geographiclib 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/AUTHORS +12 -0
- data/LICENSE +24 -0
- data/ext/geographiclib/Accumulator.cpp +23 -0
- data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
- data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
- data/ext/geographiclib/CassiniSoldner.cpp +89 -0
- data/ext/geographiclib/CircularEngine.cpp +96 -0
- data/ext/geographiclib/DMS.cpp +381 -0
- data/ext/geographiclib/Ellipsoid.cpp +125 -0
- data/ext/geographiclib/EllipticFunction.cpp +512 -0
- data/ext/geographiclib/GARS.cpp +122 -0
- data/ext/geographiclib/GeoCoords.cpp +175 -0
- data/ext/geographiclib/Geocentric.cpp +172 -0
- data/ext/geographiclib/Geodesic.cpp +1908 -0
- data/ext/geographiclib/GeodesicExact.cpp +927 -0
- data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
- data/ext/geographiclib/GeodesicLine.cpp +321 -0
- data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
- data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
- data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
- data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
- data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
- data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
- data/ext/geographiclib/GeographicLib/Config.h +12 -0
- data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
- data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
- data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
- data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
- data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
- data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
- data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
- data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
- data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
- data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
- data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
- data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
- data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
- data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
- data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
- data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
- data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
- data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
- data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
- data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
- data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
- data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
- data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
- data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
- data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
- data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
- data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
- data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
- data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
- data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
- data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
- data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
- data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
- data/ext/geographiclib/Geohash.cpp +102 -0
- data/ext/geographiclib/Geoid.cpp +509 -0
- data/ext/geographiclib/Georef.cpp +135 -0
- data/ext/geographiclib/Gnomonic.cpp +85 -0
- data/ext/geographiclib/GravityCircle.cpp +129 -0
- data/ext/geographiclib/GravityModel.cpp +360 -0
- data/ext/geographiclib/LambertConformalConic.cpp +456 -0
- data/ext/geographiclib/LocalCartesian.cpp +62 -0
- data/ext/geographiclib/MGRS.cpp +461 -0
- data/ext/geographiclib/MagneticCircle.cpp +52 -0
- data/ext/geographiclib/MagneticModel.cpp +269 -0
- data/ext/geographiclib/Math.cpp +63 -0
- data/ext/geographiclib/NormalGravity.cpp +262 -0
- data/ext/geographiclib/OSGB.cpp +167 -0
- data/ext/geographiclib/PolarStereographic.cpp +108 -0
- data/ext/geographiclib/PolygonArea.cpp +204 -0
- data/ext/geographiclib/Rhumb.cpp +383 -0
- data/ext/geographiclib/SphericalEngine.cpp +477 -0
- data/ext/geographiclib/TransverseMercator.cpp +603 -0
- data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
- data/ext/geographiclib/UTMUPS.cpp +296 -0
- data/ext/geographiclib/Utility.cpp +61 -0
- data/ext/geographiclib/extconf.rb +3 -0
- data/ext/geographiclib/geographiclib.cpp +62 -0
- data/lib/geographiclib.rb +20 -0
- metadata +140 -0
@@ -0,0 +1,927 @@
|
|
1
|
+
/**
|
2
|
+
* \file GeodesicExact.cpp
|
3
|
+
* \brief Implementation for GeographicLib::GeodesicExact class
|
4
|
+
*
|
5
|
+
* Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
|
6
|
+
* under the MIT/X11 License. For more information, see
|
7
|
+
* http://geographiclib.sourceforge.net/
|
8
|
+
*
|
9
|
+
* This is a reformulation of the geodesic problem. The notation is as
|
10
|
+
* follows:
|
11
|
+
* - at a general point (no suffix or 1 or 2 as suffix)
|
12
|
+
* - phi = latitude
|
13
|
+
* - beta = latitude on auxiliary sphere
|
14
|
+
* - omega = longitude on auxiliary sphere
|
15
|
+
* - lambda = longitude
|
16
|
+
* - alpha = azimuth of great circle
|
17
|
+
* - sigma = arc length along great circle
|
18
|
+
* - s = distance
|
19
|
+
* - tau = scaled distance (= sigma at multiples of pi/2)
|
20
|
+
* - at northwards equator crossing
|
21
|
+
* - beta = phi = 0
|
22
|
+
* - omega = lambda = 0
|
23
|
+
* - alpha = alpha0
|
24
|
+
* - sigma = s = 0
|
25
|
+
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
|
26
|
+
* - s and c prefixes mean sin and cos
|
27
|
+
**********************************************************************/
|
28
|
+
|
29
|
+
#include <GeographicLib/GeodesicExact.hpp>
|
30
|
+
#include <GeographicLib/GeodesicLineExact.hpp>
|
31
|
+
|
32
|
+
#if defined(_MSC_VER)
|
33
|
+
// Squelch warnings about potentially uninitialized local variables and
|
34
|
+
// constant conditional expressions
|
35
|
+
# pragma warning (disable: 4701 4127)
|
36
|
+
#endif
|
37
|
+
|
38
|
+
namespace GeographicLib {
|
39
|
+
|
40
|
+
using namespace std;
|
41
|
+
|
42
|
+
GeodesicExact::GeodesicExact(real a, real f)
|
43
|
+
: maxit2_(maxit1_ + Math::digits() + 10)
|
44
|
+
// Underflow guard. We require
|
45
|
+
// tiny_ * epsilon() > 0
|
46
|
+
// tiny_ + epsilon() == epsilon()
|
47
|
+
, tiny_(sqrt(numeric_limits<real>::min()))
|
48
|
+
, tol0_(numeric_limits<real>::epsilon())
|
49
|
+
// Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse
|
50
|
+
// case 52.784459512564 0 -52.784459512563990912 179.634407464943777557
|
51
|
+
// which otherwise failed for Visual Studio 10 (Release and Debug)
|
52
|
+
, tol1_(200 * tol0_)
|
53
|
+
, tol2_(sqrt(tol0_))
|
54
|
+
, tolb_(tol0_ * tol2_) // Check on bisection interval
|
55
|
+
, xthresh_(1000 * tol2_)
|
56
|
+
, _a(a)
|
57
|
+
, _f(f)
|
58
|
+
, _f1(1 - _f)
|
59
|
+
, _e2(_f * (2 - _f))
|
60
|
+
, _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2)
|
61
|
+
, _n(_f / ( 2 - _f))
|
62
|
+
, _b(_a * _f1)
|
63
|
+
// The Geodesic class substitutes atanh(sqrt(e2)) for asinh(sqrt(ep2)) in
|
64
|
+
// the definition of _c2. The latter is more accurate for very oblate
|
65
|
+
// ellipsoids (which the Geodesic class does not attempt to handle). Of
|
66
|
+
// course, the area calculation in GeodesicExact is still based on a
|
67
|
+
// series and so only holds for moderately oblate (or prolate)
|
68
|
+
// ellipsoids.
|
69
|
+
, _c2((Math::sq(_a) + Math::sq(_b) *
|
70
|
+
(_f == 0 ? 1 :
|
71
|
+
(_f > 0 ? Math::asinh(sqrt(_ep2)) : atan(sqrt(-_e2))) /
|
72
|
+
sqrt(abs(_e2))))/2) // authalic radius squared
|
73
|
+
// The sig12 threshold for "really short". Using the auxiliary sphere
|
74
|
+
// solution with dnm computed at (bet1 + bet2) / 2, the relative error in
|
75
|
+
// the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
|
76
|
+
// (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a
|
77
|
+
// given f and sig12, the max error occurs for lines near the pole. If
|
78
|
+
// the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
|
79
|
+
// increases by a factor of 2.) Setting this equal to epsilon gives
|
80
|
+
// sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100)
|
81
|
+
// and max(0.001, abs(f)) stops etol2 getting too large in the nearly
|
82
|
+
// spherical case.
|
83
|
+
, _etol2(0.1 * tol2_ /
|
84
|
+
sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
|
85
|
+
{
|
86
|
+
if (!(Math::isfinite(_a) && _a > 0))
|
87
|
+
throw GeographicErr("Major radius is not positive");
|
88
|
+
if (!(Math::isfinite(_b) && _b > 0))
|
89
|
+
throw GeographicErr("Minor radius is not positive");
|
90
|
+
C4coeff();
|
91
|
+
}
|
92
|
+
|
93
|
+
const GeodesicExact& GeodesicExact::WGS84() {
|
94
|
+
static const GeodesicExact wgs84(Constants::WGS84_a(),
|
95
|
+
Constants::WGS84_f());
|
96
|
+
return wgs84;
|
97
|
+
}
|
98
|
+
|
99
|
+
Math::real GeodesicExact::CosSeries(real sinx, real cosx,
|
100
|
+
const real c[], int n) {
|
101
|
+
// Evaluate
|
102
|
+
// y = sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
|
103
|
+
// using Clenshaw summation.
|
104
|
+
// Approx operation count = (n + 5) mult and (2 * n + 2) add
|
105
|
+
c += n ; // Point to one beyond last element
|
106
|
+
real
|
107
|
+
ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
|
108
|
+
y0 = n & 1 ? *--c : 0, y1 = 0; // accumulators for sum
|
109
|
+
// Now n is even
|
110
|
+
n /= 2;
|
111
|
+
while (n--) {
|
112
|
+
// Unroll loop x 2, so accumulators return to their original role
|
113
|
+
y1 = ar * y0 - y1 + *--c;
|
114
|
+
y0 = ar * y1 - y0 + *--c;
|
115
|
+
}
|
116
|
+
return cosx * (y0 - y1); // cos(x) * (y0 - y1)
|
117
|
+
}
|
118
|
+
|
119
|
+
GeodesicLineExact GeodesicExact::Line(real lat1, real lon1, real azi1,
|
120
|
+
unsigned caps) const {
|
121
|
+
return GeodesicLineExact(*this, lat1, lon1, azi1, caps);
|
122
|
+
}
|
123
|
+
|
124
|
+
Math::real GeodesicExact::GenDirect(real lat1, real lon1, real azi1,
|
125
|
+
bool arcmode, real s12_a12,
|
126
|
+
unsigned outmask,
|
127
|
+
real& lat2, real& lon2, real& azi2,
|
128
|
+
real& s12, real& m12,
|
129
|
+
real& M12, real& M21,
|
130
|
+
real& S12) const {
|
131
|
+
// Automatically supply DISTANCE_IN if necessary
|
132
|
+
if (!arcmode) outmask |= DISTANCE_IN;
|
133
|
+
return GeodesicLineExact(*this, lat1, lon1, azi1, outmask)
|
134
|
+
. // Note the dot!
|
135
|
+
GenPosition(arcmode, s12_a12, outmask,
|
136
|
+
lat2, lon2, azi2, s12, m12, M12, M21, S12);
|
137
|
+
}
|
138
|
+
|
139
|
+
GeodesicLineExact GeodesicExact::GenDirectLine(real lat1, real lon1,
|
140
|
+
real azi1,
|
141
|
+
bool arcmode, real s12_a12,
|
142
|
+
unsigned caps) const {
|
143
|
+
azi1 = Math::AngNormalize(azi1);
|
144
|
+
real salp1, calp1;
|
145
|
+
// Guard against underflow in salp0. Also -0 is converted to +0.
|
146
|
+
Math::sincosd(Math::AngRound(azi1), salp1, calp1);
|
147
|
+
// Automatically supply DISTANCE_IN if necessary
|
148
|
+
if (!arcmode) caps |= DISTANCE_IN;
|
149
|
+
return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1,
|
150
|
+
caps, arcmode, s12_a12);
|
151
|
+
}
|
152
|
+
|
153
|
+
GeodesicLineExact GeodesicExact::DirectLine(real lat1, real lon1,
|
154
|
+
real azi1, real s12,
|
155
|
+
unsigned caps) const {
|
156
|
+
return GenDirectLine(lat1, lon1, azi1, false, s12, caps);
|
157
|
+
}
|
158
|
+
|
159
|
+
GeodesicLineExact GeodesicExact::ArcDirectLine(real lat1, real lon1,
|
160
|
+
real azi1, real a12,
|
161
|
+
unsigned caps) const {
|
162
|
+
return GenDirectLine(lat1, lon1, azi1, true, a12, caps);
|
163
|
+
}
|
164
|
+
|
165
|
+
Math::real GeodesicExact::GenInverse(real lat1, real lon1,
|
166
|
+
real lat2, real lon2,
|
167
|
+
unsigned outmask, real& s12,
|
168
|
+
real& salp1, real& calp1,
|
169
|
+
real& salp2, real& calp2,
|
170
|
+
real& m12, real& M12, real& M21,
|
171
|
+
real& S12) const {
|
172
|
+
// Compute longitude difference (AngDiff does this carefully). Result is
|
173
|
+
// in [-180, 180] but -180 is only for west-going geodesics. 180 is for
|
174
|
+
// east-going and meridional geodesics.
|
175
|
+
real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s);
|
176
|
+
// Make longitude difference positive.
|
177
|
+
int lonsign = lon12 >= 0 ? 1 : -1;
|
178
|
+
// If very close to being on the same half-meridian, then make it so.
|
179
|
+
lon12 = lonsign * Math::AngRound(lon12);
|
180
|
+
lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s);
|
181
|
+
real
|
182
|
+
lam12 = lon12 * Math::degree(),
|
183
|
+
slam12, clam12;
|
184
|
+
if (lon12 > 90) {
|
185
|
+
Math::sincosd(lon12s, slam12, clam12);
|
186
|
+
clam12 = -clam12;
|
187
|
+
} else
|
188
|
+
Math::sincosd(lon12, slam12, clam12);
|
189
|
+
|
190
|
+
// If really close to the equator, treat as on equator.
|
191
|
+
lat1 = Math::AngRound(Math::LatFix(lat1));
|
192
|
+
lat2 = Math::AngRound(Math::LatFix(lat2));
|
193
|
+
// Swap points so that point with higher (abs) latitude is point 1
|
194
|
+
// If one latitude is a nan, then it becomes lat1.
|
195
|
+
int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
|
196
|
+
if (swapp < 0) {
|
197
|
+
lonsign *= -1;
|
198
|
+
swap(lat1, lat2);
|
199
|
+
}
|
200
|
+
// Make lat1 <= 0
|
201
|
+
int latsign = lat1 < 0 ? 1 : -1;
|
202
|
+
lat1 *= latsign;
|
203
|
+
lat2 *= latsign;
|
204
|
+
// Now we have
|
205
|
+
//
|
206
|
+
// 0 <= lon12 <= 180
|
207
|
+
// -90 <= lat1 <= 0
|
208
|
+
// lat1 <= lat2 <= -lat1
|
209
|
+
//
|
210
|
+
// longsign, swapp, latsign register the transformation to bring the
|
211
|
+
// coordinates to this canonical form. In all cases, 1 means no change was
|
212
|
+
// made. We make these transformations so that there are few cases to
|
213
|
+
// check, e.g., on verifying quadrants in atan2. In addition, this
|
214
|
+
// enforces some symmetries in the results returned.
|
215
|
+
|
216
|
+
real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
|
217
|
+
// Initialize for the meridian. No longitude calculation is done in this
|
218
|
+
// case to let the parameter default to 0.
|
219
|
+
EllipticFunction E(-_ep2);
|
220
|
+
|
221
|
+
Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1;
|
222
|
+
// Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12
|
223
|
+
// will be <= 2*tiny for two points at the same pole.
|
224
|
+
Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
|
225
|
+
|
226
|
+
Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1;
|
227
|
+
// Ensure cbet2 = +epsilon at poles
|
228
|
+
Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);
|
229
|
+
|
230
|
+
// If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
|
231
|
+
// |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
|
232
|
+
// a better measure. This logic is used in assigning calp2 in Lambda12.
|
233
|
+
// Sometimes these quantities vanish and in that case we force bet2 = +/-
|
234
|
+
// bet1 exactly. An example where is is necessary is the inverse problem
|
235
|
+
// 48.522876735459 0 -48.52287673545898293 179.599720456223079643
|
236
|
+
// which failed with Visual Studio 10 (Release and Debug)
|
237
|
+
|
238
|
+
if (cbet1 < -sbet1) {
|
239
|
+
if (cbet2 == cbet1)
|
240
|
+
sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
|
241
|
+
} else {
|
242
|
+
if (abs(sbet2) == -sbet1)
|
243
|
+
cbet2 = cbet1;
|
244
|
+
}
|
245
|
+
|
246
|
+
real
|
247
|
+
dn1 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet1)) :
|
248
|
+
sqrt(1 - _e2 * Math::sq(cbet1)) / _f1),
|
249
|
+
dn2 = (_f >= 0 ? sqrt(1 + _ep2 * Math::sq(sbet2)) :
|
250
|
+
sqrt(1 - _e2 * Math::sq(cbet2)) / _f1);
|
251
|
+
|
252
|
+
real a12, sig12;
|
253
|
+
|
254
|
+
bool meridian = lat1 == -90 || slam12 == 0;
|
255
|
+
|
256
|
+
if (meridian) {
|
257
|
+
|
258
|
+
// Endpoints are on a single full meridian, so the geodesic might lie on
|
259
|
+
// a meridian.
|
260
|
+
|
261
|
+
calp1 = clam12; salp1 = slam12; // Head to the target longitude
|
262
|
+
calp2 = 1; salp2 = 0; // At the target we're heading north
|
263
|
+
|
264
|
+
real
|
265
|
+
// tan(bet) = tan(sig) * cos(alp)
|
266
|
+
ssig1 = sbet1, csig1 = calp1 * cbet1,
|
267
|
+
ssig2 = sbet2, csig2 = calp2 * cbet2;
|
268
|
+
|
269
|
+
// sig12 = sig2 - sig1
|
270
|
+
sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
|
271
|
+
csig1 * csig2 + ssig1 * ssig2);
|
272
|
+
{
|
273
|
+
real dummy;
|
274
|
+
Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
275
|
+
cbet1, cbet2, outmask | REDUCEDLENGTH,
|
276
|
+
s12x, m12x, dummy, M12, M21);
|
277
|
+
}
|
278
|
+
// Add the check for sig12 since zero length geodesics might yield m12 <
|
279
|
+
// 0. Test case was
|
280
|
+
//
|
281
|
+
// echo 20.001 0 20.001 0 | GeodSolve -i
|
282
|
+
//
|
283
|
+
// In fact, we will have sig12 > pi/2 for meridional geodesic which is
|
284
|
+
// not a shortest path.
|
285
|
+
if (sig12 < 1 || m12x >= 0) {
|
286
|
+
// Need at least 2, to handle 90 0 90 180
|
287
|
+
if (sig12 < 3 * tiny_)
|
288
|
+
sig12 = m12x = s12x = 0;
|
289
|
+
m12x *= _b;
|
290
|
+
s12x *= _b;
|
291
|
+
a12 = sig12 / Math::degree();
|
292
|
+
} else
|
293
|
+
// m12 < 0, i.e., prolate and too close to anti-podal
|
294
|
+
meridian = false;
|
295
|
+
}
|
296
|
+
|
297
|
+
// somg12 > 1 marks that it needs to be calculated
|
298
|
+
real omg12 = 0, somg12 = 2, comg12 = 0;
|
299
|
+
if (!meridian &&
|
300
|
+
sbet1 == 0 && // and sbet2 == 0
|
301
|
+
(_f <= 0 || lon12s >= _f * 180)) {
|
302
|
+
|
303
|
+
// Geodesic runs along equator
|
304
|
+
calp1 = calp2 = 0; salp1 = salp2 = 1;
|
305
|
+
s12x = _a * lam12;
|
306
|
+
sig12 = omg12 = lam12 / _f1;
|
307
|
+
m12x = _b * sin(sig12);
|
308
|
+
if (outmask & GEODESICSCALE)
|
309
|
+
M12 = M21 = cos(sig12);
|
310
|
+
a12 = lon12 / _f1;
|
311
|
+
|
312
|
+
} else if (!meridian) {
|
313
|
+
|
314
|
+
// Now point1 and point2 belong within a hemisphere bounded by a
|
315
|
+
// meridian and geodesic is neither meridional or equatorial.
|
316
|
+
|
317
|
+
// Figure a starting point for Newton's method
|
318
|
+
real dnm;
|
319
|
+
sig12 = InverseStart(E, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
|
320
|
+
lam12, slam12, clam12,
|
321
|
+
salp1, calp1, salp2, calp2, dnm);
|
322
|
+
|
323
|
+
if (sig12 >= 0) {
|
324
|
+
// Short lines (InverseStart sets salp2, calp2, dnm)
|
325
|
+
s12x = sig12 * _b * dnm;
|
326
|
+
m12x = Math::sq(dnm) * _b * sin(sig12 / dnm);
|
327
|
+
if (outmask & GEODESICSCALE)
|
328
|
+
M12 = M21 = cos(sig12 / dnm);
|
329
|
+
a12 = sig12 / Math::degree();
|
330
|
+
omg12 = lam12 / (_f1 * dnm);
|
331
|
+
} else {
|
332
|
+
|
333
|
+
// Newton's method. This is a straightforward solution of f(alp1) =
|
334
|
+
// lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
|
335
|
+
// root in the interval (0, pi) and its derivative is positive at the
|
336
|
+
// root. Thus f(alp) is positive for alp > alp1 and negative for alp <
|
337
|
+
// alp1. During the course of the iteration, a range (alp1a, alp1b) is
|
338
|
+
// maintained which brackets the root and with each evaluation of
|
339
|
+
// f(alp) the range is shrunk, if possible. Newton's method is
|
340
|
+
// restarted whenever the derivative of f is negative (because the new
|
341
|
+
// value of alp1 is then further from the solution) or if the new
|
342
|
+
// estimate of alp1 lies outside (0,pi); in this case, the new starting
|
343
|
+
// guess is taken to be (alp1a + alp1b) / 2.
|
344
|
+
//
|
345
|
+
// initial values to suppress warnings (if loop is executed 0 times)
|
346
|
+
real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0;
|
347
|
+
unsigned numit = 0;
|
348
|
+
// Bracketing range
|
349
|
+
real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
|
350
|
+
for (bool tripn = false, tripb = false;
|
351
|
+
numit < maxit2_ || GEOGRAPHICLIB_PANIC;
|
352
|
+
++numit) {
|
353
|
+
// 1/4 meridan = 10e6 m and random input. max err is estimated max
|
354
|
+
// error in nm (checking solution of inverse problem by direct
|
355
|
+
// solution). iter is mean and sd of number of iterations
|
356
|
+
//
|
357
|
+
// max iter
|
358
|
+
// log2(b/a) err mean sd
|
359
|
+
// -7 387 5.33 3.68
|
360
|
+
// -6 345 5.19 3.43
|
361
|
+
// -5 269 5.00 3.05
|
362
|
+
// -4 210 4.76 2.44
|
363
|
+
// -3 115 4.55 1.87
|
364
|
+
// -2 69 4.35 1.38
|
365
|
+
// -1 36 4.05 1.03
|
366
|
+
// 0 15 0.01 0.13
|
367
|
+
// 1 25 5.10 1.53
|
368
|
+
// 2 96 5.61 2.09
|
369
|
+
// 3 318 6.02 2.74
|
370
|
+
// 4 985 6.24 3.22
|
371
|
+
// 5 2352 6.32 3.44
|
372
|
+
// 6 6008 6.30 3.45
|
373
|
+
// 7 19024 6.19 3.30
|
374
|
+
real dv;
|
375
|
+
real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
|
376
|
+
slam12, clam12,
|
377
|
+
salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
|
378
|
+
E, somg12, comg12, numit < maxit1_, dv);
|
379
|
+
// Reversed test to allow escape with NaNs
|
380
|
+
if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break;
|
381
|
+
// Update bracketing values
|
382
|
+
if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
|
383
|
+
{ salp1b = salp1; calp1b = calp1; }
|
384
|
+
else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
|
385
|
+
{ salp1a = salp1; calp1a = calp1; }
|
386
|
+
if (numit < maxit1_ && dv > 0) {
|
387
|
+
real
|
388
|
+
dalp1 = -v/dv;
|
389
|
+
real
|
390
|
+
sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
|
391
|
+
nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
|
392
|
+
if (nsalp1 > 0 && abs(dalp1) < Math::pi()) {
|
393
|
+
calp1 = calp1 * cdalp1 - salp1 * sdalp1;
|
394
|
+
salp1 = nsalp1;
|
395
|
+
Math::norm(salp1, calp1);
|
396
|
+
// In some regimes we don't get quadratic convergence because
|
397
|
+
// slope -> 0. So use convergence conditions based on epsilon
|
398
|
+
// instead of sqrt(epsilon).
|
399
|
+
tripn = abs(v) <= 16 * tol0_;
|
400
|
+
continue;
|
401
|
+
}
|
402
|
+
}
|
403
|
+
// Either dv was not postive or updated value was outside legal
|
404
|
+
// range. Use the midpoint of the bracket as the next estimate.
|
405
|
+
// This mechanism is not needed for the WGS84 ellipsoid, but it does
|
406
|
+
// catch problems with more eccentric ellipsoids. Its efficacy is
|
407
|
+
// such for the WGS84 test set with the starting guess set to alp1 =
|
408
|
+
// 90deg:
|
409
|
+
// the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
|
410
|
+
// WGS84 and random input: mean = 4.74, sd = 0.99
|
411
|
+
salp1 = (salp1a + salp1b)/2;
|
412
|
+
calp1 = (calp1a + calp1b)/2;
|
413
|
+
Math::norm(salp1, calp1);
|
414
|
+
tripn = false;
|
415
|
+
tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
|
416
|
+
abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
|
417
|
+
}
|
418
|
+
{
|
419
|
+
real dummy;
|
420
|
+
Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
421
|
+
cbet1, cbet2, outmask, s12x, m12x, dummy, M12, M21);
|
422
|
+
}
|
423
|
+
m12x *= _b;
|
424
|
+
s12x *= _b;
|
425
|
+
a12 = sig12 / Math::degree();
|
426
|
+
}
|
427
|
+
}
|
428
|
+
|
429
|
+
if (outmask & DISTANCE)
|
430
|
+
s12 = 0 + s12x; // Convert -0 to 0
|
431
|
+
|
432
|
+
if (outmask & REDUCEDLENGTH)
|
433
|
+
m12 = 0 + m12x; // Convert -0 to 0
|
434
|
+
|
435
|
+
if (outmask & AREA) {
|
436
|
+
real
|
437
|
+
// From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
|
438
|
+
salp0 = salp1 * cbet1,
|
439
|
+
calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
|
440
|
+
real alp12;
|
441
|
+
if (calp0 != 0 && salp0 != 0) {
|
442
|
+
real
|
443
|
+
// From Lambda12: tan(bet) = tan(sig) * cos(alp)
|
444
|
+
ssig1 = sbet1, csig1 = calp1 * cbet1,
|
445
|
+
ssig2 = sbet2, csig2 = calp2 * cbet2,
|
446
|
+
k2 = Math::sq(calp0) * _ep2,
|
447
|
+
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
|
448
|
+
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
|
449
|
+
A4 = Math::sq(_a) * calp0 * salp0 * _e2;
|
450
|
+
Math::norm(ssig1, csig1);
|
451
|
+
Math::norm(ssig2, csig2);
|
452
|
+
real C4a[nC4_];
|
453
|
+
C4f(eps, C4a);
|
454
|
+
real
|
455
|
+
B41 = CosSeries(ssig1, csig1, C4a, nC4_),
|
456
|
+
B42 = CosSeries(ssig2, csig2, C4a, nC4_);
|
457
|
+
S12 = A4 * (B42 - B41);
|
458
|
+
} else
|
459
|
+
// Avoid problems with indeterminate sig1, sig2 on equator
|
460
|
+
S12 = 0;
|
461
|
+
|
462
|
+
if (!meridian) {
|
463
|
+
if (somg12 > 1) {
|
464
|
+
somg12 = sin(omg12); comg12 = cos(omg12);
|
465
|
+
} else
|
466
|
+
Math::norm(somg12, comg12);
|
467
|
+
}
|
468
|
+
|
469
|
+
if (!meridian &&
|
470
|
+
// omg12 < 3/4 * pi
|
471
|
+
comg12 > -real(0.7071) && // Long difference not too big
|
472
|
+
sbet2 - sbet1 < real(1.75)) { // Lat difference not too big
|
473
|
+
// Use tan(Gamma/2) = tan(omg12/2)
|
474
|
+
// * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
|
475
|
+
// with tan(x/2) = sin(x)/(1+cos(x))
|
476
|
+
real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
|
477
|
+
alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
|
478
|
+
domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
|
479
|
+
} else {
|
480
|
+
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
481
|
+
real
|
482
|
+
salp12 = salp2 * calp1 - calp2 * salp1,
|
483
|
+
calp12 = calp2 * calp1 + salp2 * salp1;
|
484
|
+
// The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
|
485
|
+
// salp12 = -0 and alp12 = -180. However this depends on the sign
|
486
|
+
// being attached to 0 correctly. The following ensures the correct
|
487
|
+
// behavior.
|
488
|
+
if (salp12 == 0 && calp12 < 0) {
|
489
|
+
salp12 = tiny_ * calp1;
|
490
|
+
calp12 = -1;
|
491
|
+
}
|
492
|
+
alp12 = atan2(salp12, calp12);
|
493
|
+
}
|
494
|
+
S12 += _c2 * alp12;
|
495
|
+
S12 *= swapp * lonsign * latsign;
|
496
|
+
// Convert -0 to 0
|
497
|
+
S12 += 0;
|
498
|
+
}
|
499
|
+
|
500
|
+
// Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
|
501
|
+
if (swapp < 0) {
|
502
|
+
swap(salp1, salp2);
|
503
|
+
swap(calp1, calp2);
|
504
|
+
if (outmask & GEODESICSCALE)
|
505
|
+
swap(M12, M21);
|
506
|
+
}
|
507
|
+
|
508
|
+
salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
|
509
|
+
salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
|
510
|
+
|
511
|
+
// Returned value in [0, 180]
|
512
|
+
return a12;
|
513
|
+
}
|
514
|
+
|
515
|
+
Math::real GeodesicExact::GenInverse(real lat1, real lon1,
|
516
|
+
real lat2, real lon2,
|
517
|
+
unsigned outmask,
|
518
|
+
real& s12, real& azi1, real& azi2,
|
519
|
+
real& m12, real& M12, real& M21,
|
520
|
+
real& S12)
|
521
|
+
const {
|
522
|
+
outmask &= OUT_MASK;
|
523
|
+
real salp1, calp1, salp2, calp2,
|
524
|
+
a12 = GenInverse(lat1, lon1, lat2, lon2,
|
525
|
+
outmask, s12, salp1, calp1, salp2, calp2,
|
526
|
+
m12, M12, M21, S12);
|
527
|
+
if (outmask & AZIMUTH) {
|
528
|
+
azi1 = Math::atan2d(salp1, calp1);
|
529
|
+
azi2 = Math::atan2d(salp2, calp2);
|
530
|
+
}
|
531
|
+
return a12;
|
532
|
+
}
|
533
|
+
|
534
|
+
GeodesicLineExact GeodesicExact::InverseLine(real lat1, real lon1,
|
535
|
+
real lat2, real lon2,
|
536
|
+
unsigned caps) const {
|
537
|
+
real t, salp1, calp1, salp2, calp2,
|
538
|
+
a12 = GenInverse(lat1, lon1, lat2, lon2,
|
539
|
+
// No need to specify AZIMUTH here
|
540
|
+
0u, t, salp1, calp1, salp2, calp2,
|
541
|
+
t, t, t, t),
|
542
|
+
azi1 = Math::atan2d(salp1, calp1);
|
543
|
+
// Ensure that a12 can be converted to a distance
|
544
|
+
if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE;
|
545
|
+
return GeodesicLineExact(*this, lat1, lon1, azi1, salp1, calp1, caps,
|
546
|
+
true, a12);
|
547
|
+
}
|
548
|
+
|
549
|
+
void GeodesicExact::Lengths(const EllipticFunction& E,
|
550
|
+
real sig12,
|
551
|
+
real ssig1, real csig1, real dn1,
|
552
|
+
real ssig2, real csig2, real dn2,
|
553
|
+
real cbet1, real cbet2, unsigned outmask,
|
554
|
+
real& s12b, real& m12b, real& m0,
|
555
|
+
real& M12, real& M21) const {
|
556
|
+
// Return m12b = (reduced length)/_b; also calculate s12b = distance/_b,
|
557
|
+
// and m0 = coefficient of secular term in expression for reduced length.
|
558
|
+
|
559
|
+
outmask &= OUT_ALL;
|
560
|
+
// outmask & DISTANCE: set s12b
|
561
|
+
// outmask & REDUCEDLENGTH: set m12b & m0
|
562
|
+
// outmask & GEODESICSCALE: set M12 & M21
|
563
|
+
|
564
|
+
// It's OK to have repeated dummy arguments,
|
565
|
+
// e.g., s12b = m0 = M12 = M21 = dummy
|
566
|
+
|
567
|
+
if (outmask & DISTANCE)
|
568
|
+
// Missing a factor of _b
|
569
|
+
s12b = E.E() / (Math::pi() / 2) *
|
570
|
+
(sig12 + (E.deltaE(ssig2, csig2, dn2) - E.deltaE(ssig1, csig1, dn1)));
|
571
|
+
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
572
|
+
real
|
573
|
+
m0x = - E.k2() * E.D() / (Math::pi() / 2),
|
574
|
+
J12 = m0x *
|
575
|
+
(sig12 + (E.deltaD(ssig2, csig2, dn2) - E.deltaD(ssig1, csig1, dn1)));
|
576
|
+
if (outmask & REDUCEDLENGTH) {
|
577
|
+
m0 = m0x;
|
578
|
+
// Missing a factor of _b. Add parens around (csig1 * ssig2) and
|
579
|
+
// (ssig1 * csig2) to ensure accurate cancellation in the case of
|
580
|
+
// coincident points.
|
581
|
+
m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
|
582
|
+
csig1 * csig2 * J12;
|
583
|
+
}
|
584
|
+
if (outmask & GEODESICSCALE) {
|
585
|
+
real csig12 = csig1 * csig2 + ssig1 * ssig2;
|
586
|
+
real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
|
587
|
+
M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
|
588
|
+
M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
|
589
|
+
}
|
590
|
+
}
|
591
|
+
}
|
592
|
+
|
593
|
+
Math::real GeodesicExact::Astroid(real x, real y) {
|
594
|
+
// Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
|
595
|
+
// This solution is adapted from Geocentric::Reverse.
|
596
|
+
real k;
|
597
|
+
real
|
598
|
+
p = Math::sq(x),
|
599
|
+
q = Math::sq(y),
|
600
|
+
r = (p + q - 1) / 6;
|
601
|
+
if ( !(q == 0 && r <= 0) ) {
|
602
|
+
real
|
603
|
+
// Avoid possible division by zero when r = 0 by multiplying equations
|
604
|
+
// for s and t by r^3 and r, resp.
|
605
|
+
S = p * q / 4, // S = r^3 * s
|
606
|
+
r2 = Math::sq(r),
|
607
|
+
r3 = r * r2,
|
608
|
+
// The discriminant of the quadratic equation for T3. This is zero on
|
609
|
+
// the evolute curve p^(1/3)+q^(1/3) = 1
|
610
|
+
disc = S * (S + 2 * r3);
|
611
|
+
real u = r;
|
612
|
+
if (disc >= 0) {
|
613
|
+
real T3 = S + r3;
|
614
|
+
// Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
|
615
|
+
// of precision due to cancellation. The result is unchanged because
|
616
|
+
// of the way the T is used in definition of u.
|
617
|
+
T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
|
618
|
+
// N.B. cbrt always returns the real root. cbrt(-8) = -2.
|
619
|
+
real T = Math::cbrt(T3); // T = r * t
|
620
|
+
// T can be zero; but then r2 / T -> 0.
|
621
|
+
u += T + (T ? r2 / T : 0);
|
622
|
+
} else {
|
623
|
+
// T is complex, but the way u is defined the result is real.
|
624
|
+
real ang = atan2(sqrt(-disc), -(S + r3));
|
625
|
+
// There are three possible cube roots. We choose the root which
|
626
|
+
// avoids cancellation. Note that disc < 0 implies that r < 0.
|
627
|
+
u += 2 * r * cos(ang / 3);
|
628
|
+
}
|
629
|
+
real
|
630
|
+
v = sqrt(Math::sq(u) + q), // guaranteed positive
|
631
|
+
// Avoid loss of accuracy when u < 0.
|
632
|
+
uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive
|
633
|
+
w = (uv - q) / (2 * v); // positive?
|
634
|
+
// Rearrange expression for k to avoid loss of accuracy due to
|
635
|
+
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
|
636
|
+
k = uv / (sqrt(uv + Math::sq(w)) + w); // guaranteed positive
|
637
|
+
} else { // q == 0 && r <= 0
|
638
|
+
// y = 0 with |x| <= 1. Handle this case directly.
|
639
|
+
// for y small, positive root is k = abs(y)/sqrt(1-x^2)
|
640
|
+
k = 0;
|
641
|
+
}
|
642
|
+
return k;
|
643
|
+
}
|
644
|
+
|
645
|
+
Math::real GeodesicExact::InverseStart(EllipticFunction& E,
|
646
|
+
real sbet1, real cbet1, real dn1,
|
647
|
+
real sbet2, real cbet2, real dn2,
|
648
|
+
real lam12, real slam12, real clam12,
|
649
|
+
real& salp1, real& calp1,
|
650
|
+
// Only updated if return val >= 0
|
651
|
+
real& salp2, real& calp2,
|
652
|
+
// Only updated for short lines
|
653
|
+
real& dnm)
|
654
|
+
const {
|
655
|
+
// Return a starting point for Newton's method in salp1 and calp1 (function
|
656
|
+
// value is -1). If Newton's method doesn't need to be used, return also
|
657
|
+
// salp2 and calp2 and function value is sig12.
|
658
|
+
real
|
659
|
+
sig12 = -1, // Return value
|
660
|
+
// bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
|
661
|
+
sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
|
662
|
+
cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
|
663
|
+
#if defined(__GNUC__) && __GNUC__ == 4 && \
|
664
|
+
(__GNUC_MINOR__ < 6 || defined(__MINGW32__))
|
665
|
+
// Volatile declaration needed to fix inverse cases
|
666
|
+
// 88.202499451857 0 -88.202499451857 179.981022032992859592
|
667
|
+
// 89.262080389218 0 -89.262080389218 179.992207982775375662
|
668
|
+
// 89.333123580033 0 -89.333123580032997687 179.99295812360148422
|
669
|
+
// which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
|
670
|
+
// and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw).
|
671
|
+
real sbet12a;
|
672
|
+
{
|
673
|
+
GEOGRAPHICLIB_VOLATILE real xx1 = sbet2 * cbet1;
|
674
|
+
GEOGRAPHICLIB_VOLATILE real xx2 = cbet2 * sbet1;
|
675
|
+
sbet12a = xx1 + xx2;
|
676
|
+
}
|
677
|
+
#else
|
678
|
+
real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
|
679
|
+
#endif
|
680
|
+
bool shortline = cbet12 >= 0 && sbet12 < real(0.5) &&
|
681
|
+
cbet2 * lam12 < real(0.5);
|
682
|
+
real somg12, comg12;
|
683
|
+
if (shortline) {
|
684
|
+
real sbetm2 = Math::sq(sbet1 + sbet2);
|
685
|
+
// sin((bet1+bet2)/2)^2
|
686
|
+
// = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
|
687
|
+
sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2);
|
688
|
+
dnm = sqrt(1 + _ep2 * sbetm2);
|
689
|
+
real omg12 = lam12 / (_f1 * dnm);
|
690
|
+
somg12 = sin(omg12); comg12 = cos(omg12);
|
691
|
+
} else {
|
692
|
+
somg12 = slam12; comg12 = clam12;
|
693
|
+
}
|
694
|
+
|
695
|
+
salp1 = cbet2 * somg12;
|
696
|
+
calp1 = comg12 >= 0 ?
|
697
|
+
sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) :
|
698
|
+
sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
|
699
|
+
|
700
|
+
real
|
701
|
+
ssig12 = Math::hypot(salp1, calp1),
|
702
|
+
csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
|
703
|
+
|
704
|
+
if (shortline && ssig12 < _etol2) {
|
705
|
+
// really short lines
|
706
|
+
salp2 = cbet1 * somg12;
|
707
|
+
calp2 = sbet12 - cbet1 * sbet2 *
|
708
|
+
(comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12);
|
709
|
+
Math::norm(salp2, calp2);
|
710
|
+
// Set return value
|
711
|
+
sig12 = atan2(ssig12, csig12);
|
712
|
+
} else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric
|
713
|
+
csig12 >= 0 ||
|
714
|
+
ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) {
|
715
|
+
// Nothing to do, zeroth order spherical approximation is OK
|
716
|
+
} else {
|
717
|
+
// Scale lam12 and bet2 to x, y coordinate system where antipodal point
|
718
|
+
// is at origin and singular point is at y = 0, x = -1.
|
719
|
+
real y, lamscale, betscale;
|
720
|
+
// Volatile declaration needed to fix inverse case
|
721
|
+
// 56.320923501171 0 -56.320923501171 179.664747671772880215
|
722
|
+
// which otherwise fails with g++ 4.4.4 x86 -O3
|
723
|
+
GEOGRAPHICLIB_VOLATILE real x;
|
724
|
+
real lam12x = atan2(-slam12, -clam12); // lam12 - pi
|
725
|
+
if (_f >= 0) { // In fact f == 0 does not get here
|
726
|
+
// x = dlong, y = dlat
|
727
|
+
{
|
728
|
+
real k2 = Math::sq(sbet1) * _ep2;
|
729
|
+
E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
|
730
|
+
lamscale = _e2/_f1 * cbet1 * 2 * E.H();
|
731
|
+
}
|
732
|
+
betscale = lamscale * cbet1;
|
733
|
+
|
734
|
+
x = lam12x / lamscale;
|
735
|
+
y = sbet12a / betscale;
|
736
|
+
} else { // _f < 0
|
737
|
+
// x = dlat, y = dlong
|
738
|
+
real
|
739
|
+
cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
|
740
|
+
bet12a = atan2(sbet12a, cbet12a);
|
741
|
+
real m12b, m0, dummy;
|
742
|
+
// In the case of lon12 = 180, this repeats a calculation made in
|
743
|
+
// Inverse.
|
744
|
+
Lengths(E, Math::pi() + bet12a,
|
745
|
+
sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
|
746
|
+
cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy);
|
747
|
+
x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi());
|
748
|
+
betscale = x < -real(0.01) ? sbet12a / x :
|
749
|
+
-_f * Math::sq(cbet1) * Math::pi();
|
750
|
+
lamscale = betscale / cbet1;
|
751
|
+
y = lam12x / lamscale;
|
752
|
+
}
|
753
|
+
|
754
|
+
if (y > -tol1_ && x > -1 - xthresh_) {
|
755
|
+
// strip near cut
|
756
|
+
// Need real(x) here to cast away the volatility of x for min/max
|
757
|
+
if (_f >= 0) {
|
758
|
+
salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1));
|
759
|
+
} else {
|
760
|
+
calp1 = max(real(x > -tol1_ ? 0 : -1), real(x));
|
761
|
+
salp1 = sqrt(1 - Math::sq(calp1));
|
762
|
+
}
|
763
|
+
} else {
|
764
|
+
// Estimate alp1, by solving the astroid problem.
|
765
|
+
//
|
766
|
+
// Could estimate alpha1 = theta + pi/2, directly, i.e.,
|
767
|
+
// calp1 = y/k; salp1 = -x/(1+k); for _f >= 0
|
768
|
+
// calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check)
|
769
|
+
//
|
770
|
+
// However, it's better to estimate omg12 from astroid and use
|
771
|
+
// spherical formula to compute alp1. This reduces the mean number of
|
772
|
+
// Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
|
773
|
+
// (min 0 max 5). The changes in the number of iterations are as
|
774
|
+
// follows:
|
775
|
+
//
|
776
|
+
// change percent
|
777
|
+
// 1 5
|
778
|
+
// 0 78
|
779
|
+
// -1 16
|
780
|
+
// -2 0.6
|
781
|
+
// -3 0.04
|
782
|
+
// -4 0.002
|
783
|
+
//
|
784
|
+
// The histogram of iterations is (m = number of iterations estimating
|
785
|
+
// alp1 directly, n = number of iterations estimating via omg12, total
|
786
|
+
// number of trials = 148605):
|
787
|
+
//
|
788
|
+
// iter m n
|
789
|
+
// 0 148 186
|
790
|
+
// 1 13046 13845
|
791
|
+
// 2 93315 102225
|
792
|
+
// 3 36189 32341
|
793
|
+
// 4 5396 7
|
794
|
+
// 5 455 1
|
795
|
+
// 6 56 0
|
796
|
+
//
|
797
|
+
// Because omg12 is near pi, estimate work with omg12a = pi - omg12
|
798
|
+
real k = Astroid(x, y);
|
799
|
+
real
|
800
|
+
omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
|
801
|
+
somg12 = sin(omg12a); comg12 = -cos(omg12a);
|
802
|
+
// Update spherical estimate of alp1 using omg12 instead of lam12
|
803
|
+
salp1 = cbet2 * somg12;
|
804
|
+
calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
|
805
|
+
}
|
806
|
+
}
|
807
|
+
// Sanity check on starting guess. Backwards check allows NaN through.
|
808
|
+
if (!(salp1 <= 0))
|
809
|
+
Math::norm(salp1, calp1);
|
810
|
+
else {
|
811
|
+
salp1 = 1; calp1 = 0;
|
812
|
+
}
|
813
|
+
return sig12;
|
814
|
+
}
|
815
|
+
|
816
|
+
Math::real GeodesicExact::Lambda12(real sbet1, real cbet1, real dn1,
|
817
|
+
real sbet2, real cbet2, real dn2,
|
818
|
+
real salp1, real calp1,
|
819
|
+
real slam120, real clam120,
|
820
|
+
real& salp2, real& calp2,
|
821
|
+
real& sig12,
|
822
|
+
real& ssig1, real& csig1,
|
823
|
+
real& ssig2, real& csig2,
|
824
|
+
EllipticFunction& E,
|
825
|
+
real& somg12, real& comg12,
|
826
|
+
bool diffp, real& dlam12) const
|
827
|
+
{
|
828
|
+
|
829
|
+
if (sbet1 == 0 && calp1 == 0)
|
830
|
+
// Break degeneracy of equatorial line. This case has already been
|
831
|
+
// handled.
|
832
|
+
calp1 = -tiny_;
|
833
|
+
|
834
|
+
real
|
835
|
+
// sin(alp1) * cos(bet1) = sin(alp0)
|
836
|
+
salp0 = salp1 * cbet1,
|
837
|
+
calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
|
838
|
+
|
839
|
+
real somg1, comg1, somg2, comg2, cchi1, cchi2, lam12;
|
840
|
+
// tan(bet1) = tan(sig1) * cos(alp1)
|
841
|
+
// tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
|
842
|
+
ssig1 = sbet1; somg1 = salp0 * sbet1;
|
843
|
+
csig1 = comg1 = calp1 * cbet1;
|
844
|
+
// Without normalization we have schi1 = somg1.
|
845
|
+
cchi1 = _f1 * dn1 * comg1;
|
846
|
+
Math::norm(ssig1, csig1);
|
847
|
+
// Math::norm(somg1, comg1); -- don't need to normalize!
|
848
|
+
// Math::norm(schi1, cchi1); -- don't need to normalize!
|
849
|
+
|
850
|
+
// Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
|
851
|
+
// about this case, since this can yield singularities in the Newton
|
852
|
+
// iteration.
|
853
|
+
// sin(alp2) * cos(bet2) = sin(alp0)
|
854
|
+
salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
|
855
|
+
// calp2 = sqrt(1 - sq(salp2))
|
856
|
+
// = sqrt(sq(calp0) - sq(sbet2)) / cbet2
|
857
|
+
// and subst for calp0 and rearrange to give (choose positive sqrt
|
858
|
+
// to give alp2 in [0, pi/2]).
|
859
|
+
calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
|
860
|
+
sqrt(Math::sq(calp1 * cbet1) +
|
861
|
+
(cbet1 < -sbet1 ?
|
862
|
+
(cbet2 - cbet1) * (cbet1 + cbet2) :
|
863
|
+
(sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
|
864
|
+
abs(calp1);
|
865
|
+
// tan(bet2) = tan(sig2) * cos(alp2)
|
866
|
+
// tan(omg2) = sin(alp0) * tan(sig2).
|
867
|
+
ssig2 = sbet2; somg2 = salp0 * sbet2;
|
868
|
+
csig2 = comg2 = calp2 * cbet2;
|
869
|
+
// Without normalization we have schi2 = somg2.
|
870
|
+
cchi2 = _f1 * dn2 * comg2;
|
871
|
+
Math::norm(ssig2, csig2);
|
872
|
+
// Math::norm(somg2, comg2); -- don't need to normalize!
|
873
|
+
// Math::norm(schi2, cchi2); -- don't need to normalize!
|
874
|
+
|
875
|
+
// sig12 = sig2 - sig1, limit to [0, pi]
|
876
|
+
sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
|
877
|
+
csig1 * csig2 + ssig1 * ssig2);
|
878
|
+
|
879
|
+
// omg12 = omg2 - omg1, limit to [0, pi]
|
880
|
+
somg12 = max(real(0), comg1 * somg2 - somg1 * comg2);
|
881
|
+
comg12 = comg1 * comg2 + somg1 * somg2;
|
882
|
+
real k2 = Math::sq(calp0) * _ep2;
|
883
|
+
E.Reset(-k2, -_ep2, 1 + k2, 1 + _ep2);
|
884
|
+
// chi12 = chi2 - chi1, limit to [0, pi]
|
885
|
+
real
|
886
|
+
schi12 = max(real(0), cchi1 * somg2 - somg1 * cchi2),
|
887
|
+
cchi12 = cchi1 * cchi2 + somg1 * somg2;
|
888
|
+
// eta = chi12 - lam120
|
889
|
+
real eta = atan2(schi12 * clam120 - cchi12 * slam120,
|
890
|
+
cchi12 * clam120 + schi12 * slam120);
|
891
|
+
|
892
|
+
lam12 = eta -
|
893
|
+
_e2/_f1 * salp0 * E.H() / (Math::pi() / 2) *
|
894
|
+
(sig12 + (E.deltaH(ssig2, csig2, dn2) - E.deltaH(ssig1, csig1, dn1)));
|
895
|
+
|
896
|
+
if (diffp) {
|
897
|
+
if (calp2 == 0)
|
898
|
+
dlam12 = - 2 * _f1 * dn1 / sbet1;
|
899
|
+
else {
|
900
|
+
real dummy;
|
901
|
+
Lengths(E, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
902
|
+
cbet1, cbet2, REDUCEDLENGTH,
|
903
|
+
dummy, dlam12, dummy, dummy, dummy);
|
904
|
+
dlam12 *= _f1 / (calp2 * cbet2);
|
905
|
+
}
|
906
|
+
}
|
907
|
+
|
908
|
+
return lam12;
|
909
|
+
}
|
910
|
+
|
911
|
+
void GeodesicExact::C4f(real eps, real c[]) const {
|
912
|
+
// Evaluate C4 coeffs
|
913
|
+
// Elements c[0] thru c[nC4_ - 1] are set
|
914
|
+
real mult = 1;
|
915
|
+
int o = 0;
|
916
|
+
for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
|
917
|
+
int m = nC4_ - l - 1; // order of polynomial in eps
|
918
|
+
c[l] = mult * Math::polyval(m, _C4x + o, eps);
|
919
|
+
o += m + 1;
|
920
|
+
mult *= eps;
|
921
|
+
}
|
922
|
+
// Post condition: o == nC4x_
|
923
|
+
if (!(o == nC4x_))
|
924
|
+
throw GeographicErr("C4 misalignment");
|
925
|
+
}
|
926
|
+
|
927
|
+
} // namespace GeographicLib
|