geographiclib 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (87) hide show
  1. checksums.yaml +7 -0
  2. data/AUTHORS +12 -0
  3. data/LICENSE +24 -0
  4. data/ext/geographiclib/Accumulator.cpp +23 -0
  5. data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
  6. data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
  7. data/ext/geographiclib/CassiniSoldner.cpp +89 -0
  8. data/ext/geographiclib/CircularEngine.cpp +96 -0
  9. data/ext/geographiclib/DMS.cpp +381 -0
  10. data/ext/geographiclib/Ellipsoid.cpp +125 -0
  11. data/ext/geographiclib/EllipticFunction.cpp +512 -0
  12. data/ext/geographiclib/GARS.cpp +122 -0
  13. data/ext/geographiclib/GeoCoords.cpp +175 -0
  14. data/ext/geographiclib/Geocentric.cpp +172 -0
  15. data/ext/geographiclib/Geodesic.cpp +1908 -0
  16. data/ext/geographiclib/GeodesicExact.cpp +927 -0
  17. data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
  18. data/ext/geographiclib/GeodesicLine.cpp +321 -0
  19. data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
  20. data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
  21. data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
  22. data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
  23. data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
  24. data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
  25. data/ext/geographiclib/GeographicLib/Config.h +12 -0
  26. data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
  27. data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
  28. data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
  29. data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
  30. data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
  31. data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
  32. data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
  33. data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
  34. data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
  35. data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
  36. data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
  37. data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
  38. data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
  39. data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
  40. data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
  41. data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
  42. data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
  43. data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
  44. data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
  45. data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
  46. data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
  47. data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
  48. data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
  49. data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
  50. data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
  51. data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
  52. data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
  53. data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
  54. data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
  55. data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
  56. data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
  57. data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
  58. data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
  59. data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
  60. data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
  61. data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
  62. data/ext/geographiclib/Geohash.cpp +102 -0
  63. data/ext/geographiclib/Geoid.cpp +509 -0
  64. data/ext/geographiclib/Georef.cpp +135 -0
  65. data/ext/geographiclib/Gnomonic.cpp +85 -0
  66. data/ext/geographiclib/GravityCircle.cpp +129 -0
  67. data/ext/geographiclib/GravityModel.cpp +360 -0
  68. data/ext/geographiclib/LambertConformalConic.cpp +456 -0
  69. data/ext/geographiclib/LocalCartesian.cpp +62 -0
  70. data/ext/geographiclib/MGRS.cpp +461 -0
  71. data/ext/geographiclib/MagneticCircle.cpp +52 -0
  72. data/ext/geographiclib/MagneticModel.cpp +269 -0
  73. data/ext/geographiclib/Math.cpp +63 -0
  74. data/ext/geographiclib/NormalGravity.cpp +262 -0
  75. data/ext/geographiclib/OSGB.cpp +167 -0
  76. data/ext/geographiclib/PolarStereographic.cpp +108 -0
  77. data/ext/geographiclib/PolygonArea.cpp +204 -0
  78. data/ext/geographiclib/Rhumb.cpp +383 -0
  79. data/ext/geographiclib/SphericalEngine.cpp +477 -0
  80. data/ext/geographiclib/TransverseMercator.cpp +603 -0
  81. data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
  82. data/ext/geographiclib/UTMUPS.cpp +296 -0
  83. data/ext/geographiclib/Utility.cpp +61 -0
  84. data/ext/geographiclib/extconf.rb +3 -0
  85. data/ext/geographiclib/geographiclib.cpp +62 -0
  86. data/lib/geographiclib.rb +20 -0
  87. metadata +140 -0
@@ -0,0 +1,667 @@
1
+ /**
2
+ * \file GeodesicLineExact.hpp
3
+ * \brief Header for GeographicLib::GeodesicLineExact class
4
+ *
5
+ * Copyright (c) Charles Karney (2012-2016) <charles@karney.com> and licensed
6
+ * under the MIT/X11 License. For more information, see
7
+ * http://geographiclib.sourceforge.net/
8
+ **********************************************************************/
9
+
10
+ #if !defined(GEOGRAPHICLIB_GEODESICLINEEXACT_HPP)
11
+ #define GEOGRAPHICLIB_GEODESICLINEEXACT_HPP 1
12
+
13
+ #include <GeographicLib/Constants.hpp>
14
+ #include <GeographicLib/GeodesicExact.hpp>
15
+ #include <GeographicLib/EllipticFunction.hpp>
16
+
17
+ namespace GeographicLib {
18
+
19
+ /**
20
+ * \brief An exact geodesic line
21
+ *
22
+ * GeodesicLineExact facilitates the determination of a series of points on a
23
+ * single geodesic. This is a companion to the GeodesicExact class. For
24
+ * additional information on this class see the documentation on the
25
+ * GeodesicLine class.
26
+ *
27
+ * Example of use:
28
+ * \include example-GeodesicLineExact.cpp
29
+ *
30
+ * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
31
+ * providing access to the functionality of GeodesicExact and
32
+ * GeodesicLineExact (via the -E option).
33
+ **********************************************************************/
34
+
35
+ class GEOGRAPHICLIB_EXPORT GeodesicLineExact {
36
+ private:
37
+ typedef Math::real real;
38
+ friend class GeodesicExact;
39
+ static const int nC4_ = GeodesicExact::nC4_;
40
+
41
+ real tiny_;
42
+ real _lat1, _lon1, _azi1;
43
+ real _a, _f, _b, _c2, _f1, _e2, _salp0, _calp0, _k2,
44
+ _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1,
45
+ _somg1, _comg1, _cchi1,
46
+ _A4, _B41, _E0, _D0, _H0, _E1, _D1, _H1;
47
+ real _a13, _s13;
48
+ real _C4a[nC4_]; // all the elements of _C4a are used
49
+ EllipticFunction _E;
50
+ unsigned _caps;
51
+
52
+ void LineInit(const GeodesicExact& g,
53
+ real lat1, real lon1,
54
+ real azi1, real salp1, real calp1,
55
+ unsigned caps);
56
+ GeodesicLineExact(const GeodesicExact& g,
57
+ real lat1, real lon1,
58
+ real azi1, real salp1, real calp1,
59
+ unsigned caps, bool arcmode, real s13_a13);
60
+
61
+ enum captype {
62
+ CAP_NONE = GeodesicExact::CAP_NONE,
63
+ CAP_E = GeodesicExact::CAP_E,
64
+ CAP_D = GeodesicExact::CAP_D,
65
+ CAP_H = GeodesicExact::CAP_H,
66
+ CAP_C4 = GeodesicExact::CAP_C4,
67
+ CAP_ALL = GeodesicExact::CAP_ALL,
68
+ CAP_MASK = GeodesicExact::CAP_MASK,
69
+ OUT_ALL = GeodesicExact::OUT_ALL,
70
+ OUT_MASK = GeodesicExact::OUT_MASK,
71
+ };
72
+ public:
73
+
74
+ /**
75
+ * Bit masks for what calculations to do. They signify to the
76
+ * GeodesicLineExact::GeodesicLineExact constructor and to
77
+ * GeodesicExact::Line what capabilities should be included in the
78
+ * GeodesicLineExact object. This is merely a duplication of
79
+ * GeodesicExact::mask.
80
+ **********************************************************************/
81
+ enum mask {
82
+ /**
83
+ * No capabilities, no output.
84
+ * @hideinitializer
85
+ **********************************************************************/
86
+ NONE = GeodesicExact::NONE,
87
+ /**
88
+ * Calculate latitude \e lat2. (It's not necessary to include this as a
89
+ * capability to GeodesicLineExact because this is included by default.)
90
+ * @hideinitializer
91
+ **********************************************************************/
92
+ LATITUDE = GeodesicExact::LATITUDE,
93
+ /**
94
+ * Calculate longitude \e lon2.
95
+ * @hideinitializer
96
+ **********************************************************************/
97
+ LONGITUDE = GeodesicExact::LONGITUDE,
98
+ /**
99
+ * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
100
+ * include this as a capability to GeodesicLineExact because this is
101
+ * included by default.)
102
+ * @hideinitializer
103
+ **********************************************************************/
104
+ AZIMUTH = GeodesicExact::AZIMUTH,
105
+ /**
106
+ * Calculate distance \e s12.
107
+ * @hideinitializer
108
+ **********************************************************************/
109
+ DISTANCE = GeodesicExact::DISTANCE,
110
+ /**
111
+ * Allow distance \e s12 to be used as input in the direct geodesic
112
+ * problem.
113
+ * @hideinitializer
114
+ **********************************************************************/
115
+ DISTANCE_IN = GeodesicExact::DISTANCE_IN,
116
+ /**
117
+ * Calculate reduced length \e m12.
118
+ * @hideinitializer
119
+ **********************************************************************/
120
+ REDUCEDLENGTH = GeodesicExact::REDUCEDLENGTH,
121
+ /**
122
+ * Calculate geodesic scales \e M12 and \e M21.
123
+ * @hideinitializer
124
+ **********************************************************************/
125
+ GEODESICSCALE = GeodesicExact::GEODESICSCALE,
126
+ /**
127
+ * Calculate area \e S12.
128
+ * @hideinitializer
129
+ **********************************************************************/
130
+ AREA = GeodesicExact::AREA,
131
+ /**
132
+ * Unroll \e lon2 in the direct calculation.
133
+ * @hideinitializer
134
+ **********************************************************************/
135
+ LONG_UNROLL = GeodesicExact::LONG_UNROLL,
136
+ /**
137
+ * All capabilities, calculate everything. (LONG_UNROLL is not
138
+ * included in this mask.)
139
+ * @hideinitializer
140
+ **********************************************************************/
141
+ ALL = GeodesicExact::ALL,
142
+ };
143
+
144
+ /** \name Constructors
145
+ **********************************************************************/
146
+ ///@{
147
+
148
+ /**
149
+ * Constructor for a geodesic line staring at latitude \e lat1, longitude
150
+ * \e lon1, and azimuth \e azi1 (all in degrees).
151
+ *
152
+ * @param[in] g A GeodesicExact object used to compute the necessary
153
+ * information about the GeodesicLineExact.
154
+ * @param[in] lat1 latitude of point 1 (degrees).
155
+ * @param[in] lon1 longitude of point 1 (degrees).
156
+ * @param[in] azi1 azimuth at point 1 (degrees).
157
+ * @param[in] caps bitor'ed combination of GeodesicLineExact::mask values
158
+ * specifying the capabilities the GeodesicLineExact object should
159
+ * possess, i.e., which quantities can be returned in calls to
160
+ * GeodesicLine::Position.
161
+ *
162
+ * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
163
+ *
164
+ * The GeodesicLineExact::mask values are
165
+ * - \e caps |= GeodesicLineExact::LATITUDE for the latitude \e lat2; this
166
+ * is added automatically;
167
+ * - \e caps |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
168
+ * - \e caps |= GeodesicLineExact::AZIMUTH for the latitude \e azi2; this is
169
+ * added automatically;
170
+ * - \e caps |= GeodesicLineExact::DISTANCE for the distance \e s12;
171
+ * - \e caps |= GeodesicLineExact::REDUCEDLENGTH for the reduced length \e
172
+ m12;
173
+ * - \e caps |= GeodesicLineExact::GEODESICSCALE for the geodesic scales \e
174
+ * M12 and \e M21;
175
+ * - \e caps |= GeodesicLineExact::AREA for the area \e S12;
176
+ * - \e caps |= GeodesicLineExact::DISTANCE_IN permits the length of the
177
+ * geodesic to be given in terms of \e s12; without this capability the
178
+ * length can only be specified in terms of arc length;
179
+ * - \e caps |= GeodesicLineExact::ALL for all of the above.
180
+ * .
181
+ * The default value of \e caps is GeodesicLineExact::ALL.
182
+ *
183
+ * If the point is at a pole, the azimuth is defined by keeping \e lon1
184
+ * fixed, writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;), and taking
185
+ * the limit &epsilon; &rarr; 0+.
186
+ **********************************************************************/
187
+ GeodesicLineExact(const GeodesicExact& g, real lat1, real lon1, real azi1,
188
+ unsigned caps = ALL);
189
+
190
+ /**
191
+ * A default constructor. If GeodesicLineExact::Position is called on the
192
+ * resulting object, it returns immediately (without doing any
193
+ * calculations). The object can be set with a call to
194
+ * GeodesicExact::Line. Use Init() to test whether object is still in this
195
+ * uninitialized state.
196
+ **********************************************************************/
197
+ GeodesicLineExact() : _caps(0U) {}
198
+ ///@}
199
+
200
+ /** \name Position in terms of distance
201
+ **********************************************************************/
202
+ ///@{
203
+
204
+ /**
205
+ * Compute the position of point 2 which is a distance \e s12 (meters)
206
+ * from point 1.
207
+ *
208
+ * @param[in] s12 distance from point 1 to point 2 (meters); it can be
209
+ * signed.
210
+ * @param[out] lat2 latitude of point 2 (degrees).
211
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
212
+ * GeodesicLineExact object was constructed with \e caps |=
213
+ * GeodesicLineExact::LONGITUDE.
214
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
215
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
216
+ * GeodesicLineExact object was constructed with \e caps |=
217
+ * GeodesicLineExact::REDUCEDLENGTH.
218
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
219
+ * (dimensionless); requires that the GeodesicLineExact object was
220
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
221
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
222
+ * (dimensionless); requires that the GeodesicLineExact object was
223
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
224
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
225
+ * that the GeodesicLineExact object was constructed with \e caps |=
226
+ * GeodesicLineExact::AREA.
227
+ * @return \e a12 arc length from point 1 to point 2 (degrees).
228
+ *
229
+ * The values of \e lon2 and \e azi2 returned are in the range
230
+ * [&minus;180&deg;, 180&deg;).
231
+ *
232
+ * The GeodesicLineExact object \e must have been constructed with \e caps
233
+ * |= GeodesicLineExact::DISTANCE_IN; otherwise Math::NaN() is returned and
234
+ * no parameters are set. Requesting a value which the GeodesicLineExact
235
+ * object is not capable of computing is not an error; the corresponding
236
+ * argument will not be altered.
237
+ *
238
+ * The following functions are overloaded versions of
239
+ * GeodesicLineExact::Position which omit some of the output parameters.
240
+ * Note, however, that the arc length is always computed and returned as
241
+ * the function value.
242
+ **********************************************************************/
243
+ Math::real Position(real s12,
244
+ real& lat2, real& lon2, real& azi2,
245
+ real& m12, real& M12, real& M21,
246
+ real& S12) const {
247
+ real t;
248
+ return GenPosition(false, s12,
249
+ LATITUDE | LONGITUDE | AZIMUTH |
250
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
251
+ lat2, lon2, azi2, t, m12, M12, M21, S12);
252
+ }
253
+
254
+ /**
255
+ * See the documentation for GeodesicLineExact::Position.
256
+ **********************************************************************/
257
+ Math::real Position(real s12, real& lat2, real& lon2) const {
258
+ real t;
259
+ return GenPosition(false, s12,
260
+ LATITUDE | LONGITUDE,
261
+ lat2, lon2, t, t, t, t, t, t);
262
+ }
263
+
264
+ /**
265
+ * See the documentation for GeodesicLineExact::Position.
266
+ **********************************************************************/
267
+ Math::real Position(real s12, real& lat2, real& lon2,
268
+ real& azi2) const {
269
+ real t;
270
+ return GenPosition(false, s12,
271
+ LATITUDE | LONGITUDE | AZIMUTH,
272
+ lat2, lon2, azi2, t, t, t, t, t);
273
+ }
274
+
275
+ /**
276
+ * See the documentation for GeodesicLineExact::Position.
277
+ **********************************************************************/
278
+ Math::real Position(real s12, real& lat2, real& lon2,
279
+ real& azi2, real& m12) const {
280
+ real t;
281
+ return GenPosition(false, s12,
282
+ LATITUDE | LONGITUDE |
283
+ AZIMUTH | REDUCEDLENGTH,
284
+ lat2, lon2, azi2, t, m12, t, t, t);
285
+ }
286
+
287
+ /**
288
+ * See the documentation for GeodesicLineExact::Position.
289
+ **********************************************************************/
290
+ Math::real Position(real s12, real& lat2, real& lon2,
291
+ real& azi2, real& M12, real& M21)
292
+ const {
293
+ real t;
294
+ return GenPosition(false, s12,
295
+ LATITUDE | LONGITUDE |
296
+ AZIMUTH | GEODESICSCALE,
297
+ lat2, lon2, azi2, t, t, M12, M21, t);
298
+ }
299
+
300
+ /**
301
+ * See the documentation for GeodesicLineExact::Position.
302
+ **********************************************************************/
303
+ Math::real Position(real s12,
304
+ real& lat2, real& lon2, real& azi2,
305
+ real& m12, real& M12, real& M21)
306
+ const {
307
+ real t;
308
+ return GenPosition(false, s12,
309
+ LATITUDE | LONGITUDE | AZIMUTH |
310
+ REDUCEDLENGTH | GEODESICSCALE,
311
+ lat2, lon2, azi2, t, m12, M12, M21, t);
312
+ }
313
+ ///@}
314
+
315
+ /** \name Position in terms of arc length
316
+ **********************************************************************/
317
+ ///@{
318
+
319
+ /**
320
+ * Compute the position of point 2 which is an arc length \e a12 (degrees)
321
+ * from point 1.
322
+ *
323
+ * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
324
+ * be signed.
325
+ * @param[out] lat2 latitude of point 2 (degrees).
326
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
327
+ * GeodesicLineExact object was constructed with \e caps |=
328
+ * GeodesicLineExact::LONGITUDE.
329
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
330
+ * @param[out] s12 distance from point 1 to point 2 (meters); requires
331
+ * that the GeodesicLineExact object was constructed with \e caps |=
332
+ * GeodesicLineExact::DISTANCE.
333
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
334
+ * GeodesicLineExact object was constructed with \e caps |=
335
+ * GeodesicLineExact::REDUCEDLENGTH.
336
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
337
+ * (dimensionless); requires that the GeodesicLineExact object was
338
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
339
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
340
+ * (dimensionless); requires that the GeodesicLineExact object was
341
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
342
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
343
+ * that the GeodesicLineExact object was constructed with \e caps |=
344
+ * GeodesicLineExact::AREA.
345
+ *
346
+ * The values of \e lon2 and \e azi2 returned are in the range
347
+ * [&minus;180&deg;, 180&deg;).
348
+ *
349
+ * Requesting a value which the GeodesicLineExact object is not capable of
350
+ * computing is not an error; the corresponding argument will not be
351
+ * altered.
352
+ *
353
+ * The following functions are overloaded versions of
354
+ * GeodesicLineExact::ArcPosition which omit some of the output parameters.
355
+ **********************************************************************/
356
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
357
+ real& s12, real& m12, real& M12, real& M21,
358
+ real& S12) const {
359
+ GenPosition(true, a12,
360
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
361
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
362
+ lat2, lon2, azi2, s12, m12, M12, M21, S12);
363
+ }
364
+
365
+ /**
366
+ * See the documentation for GeodesicLineExact::ArcPosition.
367
+ **********************************************************************/
368
+ void ArcPosition(real a12, real& lat2, real& lon2)
369
+ const {
370
+ real t;
371
+ GenPosition(true, a12,
372
+ LATITUDE | LONGITUDE,
373
+ lat2, lon2, t, t, t, t, t, t);
374
+ }
375
+
376
+ /**
377
+ * See the documentation for GeodesicLineExact::ArcPosition.
378
+ **********************************************************************/
379
+ void ArcPosition(real a12,
380
+ real& lat2, real& lon2, real& azi2)
381
+ const {
382
+ real t;
383
+ GenPosition(true, a12,
384
+ LATITUDE | LONGITUDE | AZIMUTH,
385
+ lat2, lon2, azi2, t, t, t, t, t);
386
+ }
387
+
388
+ /**
389
+ * See the documentation for GeodesicLineExact::ArcPosition.
390
+ **********************************************************************/
391
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
392
+ real& s12) const {
393
+ real t;
394
+ GenPosition(true, a12,
395
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
396
+ lat2, lon2, azi2, s12, t, t, t, t);
397
+ }
398
+
399
+ /**
400
+ * See the documentation for GeodesicLineExact::ArcPosition.
401
+ **********************************************************************/
402
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
403
+ real& s12, real& m12) const {
404
+ real t;
405
+ GenPosition(true, a12,
406
+ LATITUDE | LONGITUDE | AZIMUTH |
407
+ DISTANCE | REDUCEDLENGTH,
408
+ lat2, lon2, azi2, s12, m12, t, t, t);
409
+ }
410
+
411
+ /**
412
+ * See the documentation for GeodesicLineExact::ArcPosition.
413
+ **********************************************************************/
414
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
415
+ real& s12, real& M12, real& M21)
416
+ const {
417
+ real t;
418
+ GenPosition(true, a12,
419
+ LATITUDE | LONGITUDE | AZIMUTH |
420
+ DISTANCE | GEODESICSCALE,
421
+ lat2, lon2, azi2, s12, t, M12, M21, t);
422
+ }
423
+
424
+ /**
425
+ * See the documentation for GeodesicLineExact::ArcPosition.
426
+ **********************************************************************/
427
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
428
+ real& s12, real& m12, real& M12, real& M21)
429
+ const {
430
+ real t;
431
+ GenPosition(true, a12,
432
+ LATITUDE | LONGITUDE | AZIMUTH |
433
+ DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
434
+ lat2, lon2, azi2, s12, m12, M12, M21, t);
435
+ }
436
+ ///@}
437
+
438
+ /** \name The general position function.
439
+ **********************************************************************/
440
+ ///@{
441
+
442
+ /**
443
+ * The general position function. GeodesicLineExact::Position and
444
+ * GeodesicLineExact::ArcPosition are defined in terms of this function.
445
+ *
446
+ * @param[in] arcmode boolean flag determining the meaning of the second
447
+ * parameter; if \e arcmode is false, then the GeodesicLineExact object
448
+ * must have been constructed with \e caps |=
449
+ * GeodesicLineExact::DISTANCE_IN.
450
+ * @param[in] s12_a12 if \e arcmode is false, this is the distance between
451
+ * point 1 and point 2 (meters); otherwise it is the arc length between
452
+ * point 1 and point 2 (degrees); it can be signed.
453
+ * @param[in] outmask a bitor'ed combination of GeodesicLineExact::mask
454
+ * values specifying which of the following parameters should be set.
455
+ * @param[out] lat2 latitude of point 2 (degrees).
456
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
457
+ * GeodesicLineExact object was constructed with \e caps |=
458
+ * GeodesicLineExact::LONGITUDE.
459
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
460
+ * @param[out] s12 distance from point 1 to point 2 (meters); requires
461
+ * that the GeodesicLineExact object was constructed with \e caps |=
462
+ * GeodesicLineExact::DISTANCE.
463
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
464
+ * GeodesicLineExact object was constructed with \e caps |=
465
+ * GeodesicLineExact::REDUCEDLENGTH.
466
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
467
+ * (dimensionless); requires that the GeodesicLineExact object was
468
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
469
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
470
+ * (dimensionless); requires that the GeodesicLineExact object was
471
+ * constructed with \e caps |= GeodesicLineExact::GEODESICSCALE.
472
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
473
+ * that the GeodesicLineExact object was constructed with \e caps |=
474
+ * GeodesicLineExact::AREA.
475
+ * @return \e a12 arc length from point 1 to point 2 (degrees).
476
+ *
477
+ * The GeodesicLineExact::mask values possible for \e outmask are
478
+ * - \e outmask |= GeodesicLineExact::LATITUDE for the latitude \e lat2;
479
+ * - \e outmask |= GeodesicLineExact::LONGITUDE for the latitude \e lon2;
480
+ * - \e outmask |= GeodesicLineExact::AZIMUTH for the latitude \e azi2;
481
+ * - \e outmask |= GeodesicLineExact::DISTANCE for the distance \e s12;
482
+ * - \e outmask |= GeodesicLineExact::REDUCEDLENGTH for the reduced length
483
+ * \e m12;
484
+ * - \e outmask |= GeodesicLineExact::GEODESICSCALE for the geodesic scales
485
+ * \e M12 and \e M21;
486
+ * - \e outmask |= GeodesicLineExact::AREA for the area \e S12;
487
+ * - \e outmask |= GeodesicLineExact::ALL for all of the above;
488
+ * - \e outmask |= GeodesicLineExact::LONG_UNROLL to unroll \e lon2 instead
489
+ * of wrapping it into the range [&minus;180&deg;, 180&deg;).
490
+ * .
491
+ * Requesting a value which the GeodesicLineExact object is not capable of
492
+ * computing is not an error; the corresponding argument will not be
493
+ * altered. Note, however, that the arc length is always computed and
494
+ * returned as the function value.
495
+ *
496
+ * With the GeodesicLineExact::LONG_UNROLL bit set, the quantity \e lon2
497
+ * &minus; \e lon1 indicates how many times and in what sense the geodesic
498
+ * encircles the ellipsoid.
499
+ **********************************************************************/
500
+ Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
501
+ real& lat2, real& lon2, real& azi2,
502
+ real& s12, real& m12, real& M12, real& M21,
503
+ real& S12) const;
504
+ ///@}
505
+
506
+ /** \name Setting point 3
507
+ **********************************************************************/
508
+ ///@{
509
+
510
+ /**
511
+ * Specify position of point 3 in terms of distance.
512
+ *
513
+ * @param[in] s13 the distance from point 1 to point 3 (meters); it
514
+ * can be negative.
515
+ *
516
+ * This is only useful if the GeodesicLineExact object has been constructed
517
+ * with \e caps |= GeodesicLineExact::DISTANCE_IN.
518
+ **********************************************************************/
519
+ void SetDistance(real s13);
520
+
521
+ /**
522
+ * Specify position of point 3 in terms of arc length.
523
+ *
524
+ * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
525
+ * can be negative.
526
+ *
527
+ * The distance \e s13 is only set if the GeodesicLineExact object has been
528
+ * constructed with \e caps |= GeodesicLineExact::DISTANCE.
529
+ **********************************************************************/
530
+ void SetArc(real a13);
531
+
532
+ /**
533
+ * Specify position of point 3 in terms of either distance or arc length.
534
+ *
535
+ * @param[in] arcmode boolean flag determining the meaning of the second
536
+ * parameter; if \e arcmode is false, then the GeodesicLineExact object
537
+ * must have been constructed with \e caps |=
538
+ * GeodesicLineExact::DISTANCE_IN.
539
+ * @param[in] s13_a13 if \e arcmode is false, this is the distance from
540
+ * point 1 to point 3 (meters); otherwise it is the arc length from
541
+ * point 1 to point 3 (degrees); it can be negative.
542
+ **********************************************************************/
543
+ void GenSetDistance(bool arcmode, real s13_a13);
544
+
545
+ /** \name Inspector functions
546
+ **********************************************************************/
547
+ ///@{
548
+
549
+ /**
550
+ * @return true if the object has been initialized.
551
+ **********************************************************************/
552
+ bool Init() const { return _caps != 0U; }
553
+
554
+ /**
555
+ * @return \e lat1 the latitude of point 1 (degrees).
556
+ **********************************************************************/
557
+ Math::real Latitude() const
558
+ { return Init() ? _lat1 : Math::NaN(); }
559
+
560
+ /**
561
+ * @return \e lon1 the longitude of point 1 (degrees).
562
+ **********************************************************************/
563
+ Math::real Longitude() const
564
+ { return Init() ? _lon1 : Math::NaN(); }
565
+
566
+ /**
567
+ * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
568
+ **********************************************************************/
569
+ Math::real Azimuth() const
570
+ { return Init() ? _azi1 : Math::NaN(); }
571
+
572
+ /**
573
+ * The sine and cosine of \e azi1.
574
+ *
575
+ * @param[out] sazi1 the sine of \e azi1.
576
+ * @param[out] cazi1 the cosine of \e azi1.
577
+ **********************************************************************/
578
+ void Azimuth(real& sazi1, real& cazi1) const
579
+ { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
580
+
581
+ /**
582
+ * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
583
+ * the equator in a northward direction.
584
+ *
585
+ * The result lies in [&minus;90&deg;, 90&deg;].
586
+ **********************************************************************/
587
+ Math::real EquatorialAzimuth() const
588
+ { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
589
+
590
+ /**
591
+ * The sine and cosine of \e azi0.
592
+ *
593
+ * @param[out] sazi0 the sine of \e azi0.
594
+ * @param[out] cazi0 the cosine of \e azi0.
595
+ **********************************************************************/
596
+ void EquatorialAzimuth(real& sazi0, real& cazi0) const
597
+ { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
598
+
599
+ /**
600
+ * @return \e a1 the arc length (degrees) between the northward equatorial
601
+ * crossing and point 1.
602
+ *
603
+ * The result lies in (&minus;180&deg;, 180&deg;].
604
+ **********************************************************************/
605
+ Math::real EquatorialArc() const {
606
+ using std::atan2;
607
+ return Init() ? atan2(_ssig1, _csig1) / Math::degree() : Math::NaN();
608
+ }
609
+
610
+ /**
611
+ * @return \e a the equatorial radius of the ellipsoid (meters). This is
612
+ * the value inherited from the GeodesicExact object used in the
613
+ * constructor.
614
+ **********************************************************************/
615
+ Math::real MajorRadius() const
616
+ { return Init() ? _a : Math::NaN(); }
617
+
618
+ /**
619
+ * @return \e f the flattening of the ellipsoid. This is the value
620
+ * inherited from the GeodesicExact object used in the constructor.
621
+ **********************************************************************/
622
+ Math::real Flattening() const
623
+ { return Init() ? _f : Math::NaN(); }
624
+
625
+ /**
626
+ * @return \e caps the computational capabilities that this object was
627
+ * constructed with. LATITUDE and AZIMUTH are always included.
628
+ **********************************************************************/
629
+ unsigned Capabilities() const { return _caps; }
630
+
631
+ /**
632
+ * Test what capabilities are available.
633
+ *
634
+ * @param[in] testcaps a set of bitor'ed GeodesicLineExact::mask values.
635
+ * @return true if the GeodesicLineExact object has all these capabilities.
636
+ **********************************************************************/
637
+ bool Capabilities(unsigned testcaps) const {
638
+ testcaps &= OUT_ALL;
639
+ return (_caps & testcaps) == testcaps;
640
+ }
641
+
642
+ /**
643
+ * The distance or arc length to point 3.
644
+ *
645
+ * @param[in] arcmode boolean flag determining the meaning of returned
646
+ * value.
647
+ * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
648
+ **********************************************************************/
649
+ Math::real GenDistance(bool arcmode) const
650
+ { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
651
+
652
+ /**
653
+ * @return \e s13, the distance to point 3 (meters).
654
+ **********************************************************************/
655
+ Math::real Distance() const { return GenDistance(false); }
656
+
657
+ /**
658
+ * @return \e a13, the arc length to point 3 (degrees).
659
+ **********************************************************************/
660
+ Math::real Arc() const { return GenDistance(true); }
661
+ ///@}
662
+
663
+ };
664
+
665
+ } // namespace GeographicLib
666
+
667
+ #endif // GEOGRAPHICLIB_GEODESICLINEEXACT_HPP