geographiclib 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/AUTHORS +12 -0
- data/LICENSE +24 -0
- data/ext/geographiclib/Accumulator.cpp +23 -0
- data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
- data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
- data/ext/geographiclib/CassiniSoldner.cpp +89 -0
- data/ext/geographiclib/CircularEngine.cpp +96 -0
- data/ext/geographiclib/DMS.cpp +381 -0
- data/ext/geographiclib/Ellipsoid.cpp +125 -0
- data/ext/geographiclib/EllipticFunction.cpp +512 -0
- data/ext/geographiclib/GARS.cpp +122 -0
- data/ext/geographiclib/GeoCoords.cpp +175 -0
- data/ext/geographiclib/Geocentric.cpp +172 -0
- data/ext/geographiclib/Geodesic.cpp +1908 -0
- data/ext/geographiclib/GeodesicExact.cpp +927 -0
- data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
- data/ext/geographiclib/GeodesicLine.cpp +321 -0
- data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
- data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
- data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
- data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
- data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
- data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
- data/ext/geographiclib/GeographicLib/Config.h +12 -0
- data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
- data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
- data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
- data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
- data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
- data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
- data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
- data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
- data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
- data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
- data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
- data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
- data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
- data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
- data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
- data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
- data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
- data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
- data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
- data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
- data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
- data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
- data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
- data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
- data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
- data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
- data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
- data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
- data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
- data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
- data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
- data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
- data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
- data/ext/geographiclib/Geohash.cpp +102 -0
- data/ext/geographiclib/Geoid.cpp +509 -0
- data/ext/geographiclib/Georef.cpp +135 -0
- data/ext/geographiclib/Gnomonic.cpp +85 -0
- data/ext/geographiclib/GravityCircle.cpp +129 -0
- data/ext/geographiclib/GravityModel.cpp +360 -0
- data/ext/geographiclib/LambertConformalConic.cpp +456 -0
- data/ext/geographiclib/LocalCartesian.cpp +62 -0
- data/ext/geographiclib/MGRS.cpp +461 -0
- data/ext/geographiclib/MagneticCircle.cpp +52 -0
- data/ext/geographiclib/MagneticModel.cpp +269 -0
- data/ext/geographiclib/Math.cpp +63 -0
- data/ext/geographiclib/NormalGravity.cpp +262 -0
- data/ext/geographiclib/OSGB.cpp +167 -0
- data/ext/geographiclib/PolarStereographic.cpp +108 -0
- data/ext/geographiclib/PolygonArea.cpp +204 -0
- data/ext/geographiclib/Rhumb.cpp +383 -0
- data/ext/geographiclib/SphericalEngine.cpp +477 -0
- data/ext/geographiclib/TransverseMercator.cpp +603 -0
- data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
- data/ext/geographiclib/UTMUPS.cpp +296 -0
- data/ext/geographiclib/Utility.cpp +61 -0
- data/ext/geographiclib/extconf.rb +3 -0
- data/ext/geographiclib/geographiclib.cpp +62 -0
- data/lib/geographiclib.rb +20 -0
- metadata +140 -0
@@ -0,0 +1,701 @@
|
|
1
|
+
/**
|
2
|
+
* \file GeodesicLine.hpp
|
3
|
+
* \brief Header for GeographicLib::GeodesicLine class
|
4
|
+
*
|
5
|
+
* Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
|
6
|
+
* under the MIT/X11 License. For more information, see
|
7
|
+
* http://geographiclib.sourceforge.net/
|
8
|
+
**********************************************************************/
|
9
|
+
|
10
|
+
#if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP)
|
11
|
+
#define GEOGRAPHICLIB_GEODESICLINE_HPP 1
|
12
|
+
|
13
|
+
#include <GeographicLib/Constants.hpp>
|
14
|
+
#include <GeographicLib/Geodesic.hpp>
|
15
|
+
|
16
|
+
namespace GeographicLib {
|
17
|
+
|
18
|
+
/**
|
19
|
+
* \brief A geodesic line
|
20
|
+
*
|
21
|
+
* GeodesicLine facilitates the determination of a series of points on a
|
22
|
+
* single geodesic. The starting point (\e lat1, \e lon1) and the azimuth \e
|
23
|
+
* azi1 are specified in the constructor; alternatively, the Geodesic::Line
|
24
|
+
* method can be used to create a GeodesicLine. GeodesicLine.Position
|
25
|
+
* returns the location of point 2 a distance \e s12 along the geodesic. In
|
26
|
+
* addition, GeodesicLine.ArcPosition gives the position of point 2 an arc
|
27
|
+
* length \e a12 along the geodesic.
|
28
|
+
*
|
29
|
+
* You can register the position of a reference point 3 a distance (arc
|
30
|
+
* length), \e s13 (\e a13) along the geodesic with the
|
31
|
+
* GeodesicLine.SetDistance (GeodesicLine.SetArc) functions. Points a
|
32
|
+
* fractional distance along the line can be found by providing, for example,
|
33
|
+
* 0.5 * Distance() as an argument to GeodesicLine.Position. The
|
34
|
+
* Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine
|
35
|
+
* objects with point 3 set to the point 2 of the corresponding geodesic
|
36
|
+
* problem. GeodesicLine objects created with the public constructor or with
|
37
|
+
* Geodesic::Line have \e s13 and \e a13 set to NaNs.
|
38
|
+
*
|
39
|
+
* The default copy constructor and assignment operators work with this
|
40
|
+
* class. Similarly, a vector can be used to hold GeodesicLine objects.
|
41
|
+
*
|
42
|
+
* The calculations are accurate to better than 15 nm (15 nanometers). See
|
43
|
+
* Sec. 9 of
|
44
|
+
* <a href="http://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
|
45
|
+
* details. The algorithms used by this class are based on series expansions
|
46
|
+
* using the flattening \e f as a small parameter. These are only accurate
|
47
|
+
* for |<i>f</i>| < 0.02; however reasonably accurate results will be
|
48
|
+
* obtained for |<i>f</i>| < 0.2. For very eccentric ellipsoids, use
|
49
|
+
* GeodesicLineExact instead.
|
50
|
+
*
|
51
|
+
* The algorithms are described in
|
52
|
+
* - C. F. F. Karney,
|
53
|
+
* <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
|
54
|
+
* Algorithms for geodesics</a>,
|
55
|
+
* J. Geodesy <b>87</b>, 43--55 (2013);
|
56
|
+
* DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
|
57
|
+
* 10.1007/s00190-012-0578-z</a>;
|
58
|
+
* addenda: <a href="http://geographiclib.sourceforge.net/geod-addenda.html">
|
59
|
+
* geod-addenda.html</a>.
|
60
|
+
* .
|
61
|
+
* For more information on geodesics see \ref geodesic.
|
62
|
+
*
|
63
|
+
* Example of use:
|
64
|
+
* \include example-GeodesicLine.cpp
|
65
|
+
*
|
66
|
+
* <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
|
67
|
+
* providing access to the functionality of Geodesic and GeodesicLine.
|
68
|
+
**********************************************************************/
|
69
|
+
|
70
|
+
class GEOGRAPHICLIB_EXPORT GeodesicLine {
|
71
|
+
private:
|
72
|
+
typedef Math::real real;
|
73
|
+
friend class Geodesic;
|
74
|
+
static const int nC1_ = Geodesic::nC1_;
|
75
|
+
static const int nC1p_ = Geodesic::nC1p_;
|
76
|
+
static const int nC2_ = Geodesic::nC2_;
|
77
|
+
static const int nC3_ = Geodesic::nC3_;
|
78
|
+
static const int nC4_ = Geodesic::nC4_;
|
79
|
+
|
80
|
+
real tiny_;
|
81
|
+
real _lat1, _lon1, _azi1;
|
82
|
+
real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
|
83
|
+
_salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1,
|
84
|
+
_A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
|
85
|
+
real _a13, _s13;
|
86
|
+
// index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
|
87
|
+
real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
|
88
|
+
_C4a[nC4_]; // all the elements of _C4a are used
|
89
|
+
unsigned _caps;
|
90
|
+
|
91
|
+
void LineInit(const Geodesic& g,
|
92
|
+
real lat1, real lon1,
|
93
|
+
real azi1, real salp1, real calp1,
|
94
|
+
unsigned caps);
|
95
|
+
GeodesicLine(const Geodesic& g,
|
96
|
+
real lat1, real lon1,
|
97
|
+
real azi1, real salp1, real calp1,
|
98
|
+
unsigned caps, bool arcmode, real s13_a13);
|
99
|
+
|
100
|
+
enum captype {
|
101
|
+
CAP_NONE = Geodesic::CAP_NONE,
|
102
|
+
CAP_C1 = Geodesic::CAP_C1,
|
103
|
+
CAP_C1p = Geodesic::CAP_C1p,
|
104
|
+
CAP_C2 = Geodesic::CAP_C2,
|
105
|
+
CAP_C3 = Geodesic::CAP_C3,
|
106
|
+
CAP_C4 = Geodesic::CAP_C4,
|
107
|
+
CAP_ALL = Geodesic::CAP_ALL,
|
108
|
+
CAP_MASK = Geodesic::CAP_MASK,
|
109
|
+
OUT_ALL = Geodesic::OUT_ALL,
|
110
|
+
OUT_MASK = Geodesic::OUT_MASK,
|
111
|
+
};
|
112
|
+
public:
|
113
|
+
|
114
|
+
/**
|
115
|
+
* Bit masks for what calculations to do. They signify to the
|
116
|
+
* GeodesicLine::GeodesicLine constructor and to Geodesic::Line what
|
117
|
+
* capabilities should be included in the GeodesicLine object. This is
|
118
|
+
* merely a duplication of Geodesic::mask.
|
119
|
+
**********************************************************************/
|
120
|
+
enum mask {
|
121
|
+
/**
|
122
|
+
* No capabilities, no output.
|
123
|
+
* @hideinitializer
|
124
|
+
**********************************************************************/
|
125
|
+
NONE = Geodesic::NONE,
|
126
|
+
/**
|
127
|
+
* Calculate latitude \e lat2. (It's not necessary to include this as a
|
128
|
+
* capability to GeodesicLine because this is included by default.)
|
129
|
+
* @hideinitializer
|
130
|
+
**********************************************************************/
|
131
|
+
LATITUDE = Geodesic::LATITUDE,
|
132
|
+
/**
|
133
|
+
* Calculate longitude \e lon2.
|
134
|
+
* @hideinitializer
|
135
|
+
**********************************************************************/
|
136
|
+
LONGITUDE = Geodesic::LONGITUDE,
|
137
|
+
/**
|
138
|
+
* Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
|
139
|
+
* include this as a capability to GeodesicLine because this is included
|
140
|
+
* by default.)
|
141
|
+
* @hideinitializer
|
142
|
+
**********************************************************************/
|
143
|
+
AZIMUTH = Geodesic::AZIMUTH,
|
144
|
+
/**
|
145
|
+
* Calculate distance \e s12.
|
146
|
+
* @hideinitializer
|
147
|
+
**********************************************************************/
|
148
|
+
DISTANCE = Geodesic::DISTANCE,
|
149
|
+
/**
|
150
|
+
* Allow distance \e s12 to be used as input in the direct geodesic
|
151
|
+
* problem.
|
152
|
+
* @hideinitializer
|
153
|
+
**********************************************************************/
|
154
|
+
DISTANCE_IN = Geodesic::DISTANCE_IN,
|
155
|
+
/**
|
156
|
+
* Calculate reduced length \e m12.
|
157
|
+
* @hideinitializer
|
158
|
+
**********************************************************************/
|
159
|
+
REDUCEDLENGTH = Geodesic::REDUCEDLENGTH,
|
160
|
+
/**
|
161
|
+
* Calculate geodesic scales \e M12 and \e M21.
|
162
|
+
* @hideinitializer
|
163
|
+
**********************************************************************/
|
164
|
+
GEODESICSCALE = Geodesic::GEODESICSCALE,
|
165
|
+
/**
|
166
|
+
* Calculate area \e S12.
|
167
|
+
* @hideinitializer
|
168
|
+
**********************************************************************/
|
169
|
+
AREA = Geodesic::AREA,
|
170
|
+
/**
|
171
|
+
* Unroll \e lon2 in the direct calculation.
|
172
|
+
* @hideinitializer
|
173
|
+
**********************************************************************/
|
174
|
+
LONG_UNROLL = Geodesic::LONG_UNROLL,
|
175
|
+
/**
|
176
|
+
* All capabilities, calculate everything. (LONG_UNROLL is not
|
177
|
+
* included in this mask.)
|
178
|
+
* @hideinitializer
|
179
|
+
**********************************************************************/
|
180
|
+
ALL = Geodesic::ALL,
|
181
|
+
};
|
182
|
+
|
183
|
+
/** \name Constructors
|
184
|
+
**********************************************************************/
|
185
|
+
///@{
|
186
|
+
|
187
|
+
/**
|
188
|
+
* Constructor for a geodesic line staring at latitude \e lat1, longitude
|
189
|
+
* \e lon1, and azimuth \e azi1 (all in degrees).
|
190
|
+
*
|
191
|
+
* @param[in] g A Geodesic object used to compute the necessary information
|
192
|
+
* about the GeodesicLine.
|
193
|
+
* @param[in] lat1 latitude of point 1 (degrees).
|
194
|
+
* @param[in] lon1 longitude of point 1 (degrees).
|
195
|
+
* @param[in] azi1 azimuth at point 1 (degrees).
|
196
|
+
* @param[in] caps bitor'ed combination of GeodesicLine::mask values
|
197
|
+
* specifying the capabilities the GeodesicLine object should possess,
|
198
|
+
* i.e., which quantities can be returned in calls to
|
199
|
+
* GeodesicLine::Position.
|
200
|
+
*
|
201
|
+
* \e lat1 should be in the range [−90°, 90°].
|
202
|
+
*
|
203
|
+
* The GeodesicLine::mask values are
|
204
|
+
* - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is
|
205
|
+
* added automatically;
|
206
|
+
* - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2;
|
207
|
+
* - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is
|
208
|
+
* added automatically;
|
209
|
+
* - \e caps |= GeodesicLine::DISTANCE for the distance \e s12;
|
210
|
+
* - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12;
|
211
|
+
* - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12
|
212
|
+
* and \e M21;
|
213
|
+
* - \e caps |= GeodesicLine::AREA for the area \e S12;
|
214
|
+
* - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the
|
215
|
+
* geodesic to be given in terms of \e s12; without this capability the
|
216
|
+
* length can only be specified in terms of arc length;
|
217
|
+
* - \e caps |= GeodesicLine::ALL for all of the above.
|
218
|
+
* .
|
219
|
+
* The default value of \e caps is GeodesicLine::ALL.
|
220
|
+
*
|
221
|
+
* If the point is at a pole, the azimuth is defined by keeping \e lon1
|
222
|
+
* fixed, writing \e lat1 = ±(90° − ε), and taking
|
223
|
+
* the limit ε → 0+.
|
224
|
+
**********************************************************************/
|
225
|
+
GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1,
|
226
|
+
unsigned caps = ALL);
|
227
|
+
|
228
|
+
/**
|
229
|
+
* A default constructor. If GeodesicLine::Position is called on the
|
230
|
+
* resulting object, it returns immediately (without doing any
|
231
|
+
* calculations). The object can be set with a call to Geodesic::Line.
|
232
|
+
* Use Init() to test whether object is still in this uninitialized state.
|
233
|
+
**********************************************************************/
|
234
|
+
GeodesicLine() : _caps(0U) {}
|
235
|
+
///@}
|
236
|
+
|
237
|
+
/** \name Position in terms of distance
|
238
|
+
**********************************************************************/
|
239
|
+
///@{
|
240
|
+
|
241
|
+
/**
|
242
|
+
* Compute the position of point 2 which is a distance \e s12 (meters) from
|
243
|
+
* point 1.
|
244
|
+
*
|
245
|
+
* @param[in] s12 distance from point 1 to point 2 (meters); it can be
|
246
|
+
* negative.
|
247
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
248
|
+
* @param[out] lon2 longitude of point 2 (degrees); requires that the
|
249
|
+
* GeodesicLine object was constructed with \e caps |=
|
250
|
+
* GeodesicLine::LONGITUDE.
|
251
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
252
|
+
* @param[out] m12 reduced length of geodesic (meters); requires that the
|
253
|
+
* GeodesicLine object was constructed with \e caps |=
|
254
|
+
* GeodesicLine::REDUCEDLENGTH.
|
255
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
256
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
257
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
258
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
259
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
260
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
261
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
|
262
|
+
* that the GeodesicLine object was constructed with \e caps |=
|
263
|
+
* GeodesicLine::AREA.
|
264
|
+
* @return \e a12 arc length from point 1 to point 2 (degrees).
|
265
|
+
*
|
266
|
+
* The values of \e lon2 and \e azi2 returned are in the range
|
267
|
+
* [−180°, 180°).
|
268
|
+
*
|
269
|
+
* The GeodesicLine object \e must have been constructed with \e caps |=
|
270
|
+
* GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no
|
271
|
+
* parameters are set. Requesting a value which the GeodesicLine object is
|
272
|
+
* not capable of computing is not an error; the corresponding argument
|
273
|
+
* will not be altered.
|
274
|
+
*
|
275
|
+
* The following functions are overloaded versions of
|
276
|
+
* GeodesicLine::Position which omit some of the output parameters. Note,
|
277
|
+
* however, that the arc length is always computed and returned as the
|
278
|
+
* function value.
|
279
|
+
**********************************************************************/
|
280
|
+
Math::real Position(real s12,
|
281
|
+
real& lat2, real& lon2, real& azi2,
|
282
|
+
real& m12, real& M12, real& M21,
|
283
|
+
real& S12) const {
|
284
|
+
real t;
|
285
|
+
return GenPosition(false, s12,
|
286
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
287
|
+
REDUCEDLENGTH | GEODESICSCALE | AREA,
|
288
|
+
lat2, lon2, azi2, t, m12, M12, M21, S12);
|
289
|
+
}
|
290
|
+
|
291
|
+
/**
|
292
|
+
* See the documentation for GeodesicLine::Position.
|
293
|
+
**********************************************************************/
|
294
|
+
Math::real Position(real s12, real& lat2, real& lon2) const {
|
295
|
+
real t;
|
296
|
+
return GenPosition(false, s12,
|
297
|
+
LATITUDE | LONGITUDE,
|
298
|
+
lat2, lon2, t, t, t, t, t, t);
|
299
|
+
}
|
300
|
+
|
301
|
+
/**
|
302
|
+
* See the documentation for GeodesicLine::Position.
|
303
|
+
**********************************************************************/
|
304
|
+
Math::real Position(real s12, real& lat2, real& lon2,
|
305
|
+
real& azi2) const {
|
306
|
+
real t;
|
307
|
+
return GenPosition(false, s12,
|
308
|
+
LATITUDE | LONGITUDE | AZIMUTH,
|
309
|
+
lat2, lon2, azi2, t, t, t, t, t);
|
310
|
+
}
|
311
|
+
|
312
|
+
/**
|
313
|
+
* See the documentation for GeodesicLine::Position.
|
314
|
+
**********************************************************************/
|
315
|
+
Math::real Position(real s12, real& lat2, real& lon2,
|
316
|
+
real& azi2, real& m12) const {
|
317
|
+
real t;
|
318
|
+
return GenPosition(false, s12,
|
319
|
+
LATITUDE | LONGITUDE |
|
320
|
+
AZIMUTH | REDUCEDLENGTH,
|
321
|
+
lat2, lon2, azi2, t, m12, t, t, t);
|
322
|
+
}
|
323
|
+
|
324
|
+
/**
|
325
|
+
* See the documentation for GeodesicLine::Position.
|
326
|
+
**********************************************************************/
|
327
|
+
Math::real Position(real s12, real& lat2, real& lon2,
|
328
|
+
real& azi2, real& M12, real& M21)
|
329
|
+
const {
|
330
|
+
real t;
|
331
|
+
return GenPosition(false, s12,
|
332
|
+
LATITUDE | LONGITUDE |
|
333
|
+
AZIMUTH | GEODESICSCALE,
|
334
|
+
lat2, lon2, azi2, t, t, M12, M21, t);
|
335
|
+
}
|
336
|
+
|
337
|
+
/**
|
338
|
+
* See the documentation for GeodesicLine::Position.
|
339
|
+
**********************************************************************/
|
340
|
+
Math::real Position(real s12,
|
341
|
+
real& lat2, real& lon2, real& azi2,
|
342
|
+
real& m12, real& M12, real& M21)
|
343
|
+
const {
|
344
|
+
real t;
|
345
|
+
return GenPosition(false, s12,
|
346
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
347
|
+
REDUCEDLENGTH | GEODESICSCALE,
|
348
|
+
lat2, lon2, azi2, t, m12, M12, M21, t);
|
349
|
+
}
|
350
|
+
///@}
|
351
|
+
|
352
|
+
/** \name Position in terms of arc length
|
353
|
+
**********************************************************************/
|
354
|
+
///@{
|
355
|
+
|
356
|
+
/**
|
357
|
+
* Compute the position of point 2 which is an arc length \e a12 (degrees)
|
358
|
+
* from point 1.
|
359
|
+
*
|
360
|
+
* @param[in] a12 arc length from point 1 to point 2 (degrees); it can
|
361
|
+
* be negative.
|
362
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
363
|
+
* @param[out] lon2 longitude of point 2 (degrees); requires that the
|
364
|
+
* GeodesicLine object was constructed with \e caps |=
|
365
|
+
* GeodesicLine::LONGITUDE.
|
366
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
367
|
+
* @param[out] s12 distance from point 1 to point 2 (meters); requires
|
368
|
+
* that the GeodesicLine object was constructed with \e caps |=
|
369
|
+
* GeodesicLine::DISTANCE.
|
370
|
+
* @param[out] m12 reduced length of geodesic (meters); requires that the
|
371
|
+
* GeodesicLine object was constructed with \e caps |=
|
372
|
+
* GeodesicLine::REDUCEDLENGTH.
|
373
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
374
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
375
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
376
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
377
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
378
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
379
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
|
380
|
+
* that the GeodesicLine object was constructed with \e caps |=
|
381
|
+
* GeodesicLine::AREA.
|
382
|
+
*
|
383
|
+
* The values of \e lon2 and \e azi2 returned are in the range
|
384
|
+
* [−180°, 180°).
|
385
|
+
*
|
386
|
+
* Requesting a value which the GeodesicLine object is not capable of
|
387
|
+
* computing is not an error; the corresponding argument will not be
|
388
|
+
* altered.
|
389
|
+
*
|
390
|
+
* The following functions are overloaded versions of
|
391
|
+
* GeodesicLine::ArcPosition which omit some of the output parameters.
|
392
|
+
**********************************************************************/
|
393
|
+
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
|
394
|
+
real& s12, real& m12, real& M12, real& M21,
|
395
|
+
real& S12) const {
|
396
|
+
GenPosition(true, a12,
|
397
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
|
398
|
+
REDUCEDLENGTH | GEODESICSCALE | AREA,
|
399
|
+
lat2, lon2, azi2, s12, m12, M12, M21, S12);
|
400
|
+
}
|
401
|
+
|
402
|
+
/**
|
403
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
404
|
+
**********************************************************************/
|
405
|
+
void ArcPosition(real a12, real& lat2, real& lon2)
|
406
|
+
const {
|
407
|
+
real t;
|
408
|
+
GenPosition(true, a12,
|
409
|
+
LATITUDE | LONGITUDE,
|
410
|
+
lat2, lon2, t, t, t, t, t, t);
|
411
|
+
}
|
412
|
+
|
413
|
+
/**
|
414
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
415
|
+
**********************************************************************/
|
416
|
+
void ArcPosition(real a12,
|
417
|
+
real& lat2, real& lon2, real& azi2)
|
418
|
+
const {
|
419
|
+
real t;
|
420
|
+
GenPosition(true, a12,
|
421
|
+
LATITUDE | LONGITUDE | AZIMUTH,
|
422
|
+
lat2, lon2, azi2, t, t, t, t, t);
|
423
|
+
}
|
424
|
+
|
425
|
+
/**
|
426
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
427
|
+
**********************************************************************/
|
428
|
+
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
|
429
|
+
real& s12) const {
|
430
|
+
real t;
|
431
|
+
GenPosition(true, a12,
|
432
|
+
LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
|
433
|
+
lat2, lon2, azi2, s12, t, t, t, t);
|
434
|
+
}
|
435
|
+
|
436
|
+
/**
|
437
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
438
|
+
**********************************************************************/
|
439
|
+
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
|
440
|
+
real& s12, real& m12) const {
|
441
|
+
real t;
|
442
|
+
GenPosition(true, a12,
|
443
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
444
|
+
DISTANCE | REDUCEDLENGTH,
|
445
|
+
lat2, lon2, azi2, s12, m12, t, t, t);
|
446
|
+
}
|
447
|
+
|
448
|
+
/**
|
449
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
450
|
+
**********************************************************************/
|
451
|
+
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
|
452
|
+
real& s12, real& M12, real& M21)
|
453
|
+
const {
|
454
|
+
real t;
|
455
|
+
GenPosition(true, a12,
|
456
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
457
|
+
DISTANCE | GEODESICSCALE,
|
458
|
+
lat2, lon2, azi2, s12, t, M12, M21, t);
|
459
|
+
}
|
460
|
+
|
461
|
+
/**
|
462
|
+
* See the documentation for GeodesicLine::ArcPosition.
|
463
|
+
**********************************************************************/
|
464
|
+
void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
|
465
|
+
real& s12, real& m12, real& M12, real& M21)
|
466
|
+
const {
|
467
|
+
real t;
|
468
|
+
GenPosition(true, a12,
|
469
|
+
LATITUDE | LONGITUDE | AZIMUTH |
|
470
|
+
DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
|
471
|
+
lat2, lon2, azi2, s12, m12, M12, M21, t);
|
472
|
+
}
|
473
|
+
///@}
|
474
|
+
|
475
|
+
/** \name The general position function.
|
476
|
+
**********************************************************************/
|
477
|
+
///@{
|
478
|
+
|
479
|
+
/**
|
480
|
+
* The general position function. GeodesicLine::Position and
|
481
|
+
* GeodesicLine::ArcPosition are defined in terms of this function.
|
482
|
+
*
|
483
|
+
* @param[in] arcmode boolean flag determining the meaning of the second
|
484
|
+
* parameter; if \e arcmode is false, then the GeodesicLine object must
|
485
|
+
* have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
|
486
|
+
* @param[in] s12_a12 if \e arcmode is false, this is the distance between
|
487
|
+
* point 1 and point 2 (meters); otherwise it is the arc length between
|
488
|
+
* point 1 and point 2 (degrees); it can be negative.
|
489
|
+
* @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
|
490
|
+
* specifying which of the following parameters should be set.
|
491
|
+
* @param[out] lat2 latitude of point 2 (degrees).
|
492
|
+
* @param[out] lon2 longitude of point 2 (degrees); requires that the
|
493
|
+
* GeodesicLine object was constructed with \e caps |=
|
494
|
+
* GeodesicLine::LONGITUDE.
|
495
|
+
* @param[out] azi2 (forward) azimuth at point 2 (degrees).
|
496
|
+
* @param[out] s12 distance from point 1 to point 2 (meters); requires
|
497
|
+
* that the GeodesicLine object was constructed with \e caps |=
|
498
|
+
* GeodesicLine::DISTANCE.
|
499
|
+
* @param[out] m12 reduced length of geodesic (meters); requires that the
|
500
|
+
* GeodesicLine object was constructed with \e caps |=
|
501
|
+
* GeodesicLine::REDUCEDLENGTH.
|
502
|
+
* @param[out] M12 geodesic scale of point 2 relative to point 1
|
503
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
504
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
505
|
+
* @param[out] M21 geodesic scale of point 1 relative to point 2
|
506
|
+
* (dimensionless); requires that the GeodesicLine object was constructed
|
507
|
+
* with \e caps |= GeodesicLine::GEODESICSCALE.
|
508
|
+
* @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
|
509
|
+
* that the GeodesicLine object was constructed with \e caps |=
|
510
|
+
* GeodesicLine::AREA.
|
511
|
+
* @return \e a12 arc length from point 1 to point 2 (degrees).
|
512
|
+
*
|
513
|
+
* The GeodesicLine::mask values possible for \e outmask are
|
514
|
+
* - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2;
|
515
|
+
* - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2;
|
516
|
+
* - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2;
|
517
|
+
* - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
|
518
|
+
* - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e
|
519
|
+
* m12;
|
520
|
+
* - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e
|
521
|
+
* M12 and \e M21;
|
522
|
+
* - \e outmask |= GeodesicLine::AREA for the area \e S12;
|
523
|
+
* - \e outmask |= GeodesicLine::ALL for all of the above;
|
524
|
+
* - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
|
525
|
+
* reducing it into the range [−180°, 180°).
|
526
|
+
* .
|
527
|
+
* Requesting a value which the GeodesicLine object is not capable of
|
528
|
+
* computing is not an error; the corresponding argument will not be
|
529
|
+
* altered. Note, however, that the arc length is always computed and
|
530
|
+
* returned as the function value.
|
531
|
+
*
|
532
|
+
* With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 −
|
533
|
+
* \e lon1 indicates how many times and in what sense the geodesic
|
534
|
+
* encircles the ellipsoid.
|
535
|
+
**********************************************************************/
|
536
|
+
Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
|
537
|
+
real& lat2, real& lon2, real& azi2,
|
538
|
+
real& s12, real& m12, real& M12, real& M21,
|
539
|
+
real& S12) const;
|
540
|
+
///@}
|
541
|
+
|
542
|
+
/** \name Setting point 3
|
543
|
+
**********************************************************************/
|
544
|
+
///@{
|
545
|
+
|
546
|
+
/**
|
547
|
+
* Specify position of point 3 in terms of distance.
|
548
|
+
*
|
549
|
+
* @param[in] s13 the distance from point 1 to point 3 (meters); it
|
550
|
+
* can be negative.
|
551
|
+
*
|
552
|
+
* This is only useful if the GeodesicLine object has been constructed
|
553
|
+
* with \e caps |= GeodesicLine::DISTANCE_IN.
|
554
|
+
**********************************************************************/
|
555
|
+
void SetDistance(real s13);
|
556
|
+
|
557
|
+
/**
|
558
|
+
* Specify position of point 3 in terms of arc length.
|
559
|
+
*
|
560
|
+
* @param[in] a13 the arc length from point 1 to point 3 (degrees); it
|
561
|
+
* can be negative.
|
562
|
+
*
|
563
|
+
* The distance \e s13 is only set if the GeodesicLine object has been
|
564
|
+
* constructed with \e caps |= GeodesicLine::DISTANCE.
|
565
|
+
**********************************************************************/
|
566
|
+
void SetArc(real a13);
|
567
|
+
|
568
|
+
/**
|
569
|
+
* Specify position of point 3 in terms of either distance or arc length.
|
570
|
+
*
|
571
|
+
* @param[in] arcmode boolean flag determining the meaning of the second
|
572
|
+
* parameter; if \e arcmode is false, then the GeodesicLine object must
|
573
|
+
* have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
|
574
|
+
* @param[in] s13_a13 if \e arcmode is false, this is the distance from
|
575
|
+
* point 1 to point 3 (meters); otherwise it is the arc length from
|
576
|
+
* point 1 to point 3 (degrees); it can be negative.
|
577
|
+
**********************************************************************/
|
578
|
+
void GenSetDistance(bool arcmode, real s13_a13);
|
579
|
+
///@}
|
580
|
+
|
581
|
+
/** \name Inspector functions
|
582
|
+
**********************************************************************/
|
583
|
+
///@{
|
584
|
+
|
585
|
+
/**
|
586
|
+
* @return true if the object has been initialized.
|
587
|
+
**********************************************************************/
|
588
|
+
bool Init() const { return _caps != 0U; }
|
589
|
+
|
590
|
+
/**
|
591
|
+
* @return \e lat1 the latitude of point 1 (degrees).
|
592
|
+
**********************************************************************/
|
593
|
+
Math::real Latitude() const
|
594
|
+
{ return Init() ? _lat1 : Math::NaN(); }
|
595
|
+
|
596
|
+
/**
|
597
|
+
* @return \e lon1 the longitude of point 1 (degrees).
|
598
|
+
**********************************************************************/
|
599
|
+
Math::real Longitude() const
|
600
|
+
{ return Init() ? _lon1 : Math::NaN(); }
|
601
|
+
|
602
|
+
/**
|
603
|
+
* @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
|
604
|
+
**********************************************************************/
|
605
|
+
Math::real Azimuth() const
|
606
|
+
{ return Init() ? _azi1 : Math::NaN(); }
|
607
|
+
|
608
|
+
/**
|
609
|
+
* The sine and cosine of \e azi1.
|
610
|
+
*
|
611
|
+
* @param[out] sazi1 the sine of \e azi1.
|
612
|
+
* @param[out] cazi1 the cosine of \e azi1.
|
613
|
+
**********************************************************************/
|
614
|
+
void Azimuth(real& sazi1, real& cazi1) const
|
615
|
+
{ if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
|
616
|
+
|
617
|
+
/**
|
618
|
+
* @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
|
619
|
+
* the equator in a northward direction.
|
620
|
+
*
|
621
|
+
* The result lies in [−90°, 90°].
|
622
|
+
**********************************************************************/
|
623
|
+
Math::real EquatorialAzimuth() const
|
624
|
+
{ return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
|
625
|
+
|
626
|
+
/**
|
627
|
+
* The sine and cosine of \e azi0.
|
628
|
+
*
|
629
|
+
* @param[out] sazi0 the sine of \e azi0.
|
630
|
+
* @param[out] cazi0 the cosine of \e azi0.
|
631
|
+
**********************************************************************/
|
632
|
+
void EquatorialAzimuth(real& sazi0, real& cazi0) const
|
633
|
+
{ if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
|
634
|
+
|
635
|
+
/**
|
636
|
+
* @return \e a1 the arc length (degrees) between the northward equatorial
|
637
|
+
* crossing and point 1.
|
638
|
+
*
|
639
|
+
* The result lies in (−180°, 180°].
|
640
|
+
**********************************************************************/
|
641
|
+
Math::real EquatorialArc() const {
|
642
|
+
return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN();
|
643
|
+
}
|
644
|
+
|
645
|
+
/**
|
646
|
+
* @return \e a the equatorial radius of the ellipsoid (meters). This is
|
647
|
+
* the value inherited from the Geodesic object used in the constructor.
|
648
|
+
**********************************************************************/
|
649
|
+
Math::real MajorRadius() const
|
650
|
+
{ return Init() ? _a : Math::NaN(); }
|
651
|
+
|
652
|
+
/**
|
653
|
+
* @return \e f the flattening of the ellipsoid. This is the value
|
654
|
+
* inherited from the Geodesic object used in the constructor.
|
655
|
+
**********************************************************************/
|
656
|
+
Math::real Flattening() const
|
657
|
+
{ return Init() ? _f : Math::NaN(); }
|
658
|
+
|
659
|
+
/**
|
660
|
+
* @return \e caps the computational capabilities that this object was
|
661
|
+
* constructed with. LATITUDE and AZIMUTH are always included.
|
662
|
+
**********************************************************************/
|
663
|
+
unsigned Capabilities() const { return _caps; }
|
664
|
+
|
665
|
+
/**
|
666
|
+
* Test what capabilities are available.
|
667
|
+
*
|
668
|
+
* @param[in] testcaps a set of bitor'ed GeodesicLine::mask values.
|
669
|
+
* @return true if the GeodesicLine object has all these capabilities.
|
670
|
+
**********************************************************************/
|
671
|
+
bool Capabilities(unsigned testcaps) const {
|
672
|
+
testcaps &= OUT_ALL;
|
673
|
+
return (_caps & testcaps) == testcaps;
|
674
|
+
}
|
675
|
+
|
676
|
+
/**
|
677
|
+
* The distance or arc length to point 3.
|
678
|
+
*
|
679
|
+
* @param[in] arcmode boolean flag determining the meaning of returned
|
680
|
+
* value.
|
681
|
+
* @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
|
682
|
+
**********************************************************************/
|
683
|
+
Math::real GenDistance(bool arcmode) const
|
684
|
+
{ return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
|
685
|
+
|
686
|
+
/**
|
687
|
+
* @return \e s13, the distance to point 3 (meters).
|
688
|
+
**********************************************************************/
|
689
|
+
Math::real Distance() const { return GenDistance(false); }
|
690
|
+
|
691
|
+
/**
|
692
|
+
* @return \e a13, the arc length to point 3 (degrees).
|
693
|
+
**********************************************************************/
|
694
|
+
Math::real Arc() const { return GenDistance(true); }
|
695
|
+
///@}
|
696
|
+
|
697
|
+
};
|
698
|
+
|
699
|
+
} // namespace GeographicLib
|
700
|
+
|
701
|
+
#endif // GEOGRAPHICLIB_GEODESICLINE_HPP
|