2;
676
+ }
677
+ #else
678
+ real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
679
+ #endif
680
+ bool shortline = cbet12 >= 0 && sbet12 < real(0.5) &&
681
+ cbet2 * lam12 < real(0.5);
682
+ real somg12, comg12;
683
+ if (shortline) {
684
+ real sbetm2 = Math::sq(sbet1 + sbet2);
685
+ // sin((bet1+bet2)/2)^2
686
+ // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
687
+ sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2);
688
+ dnm = sqrt(1 + _ep2 * sbetm2);
689
+ real omg12 = lam12 / (_f1 * dnm);
690
+ somg12 = sin(omg12); comg12 = cos(omg12);
691
+ } else {
692
+ somg12 = slam12; comg12 = clam12;
693
+ }
694
+
695
+ salp1 = cbet2 * somg12;
696
+ calp1 = comg12 >= 0 ?
697
+ sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) :
698
+ sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
699
+
700
+ real
701
+ ssig12 = Math::hypot(salp1, calp1),
702
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
703
+
704
+ if (shortline && ssig12 < _etol2) {
705
+ // really short lines
706
+ salp2 = cbet1 * somg12;
707
+ calp2 = sbet12 - cbet1 * sbet2 *
708
+ (comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12);
709
+ Math::norm(salp2, calp2);
710
+ // Set return value
711
+ sig12 = atan2(ssig12, csig12);
712
+ } else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric
713
+ csig12 >= 0 ||
714
+ ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) {
715
+ // Nothing to do, zeroth order spherical approximation is OK
716
+ } else {
717
+ // Scale lam12 and bet2 to x, y coordinate system where antipodal point
718
+ // is at origin and singular point is at y = 0, x = -1.
719
+ real y, lamscale, betscale;
720
+ // Volatile declaration needed to fix inverse case
721
+ // 56.320923501171 0 -56.320923501171 179.664747671772880215
722
+ // which otherwise fails with g++ 4.4.4 x86 -O3
723
+ GEOGRAPHICLIB_VOLATILE real x;
724
+ real lam12x = atan2(-slam12, -clam12); // lam12 - pi
725
+ if (_f >= 0) { // In fact f == 0 does not get here
726
+ // x = dlong, y = dlat
727
+ {
728
+ real k2 = Math::sq(sbet1) * _ep2;
729
+ E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
730
+ lamscale = _e2/_f1 * cbet1 * 2 * E.H();
731
+ }
732
+ betscale = lamscale * cbet1;
733
+
734
+ x = lam12x / lamscale;
735
+ y = sbet12a / betscale;
736
+ } else { // _f < 0
737
+ // x = dlat, y = dlong
738
+ real
739
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
740
+ bet12a = atan2(sbet12a, cbet12a);
741
+ real m12b, m0, dummy;
742
+ // In the case of lon12 = 180, this repeats a calculation made in
743
+ // Inverse.
744
+ Lengths(E, Math::pi() + bet12a,
745
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
746
+ cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy);
747
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi());
748
+ betscale = x < -real(0.01) ? sbet12a / x :
749
+ -_f * Math::sq(cbet1) * Math::pi();
750
+ lamscale = betscale / cbet1;
751
+ y = lam12x / lamscale;
752
+ }
753
+
754
+ if (y > -tol1_ && x > -1 - xthresh_) {
755
+ // strip near cut
756
+ // Need real(x) here to cast away the volatility of x for min/max
757
+ if (_f >= 0) {
758
+ salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1));
759
+ } else {
760
+ calp1 = max(real(x > -tol1_ ? 0 : -1), real(x));
761
+ salp1 = sqrt(1 - Math::sq(calp1));
762
+ }
763
+ } else {
764
+ // Estimate alp1, by solving the astroid problem.
765
+ //
766
+ // Could estimate alpha1 = theta + pi/2, directly, i.e.,
767
+ // calp1 = y/k; salp1 = -x/(1+k); for _f >= 0
768
+ // calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check)
769
+ //
770
+ // However, it's better to estimate omg12 from astroid and use
771
+ // spherical formula to compute alp1. This reduces the mean number of
772
+ // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
773
+ // (min 0 max 5). The changes in the number of iterations are as
774
+ // follows:
775
+ //
776
+ // change percent
777
+ // 1 5
778
+ // 0 78
779
+ // -1 16
780
+ // -2 0.6
781
+ // -3 0.04
782
+ // -4 0.002
783
+ //
784
+ // The histogram of iterations is (m = number of iterations estimating
785
+ // alp1 directly, n = number of iterations estimating via omg12, total
786
+ // number of trials = 148605):
787
+ //
788
+ // iter m n
789
+ // 0 148 186
790
+ // 1 13046 13845
791
+ // 2 93315 102225
792
+ // 3 36189 32341
793
+ // 4 5396 7
794
+ // 5 455 1
795
+ // 6 56 0
796
+ //
797
+ // Because omg12 is near pi, estimate work with omg12a = pi - omg12
798
+ real k = Astroid(x, y);
799
+ real
800
+ omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
801
+ somg12 = sin(omg12a); comg12 = -cos(omg12a);
802
+ // Update spherical estimate of alp1 using omg12 instead of lam12
803
+ salp1 = cbet2 * somg12;
804
+ calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
805
+ }
806
+ }
807
+ // Sanity check on starting guess. Backwards check allows NaN through.
808
+ if (!(salp1 <= 0))
809
+ Math::norm(salp1, calp1);
810
+ else {
811
+ salp1 = 1; calp1 = 0;
812
+ }
813
+ return sig12;
814
+ }
815
+
816
+ Math::real GeodesicExact::Lambda12(real sbet1, real cbet1, real dn1,
817
+ real sbet2, real cbet2, real dn2,
818
+ real salp1, real calp1,
819
+ real slam120, real clam120,
820
+ real& salp2, real& calp2,
821
+ real& sig12,
822
+ real& ssig1, real& csig1,
823
+ real& ssig2, real& csig2,
824
+ EllipticFunction& E,
825
+ real& somg12, real& comg12,
826
+ bool diffp, real& dlam12) const
827
+ {
828
+
829
+ if (sbet1 == 0 && calp1 == 0)
830
+ // Break degeneracy of equatorial line. This case has already been
831
+ // handled.
832
+ calp1 = -tiny_;
833
+
834
+ real
835
+ // sin(alp1) * cos(bet1) = sin(alp0)
836
+ salp0 = salp1 * cbet1,
837
+ calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
838
+
839
+ real somg1, comg1, somg2, comg2, cchi1, cchi2, lam12;
840
+ // tan(bet1) = tan(sig1) * cos(alp1)
841
+ // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
842
+ ssig1 = sbet1; somg1 = salp0 * sbet1;
843
+ csig1 = comg1 = calp1 * cbet1;
844
+ // Without normalization we have schi1 = somg1.
845
+ cchi1 = _f1 * dn1 * comg1;
846
+ Math::norm(ssig1, csig1);
847
+ // Math::norm(somg1, comg1); -- don't need to normalize!
848
+ // Math::norm(schi1, cchi1); -- don't need to normalize!
849
+
850
+ // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
851
+ // about this case, since this can yield singularities in the Newton
852
+ // iteration.
853
+ // sin(alp2) * cos(bet2) = sin(alp0)
854
+ salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
855
+ // calp2 = sqrt(1 - sq(salp2))
856
+ // = sqrt(sq(calp0) - sq(sbet2)) / cbet2
857
+ // and subst for calp0 and rearrange to give (choose positive sqrt
858
+ // to give alp2 in [0, pi/2]).
859
+ calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
860
+ sqrt(Math::sq(calp1 * cbet1) +
861
+ (cbet1 < -sbet1 ?
862
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
863
+ (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
864
+ abs(calp1);
865
+ // tan(bet2) = tan(sig2) * cos(alp2)
866
+ // tan(omg2) = sin(alp0) * tan(sig2).
867
+ ssig2 = sbet2; somg2 = salp0 * sbet2;
868
+ csig2 = comg2 = calp2 * cbet2;
869
+ // Without normalization we have schi2 = somg2.
870
+ cchi2 = _f1 * dn2 * comg2;
871
+ Math::norm(ssig2, csig2);
872
+ // Math::norm(somg2, comg2); -- don't need to normalize!
873
+ // Math::norm(schi2, cchi2); -- don't need to normalize!
874
+
875
+ // sig12 = sig2 - sig1, limit to [0, pi]
876
+ sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
877
+ csig1 * csig2 + ssig1 * ssig2);
878
+
879
+ // omg12 = omg2 - omg1, limit to [0, pi]
880
+ somg12 = max(real(0), comg1 * somg2 - somg1 * comg2);
881
+ comg12 = comg1 * comg2 + somg1 * somg2;
882
+ real k2 = Math::sq(calp0) * _ep2;
883
+ E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
884
+ // chi12 = chi2 - chi1, limit to [0, pi]
885
+ real
886
+ schi12 = max(real(0), cchi1 * somg2 - somg1 * cchi2),
887
+ cchi12 = cchi1 * cchi2 + somg1 * somg2;
888
+ // eta = chi12 - lam120
889
+ real eta = atan2(schi12 * clam120 - cchi12 * slam120,
890
+ cchi12 * clam120 + schi12 * slam120);
891
+
892
+ lam12 = eta -
893
+ _e2/_f1 * salp0 * E.H() / (Math::pi() / 2) *
894
+ (sig12 + (E.deltaH(ssig2, csig2, dn2) - E.deltaH(ssig1, csig1, dn1)));
895
+
896
+ if (diffp) {
897
+ if (calp2 == 0)
898
+ dlam12 = - 2 * _f1 * dn1 / sbet1;
899
+ else {
900
+ real dummy;
901
+ Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
902
+ cbet1, cbet2, REDUCEDLENGTH,
903
+ dummy, dlam12, dummy, dummy, dummy);
904
+ dlam12 *= _f1 / (calp2 * cbet2);
905
+ }
906
+ }
907
+
908
+ return lam12;
909
+ }
910
+
911
+ void GeodesicExact::C4f(real eps, real c[]) const {
912
+ // Evaluate C4 coeffs
913
+ // Elements c[0] thru c[nC4_ - 1] are set
914
+ real mult = 1;
915
+ int o = 0;
916
+ for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
917
+ int m = nC4_ - l - 1; // order of polynomial in eps
918
+ c[l] = mult * Math::polyval(m, _C4x + o, eps);
919
+ o += m + 1;
920
+ mult *= eps;
921
+ }
922
+ // Post condition: o == nC4x_
923
+ if (!(o == nC4x_))
924
+ throw GeographicErr("C4 misalignment");
925
+ }
926
+
927
+ } // namespace GeographicLib