geographiclib 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/AUTHORS +12 -0
- data/LICENSE +24 -0
- data/ext/geographiclib/Accumulator.cpp +23 -0
- data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
- data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
- data/ext/geographiclib/CassiniSoldner.cpp +89 -0
- data/ext/geographiclib/CircularEngine.cpp +96 -0
- data/ext/geographiclib/DMS.cpp +381 -0
- data/ext/geographiclib/Ellipsoid.cpp +125 -0
- data/ext/geographiclib/EllipticFunction.cpp +512 -0
- data/ext/geographiclib/GARS.cpp +122 -0
- data/ext/geographiclib/GeoCoords.cpp +175 -0
- data/ext/geographiclib/Geocentric.cpp +172 -0
- data/ext/geographiclib/Geodesic.cpp +1908 -0
- data/ext/geographiclib/GeodesicExact.cpp +927 -0
- data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
- data/ext/geographiclib/GeodesicLine.cpp +321 -0
- data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
- data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
- data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
- data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
- data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
- data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
- data/ext/geographiclib/GeographicLib/Config.h +12 -0
- data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
- data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
- data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
- data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
- data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
- data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
- data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
- data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
- data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
- data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
- data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
- data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
- data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
- data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
- data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
- data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
- data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
- data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
- data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
- data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
- data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
- data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
- data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
- data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
- data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
- data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
- data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
- data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
- data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
- data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
- data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
- data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
- data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
- data/ext/geographiclib/Geohash.cpp +102 -0
- data/ext/geographiclib/Geoid.cpp +509 -0
- data/ext/geographiclib/Georef.cpp +135 -0
- data/ext/geographiclib/Gnomonic.cpp +85 -0
- data/ext/geographiclib/GravityCircle.cpp +129 -0
- data/ext/geographiclib/GravityModel.cpp +360 -0
- data/ext/geographiclib/LambertConformalConic.cpp +456 -0
- data/ext/geographiclib/LocalCartesian.cpp +62 -0
- data/ext/geographiclib/MGRS.cpp +461 -0
- data/ext/geographiclib/MagneticCircle.cpp +52 -0
- data/ext/geographiclib/MagneticModel.cpp +269 -0
- data/ext/geographiclib/Math.cpp +63 -0
- data/ext/geographiclib/NormalGravity.cpp +262 -0
- data/ext/geographiclib/OSGB.cpp +167 -0
- data/ext/geographiclib/PolarStereographic.cpp +108 -0
- data/ext/geographiclib/PolygonArea.cpp +204 -0
- data/ext/geographiclib/Rhumb.cpp +383 -0
- data/ext/geographiclib/SphericalEngine.cpp +477 -0
- data/ext/geographiclib/TransverseMercator.cpp +603 -0
- data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
- data/ext/geographiclib/UTMUPS.cpp +296 -0
- data/ext/geographiclib/Utility.cpp +61 -0
- data/ext/geographiclib/extconf.rb +3 -0
- data/ext/geographiclib/geographiclib.cpp +62 -0
- data/lib/geographiclib.rb +20 -0
- metadata +140 -0
@@ -0,0 +1,862 @@
|
|
1
|
+
/**
|
2
|
+
* \file GeodesicExact.hpp
|
3
|
+
* \brief Header for GeographicLib::GeodesicExact class
|
4
|
+
*
|
5
|
+
* Copyright (c) Charles Karney (2012-2015) <charles@karney.com> and licensed
|
6
|
+
* under the MIT/X11 License. For more information, see
|
7
|
+
* http://geographiclib.sourceforge.net/
|
8
|
+
**********************************************************************/
|
9
|
+
|
10
|
+
#if !defined(GEOGRAPHICLIB_GEODESICEXACT_HPP)
|
11
|
+
#define GEOGRAPHICLIB_GEODESICEXACT_HPP 1
|
12
|
+
|
13
|
+
#include <GeographicLib/Constants.hpp>
|
14
|
+
#include <GeographicLib/EllipticFunction.hpp>
|
15
|
+
|
16
|
+
#if !defined(GEOGRAPHICLIB_GEODESICEXACT_ORDER)
|
17
|
+
/**
|
18
|
+
* The order of the expansions used by GeodesicExact.
|
19
|
+
**********************************************************************/
|
20
|
+
# define GEOGRAPHICLIB_GEODESICEXACT_ORDER 30
|
21
|
+
#endif
|
22
|
+
|
23
|
+
namespace GeographicLib {
|
24
|
+
|
25
|
+
class GeodesicLineExact;
|
26
|
+
|
27
|
+
/**
|
28
|
+
* \brief Exact geodesic calculations
|
29
|
+
*
|
30
|
+
* The equations for geodesics on an ellipsoid can be expressed in terms of
|
31
|
+
* incomplete elliptic integrals. The Geodesic class expands these integrals
|
32
|
+
* in a series in the flattening \e f and this provides an accurate solution
|
33
|
+
* for \e f ∈ [-0.01, 0.01]. The GeodesicExact class computes the
|
34
|
+
* ellitpic integrals directly and so provides a solution which is valid for
|
35
|
+
* all \e f. However, in practice, its use should be limited to about
|
36
|
+
* <i>b</i>/\e a ∈ [0.01, 100] or \e f ∈ [-99, 0.99].
|
37
|
+
*
|
38
|
+
* For the WGS84 ellipsoid, these classes are 2--3 times \e slower than the
|
39
|
+
* series solution and 2--3 times \e less \e accurate (because it's less easy
|
40
|
+
* to control round-off errors with the elliptic integral formulation); i.e.,
|
41
|
+
* the error is about 40 nm (40 nanometers) instead of 15 nm. However the
|
42
|
+
* error in the series solution scales as <i>f</i><sup>7</sup> while the
|
43
|
+
* error in the elliptic integral solution depends weakly on \e f. If the
|
44
|
+
* quarter meridian distance is 10000 km and the ratio <i>b</i>/\e a = 1
|
45
|
+
* − \e f is varied then the approximate maximum error (expressed as a
|
46
|
+
* distance) is <pre>
|
47
|
+
* 1 - f error (nm)
|
48
|
+
* 1/128 387
|
49
|
+
* 1/64 345
|
50
|
+
* 1/32 269
|
51
|
+
* 1/16 210
|
52
|
+
* 1/8 115
|
53
|
+
* 1/4 69
|
54
|
+
* 1/2 36
|
55
|
+
* 1 15
|
56
|
+
* 2 25
|
57
|
+
* 4 96
|
58
|
+
* 8 318
|
59
|
+
* 16 985
|
60
|
+
* 32 2352
|
61
|
+
* 64 6008
|
62
|
+
* 128 19024
|
63
|
+
* </pre>
|
64
|
+
*
|
65
|
+
* The computation of the area in these classes is via a 30th order series.
|
66
|
+
* This gives accurate results for <i>b</i>/\e a ∈ [1/2, 2]; the
|
67
|
+
* accuracy is about 8 decimal digits for <i>b</i>/\e a ∈ [1/4, 4].
|
68
|
+
*
|
69
|
+
* See \ref geodellip for the formulation. See the documentation on the
|
70
|
+
* Geodesic class for additional information on the geodesic problems.
|
71
|
+
*
|
72
|
+
* Example of use:
|
73
|
+
* \include example-GeodesicExact.cpp
|
74
|
+
*
|
75
|
+
* <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
|
76
|
+
* providing access to the functionality of GeodesicExact and
|
77
|
+
* GeodesicLineExact (via the -E option).
|
78
|
+
**********************************************************************/
|
79
|
+
|
80
|
+
class GEOGRAPHICLIB_EXPORT GeodesicExact {
|
81
|
+
private:
|
82
|
+
typedef Math::real real;
|
83
|
+
friend class GeodesicLineExact;
|
84
|
+
static const int nC4_ = GEOGRAPHICLIB_GEODESICEXACT_ORDER;
|
85
|
+
static const int nC4x_ = (nC4_ * (nC4_ + 1)) / 2;
|
86
|
+
static const unsigned maxit1_ = 20;
|
87
|
+
unsigned maxit2_;
|
88
|
+
real tiny_, tol0_, tol1_, tol2_, tolb_, xthresh_;
|
89
|
+
|
90
|
+
enum captype {
|
91
|
+
CAP_NONE = 0U,
|
92
|
+
CAP_E = 1U<<0,
|
93
|
+
// Skip 1U<<1 for compatibility with Geodesic (not required)
|
94
|
+
CAP_D = 1U<<2,
|
95
|
+
CAP_H = 1U<<3,
|
96
|
+
CAP_C4 = 1U<<4,
|
97
|
+
CAP_ALL = 0x1FU,
|
98
|
+
CAP_MASK = CAP_ALL,
|
99
|
+
OUT_ALL = 0x7F80U,
|
100
|
+
OUT_MASK = 0xFF80U, // Includes LONG_UNROLL
|
101
|
+
};
|
102
|
+
|
103
|
+
static real CosSeries(real sinx, real cosx, const real c[], int n);
|
104
|
+
static real Astroid(real x, real y);
|
105
|
+
|
106
|
+
real _a, _f, _f1, _e2, _ep2, _n, _b, _c2, _etol2;
|
107
|
+
real _C4x[nC4x_];
|
108
|
+
|
109
|
+
void Lengths(const EllipticFunction& E,
|
110
|
+
real sig12,
|
111
|
+
real ssig1, real csig1, real dn1,
|
112
|
+
real ssig2, real csig2, real dn2,
|
113
|
+
real cbet1, real cbet2, unsigned outmask,
|
114
|
+
real& s12s, real& m12a, real& m0,
|
115
|
+
real& M12, real& M21) const;
|
116
|
+
real InverseStart(EllipticFunction& E,
|
117
|
+
real sbet1, real cbet1, real dn1,
|
118
|
+
real sbet2, real cbet2, real dn2,
|
119
|
+
real lam12, real slam12, real clam12,
|
120
|
+
real& salp1, real& calp1,
|
121
|
+
real& salp2, real& calp2, real& dnm) const;
|
122
|
+
real Lambda12(real sbet1, real cbet1, real dn1,
|
123
|
+
real sbet2, real cbet2, real dn2,
|
124
|
+
real salp1, real calp1, real slam120, real clam120,
|
125
|
+
real& salp2, real& calp2, real& sig12,
|
126
|
+
real& ssig1, real& csig1, real& ssig2, real& csig2,
|
127
|
+
EllipticFunction& E,
|
128
|
+
real& somg12, real& comg12, bool diffp, real& dlam12) const;
|
129
|
+
real GenInverse(real lat1, real lon1, real lat2, real lon2,
|
130
|
+
unsigned outmask, real& s12,
|
131
|
+
real& salp1, real& calp1, real& salp2, real& calp2,
|
132
|
+
real& m12, real& M12, real& M21, real& S12) const;
|
133
|
+
|
134
|
+
// These are Maxima generated functions to provide series approximations to
|
135
|
+
// the integrals for the area.
|
136
|
+
void C4coeff();
|
137
|
+
void C4f(real k2, real c[]) const;
|
138
|
+
// Large coefficients are split so that lo contains the low 52 bits and hi
|
139
|
+
// the rest. This choice avoids double rounding with doubles and higher
|
140
|
+
// precision types. float coefficients will suffer double rounding;
|
141
|
+
// however the accuracy is already lousy for floats.
|
142
|
+
static Math::real inline reale(long long hi, long long lo) {
|
143
|
+
using std::ldexp;
|
144
|
+
return ldexp(real(hi), 52) + lo;
|
145
|
+
}
|
146
|
+
|
147
|
+
public:
|
148
|
+
|
149
|
+
/**
|
150
|
+
* Bit masks for what calculations to do. These masks do double duty.
|
151
|
+
* They signify to the GeodesicLineExact::GeodesicLineExact constructor and
|
152
|
+
* to GeodesicExact::Line what capabilities should be included in the
|
153
|
+
* GeodesicLineExact object. They also specify which results to return in
|
154
|
+
* the general routines GeodesicExact::GenDirect and
|
155
|
+
* GeodesicExact::GenInverse routines. GeodesicLineExact::mask is a
|
156
|
+
* duplication of this enum.
|
157
|
+
**********************************************************************/
|
158
|
+
enum mask {
|
159
|
+
/**
|
160
|
+
* No capabilities, no output.
|
161
|
+
* @hideinitializer
|
162
|
+
**********************************************************************/
|
163
|
+
NONE = 0U,
|
164
|
+
/**
|
165
|
+
* Calculate latitude \e lat2. (It's not necessary to include this as a
|
166
|
+
* capability to GeodesicLineExact because this is included by default.)
|
167
|
+
* @hideinitializer
|
168
|
+
**********************************************************************/
|
169
|
+
LATITUDE = 1U<<7 | CAP_NONE,
|
170
|
+
/**
|
171
|
+
* Calculate longitude \e lon2.
|
172
|
+
* @hideinitializer
|
173
|
+
**********************************************************************/
|
174
|
+
LONGITUDE = 1U<<8 | CAP_H,
|
175
|
+
/**
|
176
|
+
* Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
|
177
|
+
* include this as a capability to GeodesicLineExact because this is
|
178
|
+
* included by default.)
|
179
|
+
* @hideinitializer
|
180
|
+
**********************************************************************/
|
181
|
+
AZIMUTH = 1U<<9 | CAP_NONE,
|
182
|
+
/**
|
183
|
+
* Calculate distance \e s12.
|
184
|
+
* @hideinitializer
|
185
|
+
**********************************************************************/
|
186
|
+
DISTANCE = 1U<<10 | CAP_E,
|
187
|
+
/**
|
188
|
+
* Allow distance \e s12 to be used as input in the direct geodesic
|
189
|
+
* problem.
|
190
|
+
* @hideinitializer
|
191
|
+
**********************************************************************/
|
192
|
+
DISTANCE_IN = 1U<<11 | CAP_E,
|
193
|
+
/**
|
194
|
+
* Calculate reduced length \e m12.
|
195
|
+
* @hideinitializer
|
196
|
+
**********************************************************************/
|
197
|
+
REDUCEDLENGTH = 1U<<12 | CAP_D,
|
198
|
+
/**
|
199
|
+
* Calculate geodesic scales \e M12 and \e M21.
|
200
|
+
* @hideinitializer
|
201
|
+
**********************************************************************/
|
202
|
+
GEODESICSCALE = 1U<<13 | CAP_D,
|
203
|
+
/**
|
204
|
+
* Calculate area \e S12.
|
205
|
+
* @hideinitializer
|
206
|
+
**********************************************************************/
|
207
|
+
AREA = 1U<<14 | CAP_C4,
|
208
|
+
/**
|
209
|
+
* Unroll \e lon2 in the direct calculation.
|
210
|
+
* @hideinitializer
|
211
|
+
**********************************************************************/
|
212
|
+
LONG_UNROLL = 1U<<15,
|
213
|
+
/**
|
214
|
+
* All capabilities, calculate everything. (LONG_UNROLL is not
|
215
|
+
* included in this mask.)
|
216
|
+
* @hideinitializer
|
217
|
+
**********************************************************************/
|
218
|
+
ALL = OUT_ALL| CAP_ALL,
|
219
|
+
};
|
220
|
+
|
221
|
+
/** \name Constructor
|
222
|
+
**********************************************************************/
|
223
|
+
///@{
|
224
|
+
/**
|
225
|
+
* Constructor for a ellipsoid with
|
226
|
+
*
|
227
|
+
* @param[in] a equatorial radius (meters).
|
228
|
+
* @param[in] f flattening of ellipsoid. Setting \e f = 0 gives a sphere.
|
229
|
+
* Negative \e f gives a prolate ellipsoid.
|
230
|
+
* @exception GeographicErr if \e a or (1 − \e f) \e a is not
|
231
|
+
* positive.
|
232
|
+
**********************************************************************/
|
233
|
+
GeodesicExact(real a, real f);
|
234
|
+
///@}
|
235
|
+
|
236
|
+
/** \name Direct geodesic problem specified in terms of distance.
|
237
|
+
**********************************************************************/
|
238
|
+
///@{
|
239
|
+
/**
|
240
|
+
* Perform the direct geodesic calculation where the length of the geodesic
|
241
|
+
* is specified in terms of distance.
|
242
|
+
*
|
243
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
244
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
245
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
246
|
+
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
|
247
|
+
* signed.
|
248
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
249
|
+
* @param[out] lon2 longitude of point 2 (degrees).
|
250
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
251
|
+
* @param[out] m12 reduced length of geodesic (meters).
|
252
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
253
|
+
* (dimensionless).
|
254
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
255
|
+
* (dimensionless).
|
256
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
257
|
+
* @return \e a12 arc length of between point 1 and point 2 (degrees).
|
258
|
+
*
|
259
|
+
* \e lat1 should be in the range [−90°, 90°]. The values of
|
260
|
+
* \e lon2 and \e azi2 returned are in the range [−180°,
|
261
|
+
* 180°).
|
262
|
+
*
|
263
|
+
* If either point is at a pole, the azimuth is defined by keeping the
|
264
|
+
* longitude fixed, writing \e lat = ±(90° − ε),
|
265
|
+
* and taking the limit ε → 0+. An arc length greater that
|
266
|
+
* 180° signifies a geodesic which is not a shortest path. (For a
|
267
|
+
* prolate ellipsoid, an additional condition is necessary for a shortest
|
268
|
+
* path: the longitudinal extent must not exceed of 180°.)
|
269
|
+
*
|
270
|
+
* The following functions are overloaded versions of GeodesicExact::Direct
|
271
|
+
* which omit some of the output parameters. Note, however, that the arc
|
272
|
+
* length is always computed and returned as the function value.
|
273
|
+
**********************************************************************/
|
274
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
275
|
+
real& lat2, real& lon2, real& azi2,
|
276
|
+
real& m12, real& M12, real& M21, real& S12)
|
277
|
+
const {
|
278
|
+
real t;
|
279
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
280
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
281
|
+
REDUCEDLENGTH | GEODESICSCALE | AREA,
|
282
|
+
lat2, lon2, azi2, t, m12, M12, M21, S12);
|
283
|
+
}
|
284
|
+
|
285
|
+
/**
|
286
|
+
* See the documentation for GeodesicExact::Direct.
|
287
|
+
**********************************************************************/
|
288
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
289
|
+
real& lat2, real& lon2)
|
290
|
+
const {
|
291
|
+
real t;
|
292
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
293
|
+
LATITUDE | LONGITUDE,
|
294
|
+
lat2, lon2, t, t, t, t, t, t);
|
295
|
+
}
|
296
|
+
|
297
|
+
/**
|
298
|
+
* See the documentation for GeodesicExact::Direct.
|
299
|
+
**********************************************************************/
|
300
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
301
|
+
real& lat2, real& lon2, real& azi2)
|
302
|
+
const {
|
303
|
+
real t;
|
304
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
305
|
+
LATITUDE | LONGITUDE | AZIMUTH,
|
306
|
+
lat2, lon2, azi2, t, t, t, t, t);
|
307
|
+
}
|
308
|
+
|
309
|
+
/**
|
310
|
+
* See the documentation for GeodesicExact::Direct.
|
311
|
+
**********************************************************************/
|
312
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
313
|
+
real& lat2, real& lon2, real& azi2, real& m12)
|
314
|
+
const {
|
315
|
+
real t;
|
316
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
317
|
+
LATITUDE | LONGITUDE | AZIMUTH | REDUCEDLENGTH,
|
318
|
+
lat2, lon2, azi2, t, m12, t, t, t);
|
319
|
+
}
|
320
|
+
|
321
|
+
/**
|
322
|
+
* See the documentation for GeodesicExact::Direct.
|
323
|
+
**********************************************************************/
|
324
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
325
|
+
real& lat2, real& lon2, real& azi2,
|
326
|
+
real& M12, real& M21)
|
327
|
+
const {
|
328
|
+
real t;
|
329
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
330
|
+
LATITUDE | LONGITUDE | AZIMUTH | GEODESICSCALE,
|
331
|
+
lat2, lon2, azi2, t, t, M12, M21, t);
|
332
|
+
}
|
333
|
+
|
334
|
+
/**
|
335
|
+
* See the documentation for GeodesicExact::Direct.
|
336
|
+
**********************************************************************/
|
337
|
+
Math::real Direct(real lat1, real lon1, real azi1, real s12,
|
338
|
+
real& lat2, real& lon2, real& azi2,
|
339
|
+
real& m12, real& M12, real& M21)
|
340
|
+
const {
|
341
|
+
real t;
|
342
|
+
return GenDirect(lat1, lon1, azi1, false, s12,
|
343
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
344
|
+
REDUCEDLENGTH | GEODESICSCALE,
|
345
|
+
lat2, lon2, azi2, t, m12, M12, M21, t);
|
346
|
+
}
|
347
|
+
///@}
|
348
|
+
|
349
|
+
/** \name Direct geodesic problem specified in terms of arc length.
|
350
|
+
**********************************************************************/
|
351
|
+
///@{
|
352
|
+
/**
|
353
|
+
* Perform the direct geodesic calculation where the length of the geodesic
|
354
|
+
* is specified in terms of arc length.
|
355
|
+
*
|
356
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
357
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
358
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
359
|
+
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
|
360
|
+
* be signed.
|
361
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
362
|
+
* @param[out] lon2 longitude of point 2 (degrees).
|
363
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
364
|
+
* @param[out] s12 distance between point 1 and point 2 (meters).
|
365
|
+
* @param[out] m12 reduced length of geodesic (meters).
|
366
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
367
|
+
* (dimensionless).
|
368
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
369
|
+
* (dimensionless).
|
370
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
371
|
+
*
|
372
|
+
* \e lat1 should be in the range [−90°, 90°]. The values of
|
373
|
+
* \e lon2 and \e azi2 returned are in the range [−180°,
|
374
|
+
* 180°).
|
375
|
+
*
|
376
|
+
* If either point is at a pole, the azimuth is defined by keeping the
|
377
|
+
* longitude fixed, writing \e lat = ±(90° − ε),
|
378
|
+
* and taking the limit ε → 0+. An arc length greater that
|
379
|
+
* 180° signifies a geodesic which is not a shortest path. (For a
|
380
|
+
* prolate ellipsoid, an additional condition is necessary for a shortest
|
381
|
+
* path: the longitudinal extent must not exceed of 180°.)
|
382
|
+
*
|
383
|
+
* The following functions are overloaded versions of GeodesicExact::Direct
|
384
|
+
* which omit some of the output parameters.
|
385
|
+
**********************************************************************/
|
386
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
387
|
+
real& lat2, real& lon2, real& azi2, real& s12,
|
388
|
+
real& m12, real& M12, real& M21, real& S12)
|
389
|
+
const {
|
390
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
391
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
392
|
+
REDUCEDLENGTH | GEODESICSCALE | AREA,
|
393
|
+
lat2, lon2, azi2, s12, m12, M12, M21, S12);
|
394
|
+
}
|
395
|
+
|
396
|
+
/**
|
397
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
398
|
+
**********************************************************************/
|
399
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
400
|
+
real& lat2, real& lon2) const {
|
401
|
+
real t;
|
402
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
403
|
+
LATITUDE | LONGITUDE,
|
404
|
+
lat2, lon2, t, t, t, t, t, t);
|
405
|
+
}
|
406
|
+
|
407
|
+
/**
|
408
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
409
|
+
**********************************************************************/
|
410
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
411
|
+
real& lat2, real& lon2, real& azi2) const {
|
412
|
+
real t;
|
413
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
414
|
+
LATITUDE | LONGITUDE | AZIMUTH,
|
415
|
+
lat2, lon2, azi2, t, t, t, t, t);
|
416
|
+
}
|
417
|
+
|
418
|
+
/**
|
419
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
420
|
+
**********************************************************************/
|
421
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
422
|
+
real& lat2, real& lon2, real& azi2, real& s12)
|
423
|
+
const {
|
424
|
+
real t;
|
425
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
426
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
|
427
|
+
lat2, lon2, azi2, s12, t, t, t, t);
|
428
|
+
}
|
429
|
+
|
430
|
+
/**
|
431
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
432
|
+
**********************************************************************/
|
433
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
434
|
+
real& lat2, real& lon2, real& azi2,
|
435
|
+
real& s12, real& m12) const {
|
436
|
+
real t;
|
437
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
438
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
439
|
+
REDUCEDLENGTH,
|
440
|
+
lat2, lon2, azi2, s12, m12, t, t, t);
|
441
|
+
}
|
442
|
+
|
443
|
+
/**
|
444
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
445
|
+
**********************************************************************/
|
446
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
447
|
+
real& lat2, real& lon2, real& azi2, real& s12,
|
448
|
+
real& M12, real& M21) const {
|
449
|
+
real t;
|
450
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
451
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
452
|
+
GEODESICSCALE,
|
453
|
+
lat2, lon2, azi2, s12, t, M12, M21, t);
|
454
|
+
}
|
455
|
+
|
456
|
+
/**
|
457
|
+
* See the documentation for GeodesicExact::ArcDirect.
|
458
|
+
**********************************************************************/
|
459
|
+
void ArcDirect(real lat1, real lon1, real azi1, real a12,
|
460
|
+
real& lat2, real& lon2, real& azi2, real& s12,
|
461
|
+
real& m12, real& M12, real& M21) const {
|
462
|
+
real t;
|
463
|
+
GenDirect(lat1, lon1, azi1, true, a12,
|
464
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
465
|
+
REDUCEDLENGTH | GEODESICSCALE,
|
466
|
+
lat2, lon2, azi2, s12, m12, M12, M21, t);
|
467
|
+
}
|
468
|
+
///@}
|
469
|
+
|
470
|
+
/** \name General version of the direct geodesic solution.
|
471
|
+
**********************************************************************/
|
472
|
+
///@{
|
473
|
+
|
474
|
+
/**
|
475
|
+
* The general direct geodesic calculation. GeodesicExact::Direct and
|
476
|
+
* GeodesicExact::ArcDirect are defined in terms of this function.
|
477
|
+
*
|
478
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
479
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
480
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
481
|
+
* @param[in] arcmode boolean flag determining the meaning of the second
|
482
|
+
* parameter.
|
483
|
+
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
|
484
|
+
* point 1 and point 2 (meters); otherwise it is the arc length between
|
485
|
+
* point 1 and point 2 (degrees); it can be signed.
|
486
|
+
* @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
|
487
|
+
* specifying which of the following parameters should be set.
|
488
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
489
|
+
* @param[out] lon2 longitude of point 2 (degrees).
|
490
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
491
|
+
* @param[out] s12 distance between point 1 and point 2 (meters).
|
492
|
+
* @param[out] m12 reduced length of geodesic (meters).
|
493
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
494
|
+
* (dimensionless).
|
495
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
496
|
+
* (dimensionless).
|
497
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
498
|
+
* @return \e a12 arc length of between point 1 and point 2 (degrees).
|
499
|
+
*
|
500
|
+
* The GeodesicExact::mask values possible for \e outmask are
|
501
|
+
* - \e outmask |= GeodesicExact::LATITUDE for the latitude \e lat2;
|
502
|
+
* - \e outmask |= GeodesicExact::LONGITUDE for the latitude \e lon2;
|
503
|
+
* - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
|
504
|
+
* - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
|
505
|
+
* - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
|
506
|
+
* m12;
|
507
|
+
* - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
|
508
|
+
* M12 and \e M21;
|
509
|
+
* - \e outmask |= GeodesicExact::AREA for the area \e S12;
|
510
|
+
* - \e outmask |= GeodesicExact::ALL for all of the above;
|
511
|
+
* - \e outmask |= GeodesicExact::LONG_UNROLL to unroll \e lon2 instead of
|
512
|
+
* wrapping it into the range [−180°, 180°).
|
513
|
+
* .
|
514
|
+
* The function value \e a12 is always computed and returned and this
|
515
|
+
* equals \e s12_a12 is \e arcmode is true. If \e outmask includes
|
516
|
+
* GeodesicExact::DISTANCE and \e arcmode is false, then \e s12 = \e
|
517
|
+
* s12_a12. It is not necessary to include GeodesicExact::DISTANCE_IN in
|
518
|
+
* \e outmask; this is automatically included is \e arcmode is false.
|
519
|
+
*
|
520
|
+
* With the GeodesicExact::LONG_UNROLL bit set, the quantity \e lon2
|
521
|
+
* − \e lon1 indicates how many times and in what sense the geodesic
|
522
|
+
* encircles the ellipsoid.
|
523
|
+
**********************************************************************/
|
524
|
+
Math::real GenDirect(real lat1, real lon1, real azi1,
|
525
|
+
bool arcmode, real s12_a12, unsigned outmask,
|
526
|
+
real& lat2, real& lon2, real& azi2,
|
527
|
+
real& s12, real& m12, real& M12, real& M21,
|
528
|
+
real& S12) const;
|
529
|
+
///@}
|
530
|
+
|
531
|
+
/** \name Inverse geodesic problem.
|
532
|
+
**********************************************************************/
|
533
|
+
///@{
|
534
|
+
/**
|
535
|
+
* Perform the inverse geodesic calculation.
|
536
|
+
*
|
537
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
538
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
539
|
+
* @param[in] lat2 latitude of point 2 (degrees).
|
540
|
+
* @param[in] lon2 longitude of point 2 (degrees).
|
541
|
+
* @param[out] s12 distance between point 1 and point 2 (meters).
|
542
|
+
* @param[out] azi1 azimuth at point 1 (degrees).
|
543
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
544
|
+
* @param[out] m12 reduced length of geodesic (meters).
|
545
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
546
|
+
* (dimensionless).
|
547
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
548
|
+
* (dimensionless).
|
549
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
550
|
+
* @return \e a12 arc length of between point 1 and point 2 (degrees).
|
551
|
+
*
|
552
|
+
* \e lat1 and \e lat2 should be in the range [−90°, 90°].
|
553
|
+
* The values of \e azi1 and \e azi2 returned are in the range
|
554
|
+
* [−180°, 180°).
|
555
|
+
*
|
556
|
+
* If either point is at a pole, the azimuth is defined by keeping the
|
557
|
+
* longitude fixed, writing \e lat = ±(90° − ε),
|
558
|
+
* and taking the limit ε → 0+.
|
559
|
+
*
|
560
|
+
* The following functions are overloaded versions of GeodesicExact::Inverse
|
561
|
+
* which omit some of the output parameters. Note, however, that the arc
|
562
|
+
* length is always computed and returned as the function value.
|
563
|
+
**********************************************************************/
|
564
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
565
|
+
real& s12, real& azi1, real& azi2, real& m12,
|
566
|
+
real& M12, real& M21, real& S12) const {
|
567
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
568
|
+
DISTANCE | AZIMUTH |
|
569
|
+
REDUCEDLENGTH | GEODESICSCALE | AREA,
|
570
|
+
s12, azi1, azi2, m12, M12, M21, S12);
|
571
|
+
}
|
572
|
+
|
573
|
+
/**
|
574
|
+
* See the documentation for GeodesicExact::Inverse.
|
575
|
+
**********************************************************************/
|
576
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
577
|
+
real& s12) const {
|
578
|
+
real t;
|
579
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
580
|
+
DISTANCE,
|
581
|
+
s12, t, t, t, t, t, t);
|
582
|
+
}
|
583
|
+
|
584
|
+
/**
|
585
|
+
* See the documentation for GeodesicExact::Inverse.
|
586
|
+
**********************************************************************/
|
587
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
588
|
+
real& azi1, real& azi2) const {
|
589
|
+
real t;
|
590
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
591
|
+
AZIMUTH,
|
592
|
+
t, azi1, azi2, t, t, t, t);
|
593
|
+
}
|
594
|
+
|
595
|
+
/**
|
596
|
+
* See the documentation for GeodesicExact::Inverse.
|
597
|
+
**********************************************************************/
|
598
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
599
|
+
real& s12, real& azi1, real& azi2)
|
600
|
+
const {
|
601
|
+
real t;
|
602
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
603
|
+
DISTANCE | AZIMUTH,
|
604
|
+
s12, azi1, azi2, t, t, t, t);
|
605
|
+
}
|
606
|
+
|
607
|
+
/**
|
608
|
+
* See the documentation for GeodesicExact::Inverse.
|
609
|
+
**********************************************************************/
|
610
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
611
|
+
real& s12, real& azi1, real& azi2, real& m12)
|
612
|
+
const {
|
613
|
+
real t;
|
614
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
615
|
+
DISTANCE | AZIMUTH | REDUCEDLENGTH,
|
616
|
+
s12, azi1, azi2, m12, t, t, t);
|
617
|
+
}
|
618
|
+
|
619
|
+
/**
|
620
|
+
* See the documentation for GeodesicExact::Inverse.
|
621
|
+
**********************************************************************/
|
622
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
623
|
+
real& s12, real& azi1, real& azi2,
|
624
|
+
real& M12, real& M21) const {
|
625
|
+
real t;
|
626
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
627
|
+
DISTANCE | AZIMUTH | GEODESICSCALE,
|
628
|
+
s12, azi1, azi2, t, M12, M21, t);
|
629
|
+
}
|
630
|
+
|
631
|
+
/**
|
632
|
+
* See the documentation for GeodesicExact::Inverse.
|
633
|
+
**********************************************************************/
|
634
|
+
Math::real Inverse(real lat1, real lon1, real lat2, real lon2,
|
635
|
+
real& s12, real& azi1, real& azi2, real& m12,
|
636
|
+
real& M12, real& M21) const {
|
637
|
+
real t;
|
638
|
+
return GenInverse(lat1, lon1, lat2, lon2,
|
639
|
+
DISTANCE | AZIMUTH |
|
640
|
+
REDUCEDLENGTH | GEODESICSCALE,
|
641
|
+
s12, azi1, azi2, m12, M12, M21, t);
|
642
|
+
}
|
643
|
+
///@}
|
644
|
+
|
645
|
+
/** \name General version of inverse geodesic solution.
|
646
|
+
**********************************************************************/
|
647
|
+
///@{
|
648
|
+
/**
|
649
|
+
* The general inverse geodesic calculation. GeodesicExact::Inverse is
|
650
|
+
* defined in terms of this function.
|
651
|
+
*
|
652
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
653
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
654
|
+
* @param[in] lat2 latitude of point 2 (degrees).
|
655
|
+
* @param[in] lon2 longitude of point 2 (degrees).
|
656
|
+
* @param[in] outmask a bitor'ed combination of GeodesicExact::mask values
|
657
|
+
* specifying which of the following parameters should be set.
|
658
|
+
* @param[out] s12 distance between point 1 and point 2 (meters).
|
659
|
+
* @param[out] azi1 azimuth at point 1 (degrees).
|
660
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
661
|
+
* @param[out] m12 reduced length of geodesic (meters).
|
662
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
663
|
+
* (dimensionless).
|
664
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
665
|
+
* (dimensionless).
|
666
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>).
|
667
|
+
* @return \e a12 arc length of between point 1 and point 2 (degrees).
|
668
|
+
*
|
669
|
+
* The GeodesicExact::mask values possible for \e outmask are
|
670
|
+
* - \e outmask |= GeodesicExact::DISTANCE for the distance \e s12;
|
671
|
+
* - \e outmask |= GeodesicExact::AZIMUTH for the latitude \e azi2;
|
672
|
+
* - \e outmask |= GeodesicExact::REDUCEDLENGTH for the reduced length \e
|
673
|
+
* m12;
|
674
|
+
* - \e outmask |= GeodesicExact::GEODESICSCALE for the geodesic scales \e
|
675
|
+
* M12 and \e M21;
|
676
|
+
* - \e outmask |= GeodesicExact::AREA for the area \e S12;
|
677
|
+
* - \e outmask |= GeodesicExact::ALL for all of the above.
|
678
|
+
* .
|
679
|
+
* The arc length is always computed and returned as the function value.
|
680
|
+
**********************************************************************/
|
681
|
+
Math::real GenInverse(real lat1, real lon1, real lat2, real lon2,
|
682
|
+
unsigned outmask,
|
683
|
+
real& s12, real& azi1, real& azi2,
|
684
|
+
real& m12, real& M12, real& M21, real& S12) const;
|
685
|
+
///@}
|
686
|
+
|
687
|
+
/** \name Interface to GeodesicLineExact.
|
688
|
+
**********************************************************************/
|
689
|
+
///@{
|
690
|
+
|
691
|
+
/**
|
692
|
+
* Set up to compute several points on a single geodesic.
|
693
|
+
*
|
694
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
695
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
696
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
697
|
+
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
|
698
|
+
* specifying the capabilities the GeodesicLineExact object should
|
699
|
+
* possess, i.e., which quantities can be returned in calls to
|
700
|
+
* GeodesicLineExact::Position.
|
701
|
+
* @return a GeodesicLineExact object.
|
702
|
+
*
|
703
|
+
* \e lat1 should be in the range [−90°, 90°].
|
704
|
+
*
|
705
|
+
* The GeodesicExact::mask values are
|
706
|
+
* - \e caps |= GeodesicExact::LATITUDE for the latitude \e lat2; this is
|
707
|
+
* added automatically;
|
708
|
+
* - \e caps |= GeodesicExact::LONGITUDE for the latitude \e lon2;
|
709
|
+
* - \e caps |= GeodesicExact::AZIMUTH for the azimuth \e azi2; this is
|
710
|
+
* added automatically;
|
711
|
+
* - \e caps |= GeodesicExact::DISTANCE for the distance \e s12;
|
712
|
+
* - \e caps |= GeodesicExact::REDUCEDLENGTH for the reduced length \e m12;
|
713
|
+
* - \e caps |= GeodesicExact::GEODESICSCALE for the geodesic scales \e M12
|
714
|
+
* and \e M21;
|
715
|
+
* - \e caps |= GeodesicExact::AREA for the area \e S12;
|
716
|
+
* - \e caps |= GeodesicExact::DISTANCE_IN permits the length of the
|
717
|
+
* geodesic to be given in terms of \e s12; without this capability the
|
718
|
+
* length can only be specified in terms of arc length;
|
719
|
+
* - \e caps |= GeodesicExact::ALL for all of the above.
|
720
|
+
* .
|
721
|
+
* The default value of \e caps is GeodesicExact::ALL which turns on all
|
722
|
+
* the capabilities.
|
723
|
+
*
|
724
|
+
* If the point is at a pole, the azimuth is defined by keeping \e lon1
|
725
|
+
* fixed, writing \e lat1 = ±(90 − ε), and taking the
|
726
|
+
* limit ε → 0+.
|
727
|
+
**********************************************************************/
|
728
|
+
GeodesicLineExact Line(real lat1, real lon1, real azi1, unsigned caps = ALL)
|
729
|
+
const;
|
730
|
+
|
731
|
+
/**
|
732
|
+
* Define a GeodesicLineExact in terms of the inverse geodesic problem.
|
733
|
+
*
|
734
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
735
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
736
|
+
* @param[in] lat2 latitude of point 2 (degrees).
|
737
|
+
* @param[in] lon2 longitude of point 2 (degrees).
|
738
|
+
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
|
739
|
+
* specifying the capabilities the GeodesicLineExact object should
|
740
|
+
* possess, i.e., which quantities can be returned in calls to
|
741
|
+
* GeodesicLineExact::Position.
|
742
|
+
* @return a GeodesicLineExact object.
|
743
|
+
*
|
744
|
+
* This function sets point 3 of the GeodesicLineExact to correspond to
|
745
|
+
* point 2 of the inverse geodesic problem.
|
746
|
+
*
|
747
|
+
* \e lat1 and \e lat2 should be in the range [−90°, 90°].
|
748
|
+
**********************************************************************/
|
749
|
+
GeodesicLineExact InverseLine(real lat1, real lon1, real lat2, real lon2,
|
750
|
+
unsigned caps = ALL) const;
|
751
|
+
|
752
|
+
/**
|
753
|
+
* Define a GeodesicLineExact in terms of the direct geodesic problem
|
754
|
+
* specified in terms of distance.
|
755
|
+
*
|
756
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
757
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
758
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
759
|
+
* @param[in] s12 distance between point 1 and point 2 (meters); it can be
|
760
|
+
* negative.
|
761
|
+
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
|
762
|
+
* specifying the capabilities the GeodesicLineExact object should
|
763
|
+
* possess, i.e., which quantities can be returned in calls to
|
764
|
+
* GeodesicLineExact::Position.
|
765
|
+
* @return a GeodesicLineExact object.
|
766
|
+
*
|
767
|
+
* This function sets point 3 of the GeodesicLineExact to correspond to
|
768
|
+
* point 2 of the direct geodesic problem.
|
769
|
+
*
|
770
|
+
* \e lat1 should be in the range [−90°, 90°].
|
771
|
+
**********************************************************************/
|
772
|
+
GeodesicLineExact DirectLine(real lat1, real lon1, real azi1, real s12,
|
773
|
+
unsigned caps = ALL) const;
|
774
|
+
|
775
|
+
/**
|
776
|
+
* Define a GeodesicLineExact in terms of the direct geodesic problem
|
777
|
+
* specified in terms of arc length.
|
778
|
+
*
|
779
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
780
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
781
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
782
|
+
* @param[in] a12 arc length between point 1 and point 2 (degrees); it can
|
783
|
+
* be negative.
|
784
|
+
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
|
785
|
+
* specifying the capabilities the GeodesicLineExact object should
|
786
|
+
* possess, i.e., which quantities can be returned in calls to
|
787
|
+
* GeodesicLineExact::Position.
|
788
|
+
* @return a GeodesicLineExact object.
|
789
|
+
*
|
790
|
+
* This function sets point 3 of the GeodesicLineExact to correspond to
|
791
|
+
* point 2 of the direct geodesic problem.
|
792
|
+
*
|
793
|
+
* \e lat1 should be in the range [−90°, 90°].
|
794
|
+
**********************************************************************/
|
795
|
+
GeodesicLineExact ArcDirectLine(real lat1, real lon1, real azi1, real a12,
|
796
|
+
unsigned caps = ALL) const;
|
797
|
+
|
798
|
+
/**
|
799
|
+
* Define a GeodesicLineExact in terms of the direct geodesic problem
|
800
|
+
* specified in terms of either distance or arc length.
|
801
|
+
*
|
802
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
803
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
804
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
805
|
+
* @param[in] arcmode boolean flag determining the meaning of the \e
|
806
|
+
* s12_a12.
|
807
|
+
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
|
808
|
+
* point 1 and point 2 (meters); otherwise it is the arc length between
|
809
|
+
* point 1 and point 2 (degrees); it can be negative.
|
810
|
+
* @param[in] caps bitor'ed combination of GeodesicExact::mask values
|
811
|
+
* specifying the capabilities the GeodesicLineExact object should
|
812
|
+
* possess, i.e., which quantities can be returned in calls to
|
813
|
+
* GeodesicLineExact::Position.
|
814
|
+
* @return a GeodesicLineExact object.
|
815
|
+
*
|
816
|
+
* This function sets point 3 of the GeodesicLineExact to correspond to
|
817
|
+
* point 2 of the direct geodesic problem.
|
818
|
+
*
|
819
|
+
* \e lat1 should be in the range [−90°, 90°].
|
820
|
+
**********************************************************************/
|
821
|
+
GeodesicLineExact GenDirectLine(real lat1, real lon1, real azi1,
|
822
|
+
bool arcmode, real s12_a12,
|
823
|
+
unsigned caps = ALL) const;
|
824
|
+
///@}
|
825
|
+
|
826
|
+
/** \name Inspector functions.
|
827
|
+
**********************************************************************/
|
828
|
+
///@{
|
829
|
+
|
830
|
+
/**
|
831
|
+
* @return \e a the equatorial radius of the ellipsoid (meters). This is
|
832
|
+
* the value used in the constructor.
|
833
|
+
**********************************************************************/
|
834
|
+
Math::real MajorRadius() const { return _a; }
|
835
|
+
|
836
|
+
/**
|
837
|
+
* @return \e f the flattening of the ellipsoid. This is the
|
838
|
+
* value used in the constructor.
|
839
|
+
**********************************************************************/
|
840
|
+
Math::real Flattening() const { return _f; }
|
841
|
+
|
842
|
+
/**
|
843
|
+
* @return total area of ellipsoid in meters<sup>2</sup>. The area of a
|
844
|
+
* polygon encircling a pole can be found by adding
|
845
|
+
* GeodesicExact::EllipsoidArea()/2 to the sum of \e S12 for each side of
|
846
|
+
* the polygon.
|
847
|
+
**********************************************************************/
|
848
|
+
Math::real EllipsoidArea() const
|
849
|
+
{ return 4 * Math::pi() * _c2; }
|
850
|
+
///@}
|
851
|
+
|
852
|
+
/**
|
853
|
+
* A global instantiation of GeodesicExact with the parameters for the WGS84
|
854
|
+
* ellipsoid.
|
855
|
+
**********************************************************************/
|
856
|
+
static const GeodesicExact& WGS84();
|
857
|
+
|
858
|
+
};
|
859
|
+
|
860
|
+
} // namespace GeographicLib
|
861
|
+
|
862
|
+
#endif // GEOGRAPHICLIB_GEODESICEXACT_HPP
|