geographiclib 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (87) hide show
  1. checksums.yaml +7 -0
  2. data/AUTHORS +12 -0
  3. data/LICENSE +24 -0
  4. data/ext/geographiclib/Accumulator.cpp +23 -0
  5. data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
  6. data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
  7. data/ext/geographiclib/CassiniSoldner.cpp +89 -0
  8. data/ext/geographiclib/CircularEngine.cpp +96 -0
  9. data/ext/geographiclib/DMS.cpp +381 -0
  10. data/ext/geographiclib/Ellipsoid.cpp +125 -0
  11. data/ext/geographiclib/EllipticFunction.cpp +512 -0
  12. data/ext/geographiclib/GARS.cpp +122 -0
  13. data/ext/geographiclib/GeoCoords.cpp +175 -0
  14. data/ext/geographiclib/Geocentric.cpp +172 -0
  15. data/ext/geographiclib/Geodesic.cpp +1908 -0
  16. data/ext/geographiclib/GeodesicExact.cpp +927 -0
  17. data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
  18. data/ext/geographiclib/GeodesicLine.cpp +321 -0
  19. data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
  20. data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
  21. data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
  22. data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
  23. data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
  24. data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
  25. data/ext/geographiclib/GeographicLib/Config.h +12 -0
  26. data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
  27. data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
  28. data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
  29. data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
  30. data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
  31. data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
  32. data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
  33. data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
  34. data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
  35. data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
  36. data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
  37. data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
  38. data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
  39. data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
  40. data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
  41. data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
  42. data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
  43. data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
  44. data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
  45. data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
  46. data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
  47. data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
  48. data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
  49. data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
  50. data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
  51. data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
  52. data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
  53. data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
  54. data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
  55. data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
  56. data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
  57. data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
  58. data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
  59. data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
  60. data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
  61. data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
  62. data/ext/geographiclib/Geohash.cpp +102 -0
  63. data/ext/geographiclib/Geoid.cpp +509 -0
  64. data/ext/geographiclib/Georef.cpp +135 -0
  65. data/ext/geographiclib/Gnomonic.cpp +85 -0
  66. data/ext/geographiclib/GravityCircle.cpp +129 -0
  67. data/ext/geographiclib/GravityModel.cpp +360 -0
  68. data/ext/geographiclib/LambertConformalConic.cpp +456 -0
  69. data/ext/geographiclib/LocalCartesian.cpp +62 -0
  70. data/ext/geographiclib/MGRS.cpp +461 -0
  71. data/ext/geographiclib/MagneticCircle.cpp +52 -0
  72. data/ext/geographiclib/MagneticModel.cpp +269 -0
  73. data/ext/geographiclib/Math.cpp +63 -0
  74. data/ext/geographiclib/NormalGravity.cpp +262 -0
  75. data/ext/geographiclib/OSGB.cpp +167 -0
  76. data/ext/geographiclib/PolarStereographic.cpp +108 -0
  77. data/ext/geographiclib/PolygonArea.cpp +204 -0
  78. data/ext/geographiclib/Rhumb.cpp +383 -0
  79. data/ext/geographiclib/SphericalEngine.cpp +477 -0
  80. data/ext/geographiclib/TransverseMercator.cpp +603 -0
  81. data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
  82. data/ext/geographiclib/UTMUPS.cpp +296 -0
  83. data/ext/geographiclib/Utility.cpp +61 -0
  84. data/ext/geographiclib/extconf.rb +3 -0
  85. data/ext/geographiclib/geographiclib.cpp +62 -0
  86. data/lib/geographiclib.rb +20 -0
  87. metadata +140 -0
@@ -0,0 +1,701 @@
1
+ /**
2
+ * \file GeodesicLine.hpp
3
+ * \brief Header for GeographicLib::GeodesicLine class
4
+ *
5
+ * Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
6
+ * under the MIT/X11 License. For more information, see
7
+ * http://geographiclib.sourceforge.net/
8
+ **********************************************************************/
9
+
10
+ #if !defined(GEOGRAPHICLIB_GEODESICLINE_HPP)
11
+ #define GEOGRAPHICLIB_GEODESICLINE_HPP 1
12
+
13
+ #include <GeographicLib/Constants.hpp>
14
+ #include <GeographicLib/Geodesic.hpp>
15
+
16
+ namespace GeographicLib {
17
+
18
+ /**
19
+ * \brief A geodesic line
20
+ *
21
+ * GeodesicLine facilitates the determination of a series of points on a
22
+ * single geodesic. The starting point (\e lat1, \e lon1) and the azimuth \e
23
+ * azi1 are specified in the constructor; alternatively, the Geodesic::Line
24
+ * method can be used to create a GeodesicLine. GeodesicLine.Position
25
+ * returns the location of point 2 a distance \e s12 along the geodesic. In
26
+ * addition, GeodesicLine.ArcPosition gives the position of point 2 an arc
27
+ * length \e a12 along the geodesic.
28
+ *
29
+ * You can register the position of a reference point 3 a distance (arc
30
+ * length), \e s13 (\e a13) along the geodesic with the
31
+ * GeodesicLine.SetDistance (GeodesicLine.SetArc) functions. Points a
32
+ * fractional distance along the line can be found by providing, for example,
33
+ * 0.5 * Distance() as an argument to GeodesicLine.Position. The
34
+ * Geodesic::InverseLine or Geodesic::DirectLine methods return GeodesicLine
35
+ * objects with point 3 set to the point 2 of the corresponding geodesic
36
+ * problem. GeodesicLine objects created with the public constructor or with
37
+ * Geodesic::Line have \e s13 and \e a13 set to NaNs.
38
+ *
39
+ * The default copy constructor and assignment operators work with this
40
+ * class. Similarly, a vector can be used to hold GeodesicLine objects.
41
+ *
42
+ * The calculations are accurate to better than 15 nm (15 nanometers). See
43
+ * Sec. 9 of
44
+ * <a href="http://arxiv.org/abs/1102.1215v1">arXiv:1102.1215v1</a> for
45
+ * details. The algorithms used by this class are based on series expansions
46
+ * using the flattening \e f as a small parameter. These are only accurate
47
+ * for |<i>f</i>| &lt; 0.02; however reasonably accurate results will be
48
+ * obtained for |<i>f</i>| &lt; 0.2. For very eccentric ellipsoids, use
49
+ * GeodesicLineExact instead.
50
+ *
51
+ * The algorithms are described in
52
+ * - C. F. F. Karney,
53
+ * <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
54
+ * Algorithms for geodesics</a>,
55
+ * J. Geodesy <b>87</b>, 43--55 (2013);
56
+ * DOI: <a href="https://dx.doi.org/10.1007/s00190-012-0578-z">
57
+ * 10.1007/s00190-012-0578-z</a>;
58
+ * addenda: <a href="http://geographiclib.sourceforge.net/geod-addenda.html">
59
+ * geod-addenda.html</a>.
60
+ * .
61
+ * For more information on geodesics see \ref geodesic.
62
+ *
63
+ * Example of use:
64
+ * \include example-GeodesicLine.cpp
65
+ *
66
+ * <a href="GeodSolve.1.html">GeodSolve</a> is a command-line utility
67
+ * providing access to the functionality of Geodesic and GeodesicLine.
68
+ **********************************************************************/
69
+
70
+ class GEOGRAPHICLIB_EXPORT GeodesicLine {
71
+ private:
72
+ typedef Math::real real;
73
+ friend class Geodesic;
74
+ static const int nC1_ = Geodesic::nC1_;
75
+ static const int nC1p_ = Geodesic::nC1p_;
76
+ static const int nC2_ = Geodesic::nC2_;
77
+ static const int nC3_ = Geodesic::nC3_;
78
+ static const int nC4_ = Geodesic::nC4_;
79
+
80
+ real tiny_;
81
+ real _lat1, _lon1, _azi1;
82
+ real _a, _f, _b, _c2, _f1, _salp0, _calp0, _k2,
83
+ _salp1, _calp1, _ssig1, _csig1, _dn1, _stau1, _ctau1, _somg1, _comg1,
84
+ _A1m1, _A2m1, _A3c, _B11, _B21, _B31, _A4, _B41;
85
+ real _a13, _s13;
86
+ // index zero elements of _C1a, _C1pa, _C2a, _C3a are unused
87
+ real _C1a[nC1_ + 1], _C1pa[nC1p_ + 1], _C2a[nC2_ + 1], _C3a[nC3_],
88
+ _C4a[nC4_]; // all the elements of _C4a are used
89
+ unsigned _caps;
90
+
91
+ void LineInit(const Geodesic& g,
92
+ real lat1, real lon1,
93
+ real azi1, real salp1, real calp1,
94
+ unsigned caps);
95
+ GeodesicLine(const Geodesic& g,
96
+ real lat1, real lon1,
97
+ real azi1, real salp1, real calp1,
98
+ unsigned caps, bool arcmode, real s13_a13);
99
+
100
+ enum captype {
101
+ CAP_NONE = Geodesic::CAP_NONE,
102
+ CAP_C1 = Geodesic::CAP_C1,
103
+ CAP_C1p = Geodesic::CAP_C1p,
104
+ CAP_C2 = Geodesic::CAP_C2,
105
+ CAP_C3 = Geodesic::CAP_C3,
106
+ CAP_C4 = Geodesic::CAP_C4,
107
+ CAP_ALL = Geodesic::CAP_ALL,
108
+ CAP_MASK = Geodesic::CAP_MASK,
109
+ OUT_ALL = Geodesic::OUT_ALL,
110
+ OUT_MASK = Geodesic::OUT_MASK,
111
+ };
112
+ public:
113
+
114
+ /**
115
+ * Bit masks for what calculations to do. They signify to the
116
+ * GeodesicLine::GeodesicLine constructor and to Geodesic::Line what
117
+ * capabilities should be included in the GeodesicLine object. This is
118
+ * merely a duplication of Geodesic::mask.
119
+ **********************************************************************/
120
+ enum mask {
121
+ /**
122
+ * No capabilities, no output.
123
+ * @hideinitializer
124
+ **********************************************************************/
125
+ NONE = Geodesic::NONE,
126
+ /**
127
+ * Calculate latitude \e lat2. (It's not necessary to include this as a
128
+ * capability to GeodesicLine because this is included by default.)
129
+ * @hideinitializer
130
+ **********************************************************************/
131
+ LATITUDE = Geodesic::LATITUDE,
132
+ /**
133
+ * Calculate longitude \e lon2.
134
+ * @hideinitializer
135
+ **********************************************************************/
136
+ LONGITUDE = Geodesic::LONGITUDE,
137
+ /**
138
+ * Calculate azimuths \e azi1 and \e azi2. (It's not necessary to
139
+ * include this as a capability to GeodesicLine because this is included
140
+ * by default.)
141
+ * @hideinitializer
142
+ **********************************************************************/
143
+ AZIMUTH = Geodesic::AZIMUTH,
144
+ /**
145
+ * Calculate distance \e s12.
146
+ * @hideinitializer
147
+ **********************************************************************/
148
+ DISTANCE = Geodesic::DISTANCE,
149
+ /**
150
+ * Allow distance \e s12 to be used as input in the direct geodesic
151
+ * problem.
152
+ * @hideinitializer
153
+ **********************************************************************/
154
+ DISTANCE_IN = Geodesic::DISTANCE_IN,
155
+ /**
156
+ * Calculate reduced length \e m12.
157
+ * @hideinitializer
158
+ **********************************************************************/
159
+ REDUCEDLENGTH = Geodesic::REDUCEDLENGTH,
160
+ /**
161
+ * Calculate geodesic scales \e M12 and \e M21.
162
+ * @hideinitializer
163
+ **********************************************************************/
164
+ GEODESICSCALE = Geodesic::GEODESICSCALE,
165
+ /**
166
+ * Calculate area \e S12.
167
+ * @hideinitializer
168
+ **********************************************************************/
169
+ AREA = Geodesic::AREA,
170
+ /**
171
+ * Unroll \e lon2 in the direct calculation.
172
+ * @hideinitializer
173
+ **********************************************************************/
174
+ LONG_UNROLL = Geodesic::LONG_UNROLL,
175
+ /**
176
+ * All capabilities, calculate everything. (LONG_UNROLL is not
177
+ * included in this mask.)
178
+ * @hideinitializer
179
+ **********************************************************************/
180
+ ALL = Geodesic::ALL,
181
+ };
182
+
183
+ /** \name Constructors
184
+ **********************************************************************/
185
+ ///@{
186
+
187
+ /**
188
+ * Constructor for a geodesic line staring at latitude \e lat1, longitude
189
+ * \e lon1, and azimuth \e azi1 (all in degrees).
190
+ *
191
+ * @param[in] g A Geodesic object used to compute the necessary information
192
+ * about the GeodesicLine.
193
+ * @param[in] lat1 latitude of point 1 (degrees).
194
+ * @param[in] lon1 longitude of point 1 (degrees).
195
+ * @param[in] azi1 azimuth at point 1 (degrees).
196
+ * @param[in] caps bitor'ed combination of GeodesicLine::mask values
197
+ * specifying the capabilities the GeodesicLine object should possess,
198
+ * i.e., which quantities can be returned in calls to
199
+ * GeodesicLine::Position.
200
+ *
201
+ * \e lat1 should be in the range [&minus;90&deg;, 90&deg;].
202
+ *
203
+ * The GeodesicLine::mask values are
204
+ * - \e caps |= GeodesicLine::LATITUDE for the latitude \e lat2; this is
205
+ * added automatically;
206
+ * - \e caps |= GeodesicLine::LONGITUDE for the latitude \e lon2;
207
+ * - \e caps |= GeodesicLine::AZIMUTH for the latitude \e azi2; this is
208
+ * added automatically;
209
+ * - \e caps |= GeodesicLine::DISTANCE for the distance \e s12;
210
+ * - \e caps |= GeodesicLine::REDUCEDLENGTH for the reduced length \e m12;
211
+ * - \e caps |= GeodesicLine::GEODESICSCALE for the geodesic scales \e M12
212
+ * and \e M21;
213
+ * - \e caps |= GeodesicLine::AREA for the area \e S12;
214
+ * - \e caps |= GeodesicLine::DISTANCE_IN permits the length of the
215
+ * geodesic to be given in terms of \e s12; without this capability the
216
+ * length can only be specified in terms of arc length;
217
+ * - \e caps |= GeodesicLine::ALL for all of the above.
218
+ * .
219
+ * The default value of \e caps is GeodesicLine::ALL.
220
+ *
221
+ * If the point is at a pole, the azimuth is defined by keeping \e lon1
222
+ * fixed, writing \e lat1 = &plusmn;(90&deg; &minus; &epsilon;), and taking
223
+ * the limit &epsilon; &rarr; 0+.
224
+ **********************************************************************/
225
+ GeodesicLine(const Geodesic& g, real lat1, real lon1, real azi1,
226
+ unsigned caps = ALL);
227
+
228
+ /**
229
+ * A default constructor. If GeodesicLine::Position is called on the
230
+ * resulting object, it returns immediately (without doing any
231
+ * calculations). The object can be set with a call to Geodesic::Line.
232
+ * Use Init() to test whether object is still in this uninitialized state.
233
+ **********************************************************************/
234
+ GeodesicLine() : _caps(0U) {}
235
+ ///@}
236
+
237
+ /** \name Position in terms of distance
238
+ **********************************************************************/
239
+ ///@{
240
+
241
+ /**
242
+ * Compute the position of point 2 which is a distance \e s12 (meters) from
243
+ * point 1.
244
+ *
245
+ * @param[in] s12 distance from point 1 to point 2 (meters); it can be
246
+ * negative.
247
+ * @param[out] lat2 latitude of point 2 (degrees).
248
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
249
+ * GeodesicLine object was constructed with \e caps |=
250
+ * GeodesicLine::LONGITUDE.
251
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
252
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
253
+ * GeodesicLine object was constructed with \e caps |=
254
+ * GeodesicLine::REDUCEDLENGTH.
255
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
256
+ * (dimensionless); requires that the GeodesicLine object was constructed
257
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
258
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
259
+ * (dimensionless); requires that the GeodesicLine object was constructed
260
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
261
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
262
+ * that the GeodesicLine object was constructed with \e caps |=
263
+ * GeodesicLine::AREA.
264
+ * @return \e a12 arc length from point 1 to point 2 (degrees).
265
+ *
266
+ * The values of \e lon2 and \e azi2 returned are in the range
267
+ * [&minus;180&deg;, 180&deg;).
268
+ *
269
+ * The GeodesicLine object \e must have been constructed with \e caps |=
270
+ * GeodesicLine::DISTANCE_IN; otherwise Math::NaN() is returned and no
271
+ * parameters are set. Requesting a value which the GeodesicLine object is
272
+ * not capable of computing is not an error; the corresponding argument
273
+ * will not be altered.
274
+ *
275
+ * The following functions are overloaded versions of
276
+ * GeodesicLine::Position which omit some of the output parameters. Note,
277
+ * however, that the arc length is always computed and returned as the
278
+ * function value.
279
+ **********************************************************************/
280
+ Math::real Position(real s12,
281
+ real& lat2, real& lon2, real& azi2,
282
+ real& m12, real& M12, real& M21,
283
+ real& S12) const {
284
+ real t;
285
+ return GenPosition(false, s12,
286
+ LATITUDE | LONGITUDE | AZIMUTH |
287
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
288
+ lat2, lon2, azi2, t, m12, M12, M21, S12);
289
+ }
290
+
291
+ /**
292
+ * See the documentation for GeodesicLine::Position.
293
+ **********************************************************************/
294
+ Math::real Position(real s12, real& lat2, real& lon2) const {
295
+ real t;
296
+ return GenPosition(false, s12,
297
+ LATITUDE | LONGITUDE,
298
+ lat2, lon2, t, t, t, t, t, t);
299
+ }
300
+
301
+ /**
302
+ * See the documentation for GeodesicLine::Position.
303
+ **********************************************************************/
304
+ Math::real Position(real s12, real& lat2, real& lon2,
305
+ real& azi2) const {
306
+ real t;
307
+ return GenPosition(false, s12,
308
+ LATITUDE | LONGITUDE | AZIMUTH,
309
+ lat2, lon2, azi2, t, t, t, t, t);
310
+ }
311
+
312
+ /**
313
+ * See the documentation for GeodesicLine::Position.
314
+ **********************************************************************/
315
+ Math::real Position(real s12, real& lat2, real& lon2,
316
+ real& azi2, real& m12) const {
317
+ real t;
318
+ return GenPosition(false, s12,
319
+ LATITUDE | LONGITUDE |
320
+ AZIMUTH | REDUCEDLENGTH,
321
+ lat2, lon2, azi2, t, m12, t, t, t);
322
+ }
323
+
324
+ /**
325
+ * See the documentation for GeodesicLine::Position.
326
+ **********************************************************************/
327
+ Math::real Position(real s12, real& lat2, real& lon2,
328
+ real& azi2, real& M12, real& M21)
329
+ const {
330
+ real t;
331
+ return GenPosition(false, s12,
332
+ LATITUDE | LONGITUDE |
333
+ AZIMUTH | GEODESICSCALE,
334
+ lat2, lon2, azi2, t, t, M12, M21, t);
335
+ }
336
+
337
+ /**
338
+ * See the documentation for GeodesicLine::Position.
339
+ **********************************************************************/
340
+ Math::real Position(real s12,
341
+ real& lat2, real& lon2, real& azi2,
342
+ real& m12, real& M12, real& M21)
343
+ const {
344
+ real t;
345
+ return GenPosition(false, s12,
346
+ LATITUDE | LONGITUDE | AZIMUTH |
347
+ REDUCEDLENGTH | GEODESICSCALE,
348
+ lat2, lon2, azi2, t, m12, M12, M21, t);
349
+ }
350
+ ///@}
351
+
352
+ /** \name Position in terms of arc length
353
+ **********************************************************************/
354
+ ///@{
355
+
356
+ /**
357
+ * Compute the position of point 2 which is an arc length \e a12 (degrees)
358
+ * from point 1.
359
+ *
360
+ * @param[in] a12 arc length from point 1 to point 2 (degrees); it can
361
+ * be negative.
362
+ * @param[out] lat2 latitude of point 2 (degrees).
363
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
364
+ * GeodesicLine object was constructed with \e caps |=
365
+ * GeodesicLine::LONGITUDE.
366
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
367
+ * @param[out] s12 distance from point 1 to point 2 (meters); requires
368
+ * that the GeodesicLine object was constructed with \e caps |=
369
+ * GeodesicLine::DISTANCE.
370
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
371
+ * GeodesicLine object was constructed with \e caps |=
372
+ * GeodesicLine::REDUCEDLENGTH.
373
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
374
+ * (dimensionless); requires that the GeodesicLine object was constructed
375
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
376
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
377
+ * (dimensionless); requires that the GeodesicLine object was constructed
378
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
379
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
380
+ * that the GeodesicLine object was constructed with \e caps |=
381
+ * GeodesicLine::AREA.
382
+ *
383
+ * The values of \e lon2 and \e azi2 returned are in the range
384
+ * [&minus;180&deg;, 180&deg;).
385
+ *
386
+ * Requesting a value which the GeodesicLine object is not capable of
387
+ * computing is not an error; the corresponding argument will not be
388
+ * altered.
389
+ *
390
+ * The following functions are overloaded versions of
391
+ * GeodesicLine::ArcPosition which omit some of the output parameters.
392
+ **********************************************************************/
393
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
394
+ real& s12, real& m12, real& M12, real& M21,
395
+ real& S12) const {
396
+ GenPosition(true, a12,
397
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE |
398
+ REDUCEDLENGTH | GEODESICSCALE | AREA,
399
+ lat2, lon2, azi2, s12, m12, M12, M21, S12);
400
+ }
401
+
402
+ /**
403
+ * See the documentation for GeodesicLine::ArcPosition.
404
+ **********************************************************************/
405
+ void ArcPosition(real a12, real& lat2, real& lon2)
406
+ const {
407
+ real t;
408
+ GenPosition(true, a12,
409
+ LATITUDE | LONGITUDE,
410
+ lat2, lon2, t, t, t, t, t, t);
411
+ }
412
+
413
+ /**
414
+ * See the documentation for GeodesicLine::ArcPosition.
415
+ **********************************************************************/
416
+ void ArcPosition(real a12,
417
+ real& lat2, real& lon2, real& azi2)
418
+ const {
419
+ real t;
420
+ GenPosition(true, a12,
421
+ LATITUDE | LONGITUDE | AZIMUTH,
422
+ lat2, lon2, azi2, t, t, t, t, t);
423
+ }
424
+
425
+ /**
426
+ * See the documentation for GeodesicLine::ArcPosition.
427
+ **********************************************************************/
428
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
429
+ real& s12) const {
430
+ real t;
431
+ GenPosition(true, a12,
432
+ LATITUDE | LONGITUDE | AZIMUTH | DISTANCE,
433
+ lat2, lon2, azi2, s12, t, t, t, t);
434
+ }
435
+
436
+ /**
437
+ * See the documentation for GeodesicLine::ArcPosition.
438
+ **********************************************************************/
439
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
440
+ real& s12, real& m12) const {
441
+ real t;
442
+ GenPosition(true, a12,
443
+ LATITUDE | LONGITUDE | AZIMUTH |
444
+ DISTANCE | REDUCEDLENGTH,
445
+ lat2, lon2, azi2, s12, m12, t, t, t);
446
+ }
447
+
448
+ /**
449
+ * See the documentation for GeodesicLine::ArcPosition.
450
+ **********************************************************************/
451
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
452
+ real& s12, real& M12, real& M21)
453
+ const {
454
+ real t;
455
+ GenPosition(true, a12,
456
+ LATITUDE | LONGITUDE | AZIMUTH |
457
+ DISTANCE | GEODESICSCALE,
458
+ lat2, lon2, azi2, s12, t, M12, M21, t);
459
+ }
460
+
461
+ /**
462
+ * See the documentation for GeodesicLine::ArcPosition.
463
+ **********************************************************************/
464
+ void ArcPosition(real a12, real& lat2, real& lon2, real& azi2,
465
+ real& s12, real& m12, real& M12, real& M21)
466
+ const {
467
+ real t;
468
+ GenPosition(true, a12,
469
+ LATITUDE | LONGITUDE | AZIMUTH |
470
+ DISTANCE | REDUCEDLENGTH | GEODESICSCALE,
471
+ lat2, lon2, azi2, s12, m12, M12, M21, t);
472
+ }
473
+ ///@}
474
+
475
+ /** \name The general position function.
476
+ **********************************************************************/
477
+ ///@{
478
+
479
+ /**
480
+ * The general position function. GeodesicLine::Position and
481
+ * GeodesicLine::ArcPosition are defined in terms of this function.
482
+ *
483
+ * @param[in] arcmode boolean flag determining the meaning of the second
484
+ * parameter; if \e arcmode is false, then the GeodesicLine object must
485
+ * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
486
+ * @param[in] s12_a12 if \e arcmode is false, this is the distance between
487
+ * point 1 and point 2 (meters); otherwise it is the arc length between
488
+ * point 1 and point 2 (degrees); it can be negative.
489
+ * @param[in] outmask a bitor'ed combination of GeodesicLine::mask values
490
+ * specifying which of the following parameters should be set.
491
+ * @param[out] lat2 latitude of point 2 (degrees).
492
+ * @param[out] lon2 longitude of point 2 (degrees); requires that the
493
+ * GeodesicLine object was constructed with \e caps |=
494
+ * GeodesicLine::LONGITUDE.
495
+ * @param[out] azi2 (forward) azimuth at point 2 (degrees).
496
+ * @param[out] s12 distance from point 1 to point 2 (meters); requires
497
+ * that the GeodesicLine object was constructed with \e caps |=
498
+ * GeodesicLine::DISTANCE.
499
+ * @param[out] m12 reduced length of geodesic (meters); requires that the
500
+ * GeodesicLine object was constructed with \e caps |=
501
+ * GeodesicLine::REDUCEDLENGTH.
502
+ * @param[out] M12 geodesic scale of point 2 relative to point 1
503
+ * (dimensionless); requires that the GeodesicLine object was constructed
504
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
505
+ * @param[out] M21 geodesic scale of point 1 relative to point 2
506
+ * (dimensionless); requires that the GeodesicLine object was constructed
507
+ * with \e caps |= GeodesicLine::GEODESICSCALE.
508
+ * @param[out] S12 area under the geodesic (meters<sup>2</sup>); requires
509
+ * that the GeodesicLine object was constructed with \e caps |=
510
+ * GeodesicLine::AREA.
511
+ * @return \e a12 arc length from point 1 to point 2 (degrees).
512
+ *
513
+ * The GeodesicLine::mask values possible for \e outmask are
514
+ * - \e outmask |= GeodesicLine::LATITUDE for the latitude \e lat2;
515
+ * - \e outmask |= GeodesicLine::LONGITUDE for the latitude \e lon2;
516
+ * - \e outmask |= GeodesicLine::AZIMUTH for the latitude \e azi2;
517
+ * - \e outmask |= GeodesicLine::DISTANCE for the distance \e s12;
518
+ * - \e outmask |= GeodesicLine::REDUCEDLENGTH for the reduced length \e
519
+ * m12;
520
+ * - \e outmask |= GeodesicLine::GEODESICSCALE for the geodesic scales \e
521
+ * M12 and \e M21;
522
+ * - \e outmask |= GeodesicLine::AREA for the area \e S12;
523
+ * - \e outmask |= GeodesicLine::ALL for all of the above;
524
+ * - \e outmask |= GeodesicLine::LONG_UNROLL to unroll \e lon2 instead of
525
+ * reducing it into the range [&minus;180&deg;, 180&deg;).
526
+ * .
527
+ * Requesting a value which the GeodesicLine object is not capable of
528
+ * computing is not an error; the corresponding argument will not be
529
+ * altered. Note, however, that the arc length is always computed and
530
+ * returned as the function value.
531
+ *
532
+ * With the GeodesicLine::LONG_UNROLL bit set, the quantity \e lon2 &minus;
533
+ * \e lon1 indicates how many times and in what sense the geodesic
534
+ * encircles the ellipsoid.
535
+ **********************************************************************/
536
+ Math::real GenPosition(bool arcmode, real s12_a12, unsigned outmask,
537
+ real& lat2, real& lon2, real& azi2,
538
+ real& s12, real& m12, real& M12, real& M21,
539
+ real& S12) const;
540
+ ///@}
541
+
542
+ /** \name Setting point 3
543
+ **********************************************************************/
544
+ ///@{
545
+
546
+ /**
547
+ * Specify position of point 3 in terms of distance.
548
+ *
549
+ * @param[in] s13 the distance from point 1 to point 3 (meters); it
550
+ * can be negative.
551
+ *
552
+ * This is only useful if the GeodesicLine object has been constructed
553
+ * with \e caps |= GeodesicLine::DISTANCE_IN.
554
+ **********************************************************************/
555
+ void SetDistance(real s13);
556
+
557
+ /**
558
+ * Specify position of point 3 in terms of arc length.
559
+ *
560
+ * @param[in] a13 the arc length from point 1 to point 3 (degrees); it
561
+ * can be negative.
562
+ *
563
+ * The distance \e s13 is only set if the GeodesicLine object has been
564
+ * constructed with \e caps |= GeodesicLine::DISTANCE.
565
+ **********************************************************************/
566
+ void SetArc(real a13);
567
+
568
+ /**
569
+ * Specify position of point 3 in terms of either distance or arc length.
570
+ *
571
+ * @param[in] arcmode boolean flag determining the meaning of the second
572
+ * parameter; if \e arcmode is false, then the GeodesicLine object must
573
+ * have been constructed with \e caps |= GeodesicLine::DISTANCE_IN.
574
+ * @param[in] s13_a13 if \e arcmode is false, this is the distance from
575
+ * point 1 to point 3 (meters); otherwise it is the arc length from
576
+ * point 1 to point 3 (degrees); it can be negative.
577
+ **********************************************************************/
578
+ void GenSetDistance(bool arcmode, real s13_a13);
579
+ ///@}
580
+
581
+ /** \name Inspector functions
582
+ **********************************************************************/
583
+ ///@{
584
+
585
+ /**
586
+ * @return true if the object has been initialized.
587
+ **********************************************************************/
588
+ bool Init() const { return _caps != 0U; }
589
+
590
+ /**
591
+ * @return \e lat1 the latitude of point 1 (degrees).
592
+ **********************************************************************/
593
+ Math::real Latitude() const
594
+ { return Init() ? _lat1 : Math::NaN(); }
595
+
596
+ /**
597
+ * @return \e lon1 the longitude of point 1 (degrees).
598
+ **********************************************************************/
599
+ Math::real Longitude() const
600
+ { return Init() ? _lon1 : Math::NaN(); }
601
+
602
+ /**
603
+ * @return \e azi1 the azimuth (degrees) of the geodesic line at point 1.
604
+ **********************************************************************/
605
+ Math::real Azimuth() const
606
+ { return Init() ? _azi1 : Math::NaN(); }
607
+
608
+ /**
609
+ * The sine and cosine of \e azi1.
610
+ *
611
+ * @param[out] sazi1 the sine of \e azi1.
612
+ * @param[out] cazi1 the cosine of \e azi1.
613
+ **********************************************************************/
614
+ void Azimuth(real& sazi1, real& cazi1) const
615
+ { if (Init()) { sazi1 = _salp1; cazi1 = _calp1; } }
616
+
617
+ /**
618
+ * @return \e azi0 the azimuth (degrees) of the geodesic line as it crosses
619
+ * the equator in a northward direction.
620
+ *
621
+ * The result lies in [&minus;90&deg;, 90&deg;].
622
+ **********************************************************************/
623
+ Math::real EquatorialAzimuth() const
624
+ { return Init() ? Math::atan2d(_salp0, _calp0) : Math::NaN(); }
625
+
626
+ /**
627
+ * The sine and cosine of \e azi0.
628
+ *
629
+ * @param[out] sazi0 the sine of \e azi0.
630
+ * @param[out] cazi0 the cosine of \e azi0.
631
+ **********************************************************************/
632
+ void EquatorialAzimuth(real& sazi0, real& cazi0) const
633
+ { if (Init()) { sazi0 = _salp0; cazi0 = _calp0; } }
634
+
635
+ /**
636
+ * @return \e a1 the arc length (degrees) between the northward equatorial
637
+ * crossing and point 1.
638
+ *
639
+ * The result lies in (&minus;180&deg;, 180&deg;].
640
+ **********************************************************************/
641
+ Math::real EquatorialArc() const {
642
+ return Init() ? Math::atan2d(_ssig1, _csig1) : Math::NaN();
643
+ }
644
+
645
+ /**
646
+ * @return \e a the equatorial radius of the ellipsoid (meters). This is
647
+ * the value inherited from the Geodesic object used in the constructor.
648
+ **********************************************************************/
649
+ Math::real MajorRadius() const
650
+ { return Init() ? _a : Math::NaN(); }
651
+
652
+ /**
653
+ * @return \e f the flattening of the ellipsoid. This is the value
654
+ * inherited from the Geodesic object used in the constructor.
655
+ **********************************************************************/
656
+ Math::real Flattening() const
657
+ { return Init() ? _f : Math::NaN(); }
658
+
659
+ /**
660
+ * @return \e caps the computational capabilities that this object was
661
+ * constructed with. LATITUDE and AZIMUTH are always included.
662
+ **********************************************************************/
663
+ unsigned Capabilities() const { return _caps; }
664
+
665
+ /**
666
+ * Test what capabilities are available.
667
+ *
668
+ * @param[in] testcaps a set of bitor'ed GeodesicLine::mask values.
669
+ * @return true if the GeodesicLine object has all these capabilities.
670
+ **********************************************************************/
671
+ bool Capabilities(unsigned testcaps) const {
672
+ testcaps &= OUT_ALL;
673
+ return (_caps & testcaps) == testcaps;
674
+ }
675
+
676
+ /**
677
+ * The distance or arc length to point 3.
678
+ *
679
+ * @param[in] arcmode boolean flag determining the meaning of returned
680
+ * value.
681
+ * @return \e s13 if \e arcmode is false; \e a13 if \e arcmode is true.
682
+ **********************************************************************/
683
+ Math::real GenDistance(bool arcmode) const
684
+ { return Init() ? (arcmode ? _a13 : _s13) : Math::NaN(); }
685
+
686
+ /**
687
+ * @return \e s13, the distance to point 3 (meters).
688
+ **********************************************************************/
689
+ Math::real Distance() const { return GenDistance(false); }
690
+
691
+ /**
692
+ * @return \e a13, the arc length to point 3 (degrees).
693
+ **********************************************************************/
694
+ Math::real Arc() const { return GenDistance(true); }
695
+ ///@}
696
+
697
+ };
698
+
699
+ } // namespace GeographicLib
700
+
701
+ #endif // GEOGRAPHICLIB_GEODESICLINE_HPP