geographiclib 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/AUTHORS +12 -0
- data/LICENSE +24 -0
- data/ext/geographiclib/Accumulator.cpp +23 -0
- data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
- data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
- data/ext/geographiclib/CassiniSoldner.cpp +89 -0
- data/ext/geographiclib/CircularEngine.cpp +96 -0
- data/ext/geographiclib/DMS.cpp +381 -0
- data/ext/geographiclib/Ellipsoid.cpp +125 -0
- data/ext/geographiclib/EllipticFunction.cpp +512 -0
- data/ext/geographiclib/GARS.cpp +122 -0
- data/ext/geographiclib/GeoCoords.cpp +175 -0
- data/ext/geographiclib/Geocentric.cpp +172 -0
- data/ext/geographiclib/Geodesic.cpp +1908 -0
- data/ext/geographiclib/GeodesicExact.cpp +927 -0
- data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
- data/ext/geographiclib/GeodesicLine.cpp +321 -0
- data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
- data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
- data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
- data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
- data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
- data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
- data/ext/geographiclib/GeographicLib/Config.h +12 -0
- data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
- data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
- data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
- data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
- data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
- data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
- data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
- data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
- data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
- data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
- data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
- data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
- data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
- data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
- data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
- data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
- data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
- data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
- data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
- data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
- data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
- data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
- data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
- data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
- data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
- data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
- data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
- data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
- data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
- data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
- data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
- data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
- data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
- data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
- data/ext/geographiclib/Geohash.cpp +102 -0
- data/ext/geographiclib/Geoid.cpp +509 -0
- data/ext/geographiclib/Georef.cpp +135 -0
- data/ext/geographiclib/Gnomonic.cpp +85 -0
- data/ext/geographiclib/GravityCircle.cpp +129 -0
- data/ext/geographiclib/GravityModel.cpp +360 -0
- data/ext/geographiclib/LambertConformalConic.cpp +456 -0
- data/ext/geographiclib/LocalCartesian.cpp +62 -0
- data/ext/geographiclib/MGRS.cpp +461 -0
- data/ext/geographiclib/MagneticCircle.cpp +52 -0
- data/ext/geographiclib/MagneticModel.cpp +269 -0
- data/ext/geographiclib/Math.cpp +63 -0
- data/ext/geographiclib/NormalGravity.cpp +262 -0
- data/ext/geographiclib/OSGB.cpp +167 -0
- data/ext/geographiclib/PolarStereographic.cpp +108 -0
- data/ext/geographiclib/PolygonArea.cpp +204 -0
- data/ext/geographiclib/Rhumb.cpp +383 -0
- data/ext/geographiclib/SphericalEngine.cpp +477 -0
- data/ext/geographiclib/TransverseMercator.cpp +603 -0
- data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
- data/ext/geographiclib/UTMUPS.cpp +296 -0
- data/ext/geographiclib/Utility.cpp +61 -0
- data/ext/geographiclib/extconf.rb +3 -0
- data/ext/geographiclib/geographiclib.cpp +62 -0
- data/lib/geographiclib.rb +20 -0
- metadata +140 -0
@@ -0,0 +1,1908 @@
|
|
1
|
+
/**
|
2
|
+
* \file Geodesic.cpp
|
3
|
+
* \brief Implementation for GeographicLib::Geodesic class
|
4
|
+
*
|
5
|
+
* Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
|
6
|
+
* under the MIT/X11 License. For more information, see
|
7
|
+
* http://geographiclib.sourceforge.net/
|
8
|
+
*
|
9
|
+
* This is a reformulation of the geodesic problem. The notation is as
|
10
|
+
* follows:
|
11
|
+
* - at a general point (no suffix or 1 or 2 as suffix)
|
12
|
+
* - phi = latitude
|
13
|
+
* - beta = latitude on auxiliary sphere
|
14
|
+
* - omega = longitude on auxiliary sphere
|
15
|
+
* - lambda = longitude
|
16
|
+
* - alpha = azimuth of great circle
|
17
|
+
* - sigma = arc length along great circle
|
18
|
+
* - s = distance
|
19
|
+
* - tau = scaled distance (= sigma at multiples of pi/2)
|
20
|
+
* - at northwards equator crossing
|
21
|
+
* - beta = phi = 0
|
22
|
+
* - omega = lambda = 0
|
23
|
+
* - alpha = alpha0
|
24
|
+
* - sigma = s = 0
|
25
|
+
* - a 12 suffix means a difference, e.g., s12 = s2 - s1.
|
26
|
+
* - s and c prefixes mean sin and cos
|
27
|
+
**********************************************************************/
|
28
|
+
|
29
|
+
#include <GeographicLib/Geodesic.hpp>
|
30
|
+
#include <GeographicLib/GeodesicLine.hpp>
|
31
|
+
|
32
|
+
#if defined(_MSC_VER)
|
33
|
+
// Squelch warnings about potentially uninitialized local variables and
|
34
|
+
// constant conditional expressions
|
35
|
+
# pragma warning (disable: 4701 4127)
|
36
|
+
#endif
|
37
|
+
|
38
|
+
namespace GeographicLib {
|
39
|
+
|
40
|
+
using namespace std;
|
41
|
+
|
42
|
+
Geodesic::Geodesic(real a, real f)
|
43
|
+
: maxit2_(maxit1_ + Math::digits() + 10)
|
44
|
+
// Underflow guard. We require
|
45
|
+
// tiny_ * epsilon() > 0
|
46
|
+
// tiny_ + epsilon() == epsilon()
|
47
|
+
, tiny_(sqrt(numeric_limits<real>::min()))
|
48
|
+
, tol0_(numeric_limits<real>::epsilon())
|
49
|
+
// Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse
|
50
|
+
// case 52.784459512564 0 -52.784459512563990912 179.634407464943777557
|
51
|
+
// which otherwise failed for Visual Studio 10 (Release and Debug)
|
52
|
+
, tol1_(200 * tol0_)
|
53
|
+
, tol2_(sqrt(tol0_))
|
54
|
+
, tolb_(tol0_ * tol2_) // Check on bisection interval
|
55
|
+
, xthresh_(1000 * tol2_)
|
56
|
+
, _a(a)
|
57
|
+
, _f(f)
|
58
|
+
, _f1(1 - _f)
|
59
|
+
, _e2(_f * (2 - _f))
|
60
|
+
, _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2)
|
61
|
+
, _n(_f / ( 2 - _f))
|
62
|
+
, _b(_a * _f1)
|
63
|
+
, _c2((Math::sq(_a) + Math::sq(_b) *
|
64
|
+
(_e2 == 0 ? 1 :
|
65
|
+
Math::eatanhe(real(1), (_f < 0 ? -1 : 1) * sqrt(abs(_e2))) / _e2))
|
66
|
+
/ 2) // authalic radius squared
|
67
|
+
// The sig12 threshold for "really short". Using the auxiliary sphere
|
68
|
+
// solution with dnm computed at (bet1 + bet2) / 2, the relative error in
|
69
|
+
// the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
|
70
|
+
// (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a
|
71
|
+
// given f and sig12, the max error occurs for lines near the pole. If
|
72
|
+
// the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
|
73
|
+
// increases by a factor of 2.) Setting this equal to epsilon gives
|
74
|
+
// sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100)
|
75
|
+
// and max(0.001, abs(f)) stops etol2 getting too large in the nearly
|
76
|
+
// spherical case.
|
77
|
+
, _etol2(0.1 * tol2_ /
|
78
|
+
sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
|
79
|
+
{
|
80
|
+
if (!(Math::isfinite(_a) && _a > 0))
|
81
|
+
throw GeographicErr("Major radius is not positive");
|
82
|
+
if (!(Math::isfinite(_b) && _b > 0))
|
83
|
+
throw GeographicErr("Minor radius is not positive");
|
84
|
+
A3coeff();
|
85
|
+
C3coeff();
|
86
|
+
C4coeff();
|
87
|
+
}
|
88
|
+
|
89
|
+
const Geodesic& Geodesic::WGS84() {
|
90
|
+
static const Geodesic wgs84(Constants::WGS84_a(), Constants::WGS84_f());
|
91
|
+
return wgs84;
|
92
|
+
}
|
93
|
+
|
94
|
+
Math::real Geodesic::SinCosSeries(bool sinp,
|
95
|
+
real sinx, real cosx,
|
96
|
+
const real c[], int n) {
|
97
|
+
// Evaluate
|
98
|
+
// y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
|
99
|
+
// sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
|
100
|
+
// using Clenshaw summation. N.B. c[0] is unused for sin series
|
101
|
+
// Approx operation count = (n + 5) mult and (2 * n + 2) add
|
102
|
+
c += (n + sinp); // Point to one beyond last element
|
103
|
+
real
|
104
|
+
ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
|
105
|
+
y0 = n & 1 ? *--c : 0, y1 = 0; // accumulators for sum
|
106
|
+
// Now n is even
|
107
|
+
n /= 2;
|
108
|
+
while (n--) {
|
109
|
+
// Unroll loop x 2, so accumulators return to their original role
|
110
|
+
y1 = ar * y0 - y1 + *--c;
|
111
|
+
y0 = ar * y1 - y0 + *--c;
|
112
|
+
}
|
113
|
+
return sinp
|
114
|
+
? 2 * sinx * cosx * y0 // sin(2 * x) * y0
|
115
|
+
: cosx * (y0 - y1); // cos(x) * (y0 - y1)
|
116
|
+
}
|
117
|
+
|
118
|
+
GeodesicLine Geodesic::Line(real lat1, real lon1, real azi1, unsigned caps)
|
119
|
+
const {
|
120
|
+
return GeodesicLine(*this, lat1, lon1, azi1, caps);
|
121
|
+
}
|
122
|
+
|
123
|
+
Math::real Geodesic::GenDirect(real lat1, real lon1, real azi1,
|
124
|
+
bool arcmode, real s12_a12, unsigned outmask,
|
125
|
+
real& lat2, real& lon2, real& azi2,
|
126
|
+
real& s12, real& m12, real& M12, real& M21,
|
127
|
+
real& S12) const {
|
128
|
+
// Automatically supply DISTANCE_IN if necessary
|
129
|
+
if (!arcmode) outmask |= DISTANCE_IN;
|
130
|
+
return GeodesicLine(*this, lat1, lon1, azi1, outmask)
|
131
|
+
. // Note the dot!
|
132
|
+
GenPosition(arcmode, s12_a12, outmask,
|
133
|
+
lat2, lon2, azi2, s12, m12, M12, M21, S12);
|
134
|
+
}
|
135
|
+
|
136
|
+
GeodesicLine Geodesic::GenDirectLine(real lat1, real lon1, real azi1,
|
137
|
+
bool arcmode, real s12_a12,
|
138
|
+
unsigned caps) const {
|
139
|
+
azi1 = Math::AngNormalize(azi1);
|
140
|
+
real salp1, calp1;
|
141
|
+
// Guard against underflow in salp0. Also -0 is converted to +0.
|
142
|
+
Math::sincosd(Math::AngRound(azi1), salp1, calp1);
|
143
|
+
// Automatically supply DISTANCE_IN if necessary
|
144
|
+
if (!arcmode) caps |= DISTANCE_IN;
|
145
|
+
return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1,
|
146
|
+
caps, arcmode, s12_a12);
|
147
|
+
}
|
148
|
+
|
149
|
+
GeodesicLine Geodesic::DirectLine(real lat1, real lon1, real azi1, real s12,
|
150
|
+
unsigned caps) const {
|
151
|
+
return GenDirectLine(lat1, lon1, azi1, false, s12, caps);
|
152
|
+
}
|
153
|
+
|
154
|
+
GeodesicLine Geodesic::ArcDirectLine(real lat1, real lon1, real azi1,
|
155
|
+
real a12, unsigned caps) const {
|
156
|
+
return GenDirectLine(lat1, lon1, azi1, true, a12, caps);
|
157
|
+
}
|
158
|
+
|
159
|
+
Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2,
|
160
|
+
unsigned outmask, real& s12,
|
161
|
+
real& salp1, real& calp1,
|
162
|
+
real& salp2, real& calp2,
|
163
|
+
real& m12, real& M12, real& M21, real& S12)
|
164
|
+
const {
|
165
|
+
// Compute longitude difference (AngDiff does this carefully). Result is
|
166
|
+
// in [-180, 180] but -180 is only for west-going geodesics. 180 is for
|
167
|
+
// east-going and meridional geodesics.
|
168
|
+
real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s);
|
169
|
+
// Make longitude difference positive.
|
170
|
+
int lonsign = lon12 >= 0 ? 1 : -1;
|
171
|
+
// If very close to being on the same half-meridian, then make it so.
|
172
|
+
lon12 = lonsign * Math::AngRound(lon12);
|
173
|
+
lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s);
|
174
|
+
real
|
175
|
+
lam12 = lon12 * Math::degree(),
|
176
|
+
slam12, clam12;
|
177
|
+
if (lon12 > 90) {
|
178
|
+
Math::sincosd(lon12s, slam12, clam12);
|
179
|
+
clam12 = -clam12;
|
180
|
+
} else
|
181
|
+
Math::sincosd(lon12, slam12, clam12);
|
182
|
+
|
183
|
+
// If really close to the equator, treat as on equator.
|
184
|
+
lat1 = Math::AngRound(Math::LatFix(lat1));
|
185
|
+
lat2 = Math::AngRound(Math::LatFix(lat2));
|
186
|
+
// Swap points so that point with higher (abs) latitude is point 1
|
187
|
+
// If one latitude is a nan, then it becomes lat1.
|
188
|
+
int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
|
189
|
+
if (swapp < 0) {
|
190
|
+
lonsign *= -1;
|
191
|
+
swap(lat1, lat2);
|
192
|
+
}
|
193
|
+
// Make lat1 <= 0
|
194
|
+
int latsign = lat1 < 0 ? 1 : -1;
|
195
|
+
lat1 *= latsign;
|
196
|
+
lat2 *= latsign;
|
197
|
+
// Now we have
|
198
|
+
//
|
199
|
+
// 0 <= lon12 <= 180
|
200
|
+
// -90 <= lat1 <= 0
|
201
|
+
// lat1 <= lat2 <= -lat1
|
202
|
+
//
|
203
|
+
// longsign, swapp, latsign register the transformation to bring the
|
204
|
+
// coordinates to this canonical form. In all cases, 1 means no change was
|
205
|
+
// made. We make these transformations so that there are few cases to
|
206
|
+
// check, e.g., on verifying quadrants in atan2. In addition, this
|
207
|
+
// enforces some symmetries in the results returned.
|
208
|
+
|
209
|
+
real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
|
210
|
+
|
211
|
+
Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1;
|
212
|
+
// Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12
|
213
|
+
// will be <= 2*tiny for two points at the same pole.
|
214
|
+
Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
|
215
|
+
|
216
|
+
Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1;
|
217
|
+
// Ensure cbet2 = +epsilon at poles
|
218
|
+
Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);
|
219
|
+
|
220
|
+
// If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
|
221
|
+
// |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
|
222
|
+
// a better measure. This logic is used in assigning calp2 in Lambda12.
|
223
|
+
// Sometimes these quantities vanish and in that case we force bet2 = +/-
|
224
|
+
// bet1 exactly. An example where is is necessary is the inverse problem
|
225
|
+
// 48.522876735459 0 -48.52287673545898293 179.599720456223079643
|
226
|
+
// which failed with Visual Studio 10 (Release and Debug)
|
227
|
+
|
228
|
+
if (cbet1 < -sbet1) {
|
229
|
+
if (cbet2 == cbet1)
|
230
|
+
sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
|
231
|
+
} else {
|
232
|
+
if (abs(sbet2) == -sbet1)
|
233
|
+
cbet2 = cbet1;
|
234
|
+
}
|
235
|
+
|
236
|
+
real
|
237
|
+
dn1 = sqrt(1 + _ep2 * Math::sq(sbet1)),
|
238
|
+
dn2 = sqrt(1 + _ep2 * Math::sq(sbet2));
|
239
|
+
|
240
|
+
real a12, sig12;
|
241
|
+
// index zero element of this array is unused
|
242
|
+
real Ca[nC_];
|
243
|
+
|
244
|
+
bool meridian = lat1 == -90 || slam12 == 0;
|
245
|
+
|
246
|
+
if (meridian) {
|
247
|
+
|
248
|
+
// Endpoints are on a single full meridian, so the geodesic might lie on
|
249
|
+
// a meridian.
|
250
|
+
|
251
|
+
calp1 = clam12; salp1 = slam12; // Head to the target longitude
|
252
|
+
calp2 = 1; salp2 = 0; // At the target we're heading north
|
253
|
+
|
254
|
+
real
|
255
|
+
// tan(bet) = tan(sig) * cos(alp)
|
256
|
+
ssig1 = sbet1, csig1 = calp1 * cbet1,
|
257
|
+
ssig2 = sbet2, csig2 = calp2 * cbet2;
|
258
|
+
|
259
|
+
// sig12 = sig2 - sig1
|
260
|
+
sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
|
261
|
+
csig1 * csig2 + ssig1 * ssig2);
|
262
|
+
{
|
263
|
+
real dummy;
|
264
|
+
Lengths(_n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
|
265
|
+
outmask | DISTANCE | REDUCEDLENGTH,
|
266
|
+
s12x, m12x, dummy, M12, M21, Ca);
|
267
|
+
}
|
268
|
+
// Add the check for sig12 since zero length geodesics might yield m12 <
|
269
|
+
// 0. Test case was
|
270
|
+
//
|
271
|
+
// echo 20.001 0 20.001 0 | GeodSolve -i
|
272
|
+
//
|
273
|
+
// In fact, we will have sig12 > pi/2 for meridional geodesic which is
|
274
|
+
// not a shortest path.
|
275
|
+
if (sig12 < 1 || m12x >= 0) {
|
276
|
+
// Need at least 2, to handle 90 0 90 180
|
277
|
+
if (sig12 < 3 * tiny_)
|
278
|
+
sig12 = m12x = s12x = 0;
|
279
|
+
m12x *= _b;
|
280
|
+
s12x *= _b;
|
281
|
+
a12 = sig12 / Math::degree();
|
282
|
+
} else
|
283
|
+
// m12 < 0, i.e., prolate and too close to anti-podal
|
284
|
+
meridian = false;
|
285
|
+
}
|
286
|
+
|
287
|
+
// somg12 > 1 marks that it needs to be calculated
|
288
|
+
real omg12 = 0, somg12 = 2, comg12 = 0;
|
289
|
+
if (!meridian &&
|
290
|
+
sbet1 == 0 && // and sbet2 == 0
|
291
|
+
(_f <= 0 || lon12s >= _f * 180)) {
|
292
|
+
|
293
|
+
// Geodesic runs along equator
|
294
|
+
calp1 = calp2 = 0; salp1 = salp2 = 1;
|
295
|
+
s12x = _a * lam12;
|
296
|
+
sig12 = omg12 = lam12 / _f1;
|
297
|
+
m12x = _b * sin(sig12);
|
298
|
+
if (outmask & GEODESICSCALE)
|
299
|
+
M12 = M21 = cos(sig12);
|
300
|
+
a12 = lon12 / _f1;
|
301
|
+
|
302
|
+
} else if (!meridian) {
|
303
|
+
|
304
|
+
// Now point1 and point2 belong within a hemisphere bounded by a
|
305
|
+
// meridian and geodesic is neither meridional or equatorial.
|
306
|
+
|
307
|
+
// Figure a starting point for Newton's method
|
308
|
+
real dnm;
|
309
|
+
sig12 = InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
|
310
|
+
lam12, slam12, clam12,
|
311
|
+
salp1, calp1, salp2, calp2, dnm,
|
312
|
+
Ca);
|
313
|
+
|
314
|
+
if (sig12 >= 0) {
|
315
|
+
// Short lines (InverseStart sets salp2, calp2, dnm)
|
316
|
+
s12x = sig12 * _b * dnm;
|
317
|
+
m12x = Math::sq(dnm) * _b * sin(sig12 / dnm);
|
318
|
+
if (outmask & GEODESICSCALE)
|
319
|
+
M12 = M21 = cos(sig12 / dnm);
|
320
|
+
a12 = sig12 / Math::degree();
|
321
|
+
omg12 = lam12 / (_f1 * dnm);
|
322
|
+
} else {
|
323
|
+
|
324
|
+
// Newton's method. This is a straightforward solution of f(alp1) =
|
325
|
+
// lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
|
326
|
+
// root in the interval (0, pi) and its derivative is positive at the
|
327
|
+
// root. Thus f(alp) is positive for alp > alp1 and negative for alp <
|
328
|
+
// alp1. During the course of the iteration, a range (alp1a, alp1b) is
|
329
|
+
// maintained which brackets the root and with each evaluation of
|
330
|
+
// f(alp) the range is shrunk, if possible. Newton's method is
|
331
|
+
// restarted whenever the derivative of f is negative (because the new
|
332
|
+
// value of alp1 is then further from the solution) or if the new
|
333
|
+
// estimate of alp1 lies outside (0,pi); in this case, the new starting
|
334
|
+
// guess is taken to be (alp1a + alp1b) / 2.
|
335
|
+
//
|
336
|
+
// initial values to suppress warnings (if loop is executed 0 times)
|
337
|
+
real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0;
|
338
|
+
unsigned numit = 0;
|
339
|
+
// Bracketing range
|
340
|
+
real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
|
341
|
+
for (bool tripn = false, tripb = false;
|
342
|
+
numit < maxit2_ || GEOGRAPHICLIB_PANIC;
|
343
|
+
++numit) {
|
344
|
+
// the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
|
345
|
+
// WGS84 and random input: mean = 2.85, sd = 0.60
|
346
|
+
real dv;
|
347
|
+
real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
|
348
|
+
slam12, clam12,
|
349
|
+
salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
|
350
|
+
eps, somg12, comg12, numit < maxit1_, dv, Ca);
|
351
|
+
// Reversed test to allow escape with NaNs
|
352
|
+
if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break;
|
353
|
+
// Update bracketing values
|
354
|
+
if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
|
355
|
+
{ salp1b = salp1; calp1b = calp1; }
|
356
|
+
else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
|
357
|
+
{ salp1a = salp1; calp1a = calp1; }
|
358
|
+
if (numit < maxit1_ && dv > 0) {
|
359
|
+
real
|
360
|
+
dalp1 = -v/dv;
|
361
|
+
real
|
362
|
+
sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
|
363
|
+
nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
|
364
|
+
if (nsalp1 > 0 && abs(dalp1) < Math::pi()) {
|
365
|
+
calp1 = calp1 * cdalp1 - salp1 * sdalp1;
|
366
|
+
salp1 = nsalp1;
|
367
|
+
Math::norm(salp1, calp1);
|
368
|
+
// In some regimes we don't get quadratic convergence because
|
369
|
+
// slope -> 0. So use convergence conditions based on epsilon
|
370
|
+
// instead of sqrt(epsilon).
|
371
|
+
tripn = abs(v) <= 16 * tol0_;
|
372
|
+
continue;
|
373
|
+
}
|
374
|
+
}
|
375
|
+
// Either dv was not postive or updated value was outside legal
|
376
|
+
// range. Use the midpoint of the bracket as the next estimate.
|
377
|
+
// This mechanism is not needed for the WGS84 ellipsoid, but it does
|
378
|
+
// catch problems with more eccentric ellipsoids. Its efficacy is
|
379
|
+
// such for the WGS84 test set with the starting guess set to alp1 =
|
380
|
+
// 90deg:
|
381
|
+
// the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
|
382
|
+
// WGS84 and random input: mean = 4.74, sd = 0.99
|
383
|
+
salp1 = (salp1a + salp1b)/2;
|
384
|
+
calp1 = (calp1a + calp1b)/2;
|
385
|
+
Math::norm(salp1, calp1);
|
386
|
+
tripn = false;
|
387
|
+
tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
|
388
|
+
abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
|
389
|
+
}
|
390
|
+
{
|
391
|
+
real dummy;
|
392
|
+
// Ensure that the reduced length and geodesic scale are computed in
|
393
|
+
// a "canonical" way, with the I2 integral.
|
394
|
+
unsigned lengthmask = outmask |
|
395
|
+
(outmask & (REDUCEDLENGTH | GEODESICSCALE) ? DISTANCE : NONE);
|
396
|
+
Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
397
|
+
cbet1, cbet2, lengthmask, s12x, m12x, dummy, M12, M21, Ca);
|
398
|
+
}
|
399
|
+
m12x *= _b;
|
400
|
+
s12x *= _b;
|
401
|
+
a12 = sig12 / Math::degree();
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
if (outmask & DISTANCE)
|
406
|
+
s12 = 0 + s12x; // Convert -0 to 0
|
407
|
+
|
408
|
+
if (outmask & REDUCEDLENGTH)
|
409
|
+
m12 = 0 + m12x; // Convert -0 to 0
|
410
|
+
|
411
|
+
if (outmask & AREA) {
|
412
|
+
real
|
413
|
+
// From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
|
414
|
+
salp0 = salp1 * cbet1,
|
415
|
+
calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
|
416
|
+
real alp12;
|
417
|
+
if (calp0 != 0 && salp0 != 0) {
|
418
|
+
real
|
419
|
+
// From Lambda12: tan(bet) = tan(sig) * cos(alp)
|
420
|
+
ssig1 = sbet1, csig1 = calp1 * cbet1,
|
421
|
+
ssig2 = sbet2, csig2 = calp2 * cbet2,
|
422
|
+
k2 = Math::sq(calp0) * _ep2,
|
423
|
+
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
|
424
|
+
// Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
|
425
|
+
A4 = Math::sq(_a) * calp0 * salp0 * _e2;
|
426
|
+
Math::norm(ssig1, csig1);
|
427
|
+
Math::norm(ssig2, csig2);
|
428
|
+
C4f(eps, Ca);
|
429
|
+
real
|
430
|
+
B41 = SinCosSeries(false, ssig1, csig1, Ca, nC4_),
|
431
|
+
B42 = SinCosSeries(false, ssig2, csig2, Ca, nC4_);
|
432
|
+
S12 = A4 * (B42 - B41);
|
433
|
+
} else
|
434
|
+
// Avoid problems with indeterminate sig1, sig2 on equator
|
435
|
+
S12 = 0;
|
436
|
+
|
437
|
+
if (!meridian) {
|
438
|
+
if (somg12 > 1) {
|
439
|
+
somg12 = sin(omg12); comg12 = cos(omg12);
|
440
|
+
} else
|
441
|
+
Math::norm(somg12, comg12);
|
442
|
+
}
|
443
|
+
|
444
|
+
if (!meridian &&
|
445
|
+
// omg12 < 3/4 * pi
|
446
|
+
comg12 > -real(0.7071) && // Long difference not too big
|
447
|
+
sbet2 - sbet1 < real(1.75)) { // Lat difference not too big
|
448
|
+
// Use tan(Gamma/2) = tan(omg12/2)
|
449
|
+
// * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
|
450
|
+
// with tan(x/2) = sin(x)/(1+cos(x))
|
451
|
+
real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
|
452
|
+
alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
|
453
|
+
domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
|
454
|
+
} else {
|
455
|
+
// alp12 = alp2 - alp1, used in atan2 so no need to normalize
|
456
|
+
real
|
457
|
+
salp12 = salp2 * calp1 - calp2 * salp1,
|
458
|
+
calp12 = calp2 * calp1 + salp2 * salp1;
|
459
|
+
// The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
|
460
|
+
// salp12 = -0 and alp12 = -180. However this depends on the sign
|
461
|
+
// being attached to 0 correctly. The following ensures the correct
|
462
|
+
// behavior.
|
463
|
+
if (salp12 == 0 && calp12 < 0) {
|
464
|
+
salp12 = tiny_ * calp1;
|
465
|
+
calp12 = -1;
|
466
|
+
}
|
467
|
+
alp12 = atan2(salp12, calp12);
|
468
|
+
}
|
469
|
+
S12 += _c2 * alp12;
|
470
|
+
S12 *= swapp * lonsign * latsign;
|
471
|
+
// Convert -0 to 0
|
472
|
+
S12 += 0;
|
473
|
+
}
|
474
|
+
|
475
|
+
// Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
|
476
|
+
if (swapp < 0) {
|
477
|
+
swap(salp1, salp2);
|
478
|
+
swap(calp1, calp2);
|
479
|
+
if (outmask & GEODESICSCALE)
|
480
|
+
swap(M12, M21);
|
481
|
+
}
|
482
|
+
|
483
|
+
salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
|
484
|
+
salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
|
485
|
+
|
486
|
+
// Returned value in [0, 180]
|
487
|
+
return a12;
|
488
|
+
}
|
489
|
+
|
490
|
+
Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2,
|
491
|
+
unsigned outmask,
|
492
|
+
real& s12, real& azi1, real& azi2,
|
493
|
+
real& m12, real& M12, real& M21, real& S12)
|
494
|
+
const {
|
495
|
+
outmask &= OUT_MASK;
|
496
|
+
real salp1, calp1, salp2, calp2,
|
497
|
+
a12 = GenInverse(lat1, lon1, lat2, lon2,
|
498
|
+
outmask, s12, salp1, calp1, salp2, calp2,
|
499
|
+
m12, M12, M21, S12);
|
500
|
+
if (outmask & AZIMUTH) {
|
501
|
+
azi1 = Math::atan2d(salp1, calp1);
|
502
|
+
azi2 = Math::atan2d(salp2, calp2);
|
503
|
+
}
|
504
|
+
return a12;
|
505
|
+
}
|
506
|
+
|
507
|
+
GeodesicLine Geodesic::InverseLine(real lat1, real lon1, real lat2, real lon2,
|
508
|
+
unsigned caps) const {
|
509
|
+
real t, salp1, calp1, salp2, calp2,
|
510
|
+
a12 = GenInverse(lat1, lon1, lat2, lon2,
|
511
|
+
// No need to specify AZIMUTH here
|
512
|
+
0u, t, salp1, calp1, salp2, calp2,
|
513
|
+
t, t, t, t),
|
514
|
+
azi1 = Math::atan2d(salp1, calp1);
|
515
|
+
// Ensure that a12 can be converted to a distance
|
516
|
+
if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE;
|
517
|
+
return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1, caps, true, a12);
|
518
|
+
}
|
519
|
+
|
520
|
+
void Geodesic::Lengths(real eps, real sig12,
|
521
|
+
real ssig1, real csig1, real dn1,
|
522
|
+
real ssig2, real csig2, real dn2,
|
523
|
+
real cbet1, real cbet2, unsigned outmask,
|
524
|
+
real& s12b, real& m12b, real& m0, real& M12, real& M21,
|
525
|
+
// Scratch area of the right size
|
526
|
+
real Ca[]) const {
|
527
|
+
// Return m12b = (reduced length)/_b; also calculate s12b = distance/_b,
|
528
|
+
// and m0 = coefficient of secular term in expression for reduced length.
|
529
|
+
|
530
|
+
outmask &= OUT_MASK;
|
531
|
+
// outmask & DISTANCE: set s12b
|
532
|
+
// outmask & REDUCEDLENGTH: set m12b & m0
|
533
|
+
// outmask & GEODESICSCALE: set M12 & M21
|
534
|
+
|
535
|
+
real m0x = 0, J12 = 0, A1 = 0, A2 = 0;
|
536
|
+
real Cb[nC2_ + 1];
|
537
|
+
if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
|
538
|
+
A1 = A1m1f(eps);
|
539
|
+
C1f(eps, Ca);
|
540
|
+
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
541
|
+
A2 = A2m1f(eps);
|
542
|
+
C2f(eps, Cb);
|
543
|
+
m0x = A1 - A2;
|
544
|
+
A2 = 1 + A2;
|
545
|
+
}
|
546
|
+
A1 = 1 + A1;
|
547
|
+
}
|
548
|
+
if (outmask & DISTANCE) {
|
549
|
+
real B1 = SinCosSeries(true, ssig2, csig2, Ca, nC1_) -
|
550
|
+
SinCosSeries(true, ssig1, csig1, Ca, nC1_);
|
551
|
+
// Missing a factor of _b
|
552
|
+
s12b = A1 * (sig12 + B1);
|
553
|
+
if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
554
|
+
real B2 = SinCosSeries(true, ssig2, csig2, Cb, nC2_) -
|
555
|
+
SinCosSeries(true, ssig1, csig1, Cb, nC2_);
|
556
|
+
J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
|
557
|
+
}
|
558
|
+
} else if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
|
559
|
+
// Assume here that nC1_ >= nC2_
|
560
|
+
for (int l = 1; l <= nC2_; ++l)
|
561
|
+
Cb[l] = A1 * Ca[l] - A2 * Cb[l];
|
562
|
+
J12 = m0x * sig12 + (SinCosSeries(true, ssig2, csig2, Cb, nC2_) -
|
563
|
+
SinCosSeries(true, ssig1, csig1, Cb, nC2_));
|
564
|
+
}
|
565
|
+
if (outmask & REDUCEDLENGTH) {
|
566
|
+
m0 = m0x;
|
567
|
+
// Missing a factor of _b.
|
568
|
+
// Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
|
569
|
+
// accurate cancellation in the case of coincident points.
|
570
|
+
m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
|
571
|
+
csig1 * csig2 * J12;
|
572
|
+
}
|
573
|
+
if (outmask & GEODESICSCALE) {
|
574
|
+
real csig12 = csig1 * csig2 + ssig1 * ssig2;
|
575
|
+
real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
|
576
|
+
M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
|
577
|
+
M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
|
578
|
+
}
|
579
|
+
}
|
580
|
+
|
581
|
+
Math::real Geodesic::Astroid(real x, real y) {
|
582
|
+
// Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
|
583
|
+
// This solution is adapted from Geocentric::Reverse.
|
584
|
+
real k;
|
585
|
+
real
|
586
|
+
p = Math::sq(x),
|
587
|
+
q = Math::sq(y),
|
588
|
+
r = (p + q - 1) / 6;
|
589
|
+
if ( !(q == 0 && r <= 0) ) {
|
590
|
+
real
|
591
|
+
// Avoid possible division by zero when r = 0 by multiplying equations
|
592
|
+
// for s and t by r^3 and r, resp.
|
593
|
+
S = p * q / 4, // S = r^3 * s
|
594
|
+
r2 = Math::sq(r),
|
595
|
+
r3 = r * r2,
|
596
|
+
// The discriminant of the quadratic equation for T3. This is zero on
|
597
|
+
// the evolute curve p^(1/3)+q^(1/3) = 1
|
598
|
+
disc = S * (S + 2 * r3);
|
599
|
+
real u = r;
|
600
|
+
if (disc >= 0) {
|
601
|
+
real T3 = S + r3;
|
602
|
+
// Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
|
603
|
+
// of precision due to cancellation. The result is unchanged because
|
604
|
+
// of the way the T is used in definition of u.
|
605
|
+
T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
|
606
|
+
// N.B. cbrt always returns the real root. cbrt(-8) = -2.
|
607
|
+
real T = Math::cbrt(T3); // T = r * t
|
608
|
+
// T can be zero; but then r2 / T -> 0.
|
609
|
+
u += T + (T ? r2 / T : 0);
|
610
|
+
} else {
|
611
|
+
// T is complex, but the way u is defined the result is real.
|
612
|
+
real ang = atan2(sqrt(-disc), -(S + r3));
|
613
|
+
// There are three possible cube roots. We choose the root which
|
614
|
+
// avoids cancellation. Note that disc < 0 implies that r < 0.
|
615
|
+
u += 2 * r * cos(ang / 3);
|
616
|
+
}
|
617
|
+
real
|
618
|
+
v = sqrt(Math::sq(u) + q), // guaranteed positive
|
619
|
+
// Avoid loss of accuracy when u < 0.
|
620
|
+
uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive
|
621
|
+
w = (uv - q) / (2 * v); // positive?
|
622
|
+
// Rearrange expression for k to avoid loss of accuracy due to
|
623
|
+
// subtraction. Division by 0 not possible because uv > 0, w >= 0.
|
624
|
+
k = uv / (sqrt(uv + Math::sq(w)) + w); // guaranteed positive
|
625
|
+
} else { // q == 0 && r <= 0
|
626
|
+
// y = 0 with |x| <= 1. Handle this case directly.
|
627
|
+
// for y small, positive root is k = abs(y)/sqrt(1-x^2)
|
628
|
+
k = 0;
|
629
|
+
}
|
630
|
+
return k;
|
631
|
+
}
|
632
|
+
|
633
|
+
Math::real Geodesic::InverseStart(real sbet1, real cbet1, real dn1,
|
634
|
+
real sbet2, real cbet2, real dn2,
|
635
|
+
real lam12, real slam12, real clam12,
|
636
|
+
real& salp1, real& calp1,
|
637
|
+
// Only updated if return val >= 0
|
638
|
+
real& salp2, real& calp2,
|
639
|
+
// Only updated for short lines
|
640
|
+
real& dnm,
|
641
|
+
// Scratch area of the right size
|
642
|
+
real Ca[]) const {
|
643
|
+
// Return a starting point for Newton's method in salp1 and calp1 (function
|
644
|
+
// value is -1). If Newton's method doesn't need to be used, return also
|
645
|
+
// salp2 and calp2 and function value is sig12.
|
646
|
+
real
|
647
|
+
sig12 = -1, // Return value
|
648
|
+
// bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
|
649
|
+
sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
|
650
|
+
cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
|
651
|
+
#if defined(__GNUC__) && __GNUC__ == 4 && \
|
652
|
+
(__GNUC_MINOR__ < 6 || defined(__MINGW32__))
|
653
|
+
// Volatile declaration needed to fix inverse cases
|
654
|
+
// 88.202499451857 0 -88.202499451857 179.981022032992859592
|
655
|
+
// 89.262080389218 0 -89.262080389218 179.992207982775375662
|
656
|
+
// 89.333123580033 0 -89.333123580032997687 179.99295812360148422
|
657
|
+
// which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
|
658
|
+
// and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw).
|
659
|
+
real sbet12a;
|
660
|
+
{
|
661
|
+
GEOGRAPHICLIB_VOLATILE real xx1 = sbet2 * cbet1;
|
662
|
+
GEOGRAPHICLIB_VOLATILE real xx2 = cbet2 * sbet1;
|
663
|
+
sbet12a = xx1 + xx2;
|
664
|
+
}
|
665
|
+
#else
|
666
|
+
real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
|
667
|
+
#endif
|
668
|
+
bool shortline = cbet12 >= 0 && sbet12 < real(0.5) &&
|
669
|
+
cbet2 * lam12 < real(0.5);
|
670
|
+
real somg12, comg12;
|
671
|
+
if (shortline) {
|
672
|
+
real sbetm2 = Math::sq(sbet1 + sbet2);
|
673
|
+
// sin((bet1+bet2)/2)^2
|
674
|
+
// = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
|
675
|
+
sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2);
|
676
|
+
dnm = sqrt(1 + _ep2 * sbetm2);
|
677
|
+
real omg12 = lam12 / (_f1 * dnm);
|
678
|
+
somg12 = sin(omg12); comg12 = cos(omg12);
|
679
|
+
} else {
|
680
|
+
somg12 = slam12; comg12 = clam12;
|
681
|
+
}
|
682
|
+
|
683
|
+
salp1 = cbet2 * somg12;
|
684
|
+
calp1 = comg12 >= 0 ?
|
685
|
+
sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) :
|
686
|
+
sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
|
687
|
+
|
688
|
+
real
|
689
|
+
ssig12 = Math::hypot(salp1, calp1),
|
690
|
+
csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
|
691
|
+
|
692
|
+
if (shortline && ssig12 < _etol2) {
|
693
|
+
// really short lines
|
694
|
+
salp2 = cbet1 * somg12;
|
695
|
+
calp2 = sbet12 - cbet1 * sbet2 *
|
696
|
+
(comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12);
|
697
|
+
Math::norm(salp2, calp2);
|
698
|
+
// Set return value
|
699
|
+
sig12 = atan2(ssig12, csig12);
|
700
|
+
} else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric
|
701
|
+
csig12 >= 0 ||
|
702
|
+
ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) {
|
703
|
+
// Nothing to do, zeroth order spherical approximation is OK
|
704
|
+
} else {
|
705
|
+
// Scale lam12 and bet2 to x, y coordinate system where antipodal point
|
706
|
+
// is at origin and singular point is at y = 0, x = -1.
|
707
|
+
real y, lamscale, betscale;
|
708
|
+
// Volatile declaration needed to fix inverse case
|
709
|
+
// 56.320923501171 0 -56.320923501171 179.664747671772880215
|
710
|
+
// which otherwise fails with g++ 4.4.4 x86 -O3
|
711
|
+
GEOGRAPHICLIB_VOLATILE real x;
|
712
|
+
real lam12x = atan2(-slam12, -clam12); // lam12 - pi
|
713
|
+
if (_f >= 0) { // In fact f == 0 does not get here
|
714
|
+
// x = dlong, y = dlat
|
715
|
+
{
|
716
|
+
real
|
717
|
+
k2 = Math::sq(sbet1) * _ep2,
|
718
|
+
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
|
719
|
+
lamscale = _f * cbet1 * A3f(eps) * Math::pi();
|
720
|
+
}
|
721
|
+
betscale = lamscale * cbet1;
|
722
|
+
|
723
|
+
x = lam12x / lamscale;
|
724
|
+
y = sbet12a / betscale;
|
725
|
+
} else { // _f < 0
|
726
|
+
// x = dlat, y = dlong
|
727
|
+
real
|
728
|
+
cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
|
729
|
+
bet12a = atan2(sbet12a, cbet12a);
|
730
|
+
real m12b, m0, dummy;
|
731
|
+
// In the case of lon12 = 180, this repeats a calculation made in
|
732
|
+
// Inverse.
|
733
|
+
Lengths(_n, Math::pi() + bet12a,
|
734
|
+
sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
|
735
|
+
cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy, Ca);
|
736
|
+
x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi());
|
737
|
+
betscale = x < -real(0.01) ? sbet12a / x :
|
738
|
+
-_f * Math::sq(cbet1) * Math::pi();
|
739
|
+
lamscale = betscale / cbet1;
|
740
|
+
y = lam12x / lamscale;
|
741
|
+
}
|
742
|
+
|
743
|
+
if (y > -tol1_ && x > -1 - xthresh_) {
|
744
|
+
// strip near cut
|
745
|
+
// Need real(x) here to cast away the volatility of x for min/max
|
746
|
+
if (_f >= 0) {
|
747
|
+
salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1));
|
748
|
+
} else {
|
749
|
+
calp1 = max(real(x > -tol1_ ? 0 : -1), real(x));
|
750
|
+
salp1 = sqrt(1 - Math::sq(calp1));
|
751
|
+
}
|
752
|
+
} else {
|
753
|
+
// Estimate alp1, by solving the astroid problem.
|
754
|
+
//
|
755
|
+
// Could estimate alpha1 = theta + pi/2, directly, i.e.,
|
756
|
+
// calp1 = y/k; salp1 = -x/(1+k); for _f >= 0
|
757
|
+
// calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check)
|
758
|
+
//
|
759
|
+
// However, it's better to estimate omg12 from astroid and use
|
760
|
+
// spherical formula to compute alp1. This reduces the mean number of
|
761
|
+
// Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
|
762
|
+
// (min 0 max 5). The changes in the number of iterations are as
|
763
|
+
// follows:
|
764
|
+
//
|
765
|
+
// change percent
|
766
|
+
// 1 5
|
767
|
+
// 0 78
|
768
|
+
// -1 16
|
769
|
+
// -2 0.6
|
770
|
+
// -3 0.04
|
771
|
+
// -4 0.002
|
772
|
+
//
|
773
|
+
// The histogram of iterations is (m = number of iterations estimating
|
774
|
+
// alp1 directly, n = number of iterations estimating via omg12, total
|
775
|
+
// number of trials = 148605):
|
776
|
+
//
|
777
|
+
// iter m n
|
778
|
+
// 0 148 186
|
779
|
+
// 1 13046 13845
|
780
|
+
// 2 93315 102225
|
781
|
+
// 3 36189 32341
|
782
|
+
// 4 5396 7
|
783
|
+
// 5 455 1
|
784
|
+
// 6 56 0
|
785
|
+
//
|
786
|
+
// Because omg12 is near pi, estimate work with omg12a = pi - omg12
|
787
|
+
real k = Astroid(x, y);
|
788
|
+
real
|
789
|
+
omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
|
790
|
+
somg12 = sin(omg12a); comg12 = -cos(omg12a);
|
791
|
+
// Update spherical estimate of alp1 using omg12 instead of lam12
|
792
|
+
salp1 = cbet2 * somg12;
|
793
|
+
calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
|
794
|
+
}
|
795
|
+
}
|
796
|
+
// Sanity check on starting guess. Backwards check allows NaN through.
|
797
|
+
if (!(salp1 <= 0))
|
798
|
+
Math::norm(salp1, calp1);
|
799
|
+
else {
|
800
|
+
salp1 = 1; calp1 = 0;
|
801
|
+
}
|
802
|
+
return sig12;
|
803
|
+
}
|
804
|
+
|
805
|
+
Math::real Geodesic::Lambda12(real sbet1, real cbet1, real dn1,
|
806
|
+
real sbet2, real cbet2, real dn2,
|
807
|
+
real salp1, real calp1,
|
808
|
+
real slam120, real clam120,
|
809
|
+
real& salp2, real& calp2,
|
810
|
+
real& sig12,
|
811
|
+
real& ssig1, real& csig1,
|
812
|
+
real& ssig2, real& csig2,
|
813
|
+
real& eps, real& somg12, real& comg12,
|
814
|
+
bool diffp, real& dlam12,
|
815
|
+
// Scratch area of the right size
|
816
|
+
real Ca[]) const {
|
817
|
+
|
818
|
+
if (sbet1 == 0 && calp1 == 0)
|
819
|
+
// Break degeneracy of equatorial line. This case has already been
|
820
|
+
// handled.
|
821
|
+
calp1 = -tiny_;
|
822
|
+
|
823
|
+
real
|
824
|
+
// sin(alp1) * cos(bet1) = sin(alp0)
|
825
|
+
salp0 = salp1 * cbet1,
|
826
|
+
calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
|
827
|
+
|
828
|
+
real somg1, comg1, somg2, comg2, lam12;
|
829
|
+
// tan(bet1) = tan(sig1) * cos(alp1)
|
830
|
+
// tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
|
831
|
+
ssig1 = sbet1; somg1 = salp0 * sbet1;
|
832
|
+
csig1 = comg1 = calp1 * cbet1;
|
833
|
+
Math::norm(ssig1, csig1);
|
834
|
+
// Math::norm(somg1, comg1); -- don't need to normalize!
|
835
|
+
|
836
|
+
// Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
|
837
|
+
// about this case, since this can yield singularities in the Newton
|
838
|
+
// iteration.
|
839
|
+
// sin(alp2) * cos(bet2) = sin(alp0)
|
840
|
+
salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
|
841
|
+
// calp2 = sqrt(1 - sq(salp2))
|
842
|
+
// = sqrt(sq(calp0) - sq(sbet2)) / cbet2
|
843
|
+
// and subst for calp0 and rearrange to give (choose positive sqrt
|
844
|
+
// to give alp2 in [0, pi/2]).
|
845
|
+
calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
|
846
|
+
sqrt(Math::sq(calp1 * cbet1) +
|
847
|
+
(cbet1 < -sbet1 ?
|
848
|
+
(cbet2 - cbet1) * (cbet1 + cbet2) :
|
849
|
+
(sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
|
850
|
+
abs(calp1);
|
851
|
+
// tan(bet2) = tan(sig2) * cos(alp2)
|
852
|
+
// tan(omg2) = sin(alp0) * tan(sig2).
|
853
|
+
ssig2 = sbet2; somg2 = salp0 * sbet2;
|
854
|
+
csig2 = comg2 = calp2 * cbet2;
|
855
|
+
Math::norm(ssig2, csig2);
|
856
|
+
// Math::norm(somg2, comg2); -- don't need to normalize!
|
857
|
+
|
858
|
+
// sig12 = sig2 - sig1, limit to [0, pi]
|
859
|
+
sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
|
860
|
+
csig1 * csig2 + ssig1 * ssig2);
|
861
|
+
|
862
|
+
// omg12 = omg2 - omg1, limit to [0, pi]
|
863
|
+
somg12 = max(real(0), comg1 * somg2 - somg1 * comg2);
|
864
|
+
comg12 = comg1 * comg2 + somg1 * somg2;
|
865
|
+
// eta = omg12 - lam120
|
866
|
+
real eta = atan2(somg12 * clam120 - comg12 * slam120,
|
867
|
+
comg12 * clam120 + somg12 * slam120);
|
868
|
+
real B312;
|
869
|
+
real k2 = Math::sq(calp0) * _ep2;
|
870
|
+
eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
|
871
|
+
C3f(eps, Ca);
|
872
|
+
B312 = (SinCosSeries(true, ssig2, csig2, Ca, nC3_-1) -
|
873
|
+
SinCosSeries(true, ssig1, csig1, Ca, nC3_-1));
|
874
|
+
lam12 = eta - _f * A3f(eps) * salp0 * (sig12 + B312);
|
875
|
+
|
876
|
+
if (diffp) {
|
877
|
+
if (calp2 == 0)
|
878
|
+
dlam12 = - 2 * _f1 * dn1 / sbet1;
|
879
|
+
else {
|
880
|
+
real dummy;
|
881
|
+
Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
|
882
|
+
cbet1, cbet2, REDUCEDLENGTH,
|
883
|
+
dummy, dlam12, dummy, dummy, dummy, Ca);
|
884
|
+
dlam12 *= _f1 / (calp2 * cbet2);
|
885
|
+
}
|
886
|
+
}
|
887
|
+
|
888
|
+
return lam12;
|
889
|
+
}
|
890
|
+
|
891
|
+
Math::real Geodesic::A3f(real eps) const {
|
892
|
+
// Evaluate A3
|
893
|
+
return Math::polyval(nA3_ - 1, _A3x, eps);
|
894
|
+
}
|
895
|
+
|
896
|
+
void Geodesic::C3f(real eps, real c[]) const {
|
897
|
+
// Evaluate C3 coeffs
|
898
|
+
// Elements c[1] thru c[nC3_ - 1] are set
|
899
|
+
real mult = 1;
|
900
|
+
int o = 0;
|
901
|
+
for (int l = 1; l < nC3_; ++l) { // l is index of C3[l]
|
902
|
+
int m = nC3_ - l - 1; // order of polynomial in eps
|
903
|
+
mult *= eps;
|
904
|
+
c[l] = mult * Math::polyval(m, _C3x + o, eps);
|
905
|
+
o += m + 1;
|
906
|
+
}
|
907
|
+
// Post condition: o == nC3x_
|
908
|
+
}
|
909
|
+
|
910
|
+
void Geodesic::C4f(real eps, real c[]) const {
|
911
|
+
// Evaluate C4 coeffs
|
912
|
+
// Elements c[0] thru c[nC4_ - 1] are set
|
913
|
+
real mult = 1;
|
914
|
+
int o = 0;
|
915
|
+
for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
|
916
|
+
int m = nC4_ - l - 1; // order of polynomial in eps
|
917
|
+
c[l] = mult * Math::polyval(m, _C4x + o, eps);
|
918
|
+
o += m + 1;
|
919
|
+
mult *= eps;
|
920
|
+
}
|
921
|
+
// Post condition: o == nC4x_
|
922
|
+
}
|
923
|
+
|
924
|
+
// The static const coefficient arrays in the following functions are
|
925
|
+
// generated by Maxima and give the coefficients of the Taylor expansions for
|
926
|
+
// the geodesics. The convention on the order of these coefficients is as
|
927
|
+
// follows:
|
928
|
+
//
|
929
|
+
// ascending order in the trigonometric expansion,
|
930
|
+
// then powers of eps in descending order,
|
931
|
+
// finally powers of n in descending order.
|
932
|
+
//
|
933
|
+
// (For some expansions, only a subset of levels occur.) For each polynomial
|
934
|
+
// of order n at the lowest level, the (n+1) coefficients of the polynomial
|
935
|
+
// are followed by a divisor which is applied to the whole polynomial. In
|
936
|
+
// this way, the coefficients are expressible with no round off error. The
|
937
|
+
// sizes of the coefficient arrays are:
|
938
|
+
//
|
939
|
+
// A1m1f, A2m1f = floor(N/2) + 2
|
940
|
+
// C1f, C1pf, C2f, A3coeff = (N^2 + 7*N - 2*floor(N/2)) / 4
|
941
|
+
// C3coeff = (N - 1) * (N^2 + 7*N - 2*floor(N/2)) / 8
|
942
|
+
// C4coeff = N * (N + 1) * (N + 5) / 6
|
943
|
+
//
|
944
|
+
// where N = GEOGRAPHICLIB_GEODESIC_ORDER
|
945
|
+
// = nA1 = nA2 = nC1 = nC1p = nA3 = nC4
|
946
|
+
|
947
|
+
// The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
|
948
|
+
Math::real Geodesic::A1m1f(real eps) {
|
949
|
+
// Generated by Maxima on 2015-05-05 18:08:12-04:00
|
950
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1
|
951
|
+
static const real coeff[] = {
|
952
|
+
// (1-eps)*A1-1, polynomial in eps2 of order 1
|
953
|
+
1, 0, 4,
|
954
|
+
};
|
955
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2
|
956
|
+
static const real coeff[] = {
|
957
|
+
// (1-eps)*A1-1, polynomial in eps2 of order 2
|
958
|
+
1, 16, 0, 64,
|
959
|
+
};
|
960
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3
|
961
|
+
static const real coeff[] = {
|
962
|
+
// (1-eps)*A1-1, polynomial in eps2 of order 3
|
963
|
+
1, 4, 64, 0, 256,
|
964
|
+
};
|
965
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4
|
966
|
+
static const real coeff[] = {
|
967
|
+
// (1-eps)*A1-1, polynomial in eps2 of order 4
|
968
|
+
25, 64, 256, 4096, 0, 16384,
|
969
|
+
};
|
970
|
+
#else
|
971
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
972
|
+
#endif
|
973
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA1_/2 + 2,
|
974
|
+
"Coefficient array size mismatch in A1m1f");
|
975
|
+
int m = nA1_/2;
|
976
|
+
real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1];
|
977
|
+
return (t + eps) / (1 - eps);
|
978
|
+
}
|
979
|
+
|
980
|
+
// The coefficients C1[l] in the Fourier expansion of B1
|
981
|
+
void Geodesic::C1f(real eps, real c[]) {
|
982
|
+
// Generated by Maxima on 2015-05-05 18:08:12-04:00
|
983
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
984
|
+
static const real coeff[] = {
|
985
|
+
// C1[1]/eps^1, polynomial in eps2 of order 1
|
986
|
+
3, -8, 16,
|
987
|
+
// C1[2]/eps^2, polynomial in eps2 of order 0
|
988
|
+
-1, 16,
|
989
|
+
// C1[3]/eps^3, polynomial in eps2 of order 0
|
990
|
+
-1, 48,
|
991
|
+
};
|
992
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
993
|
+
static const real coeff[] = {
|
994
|
+
// C1[1]/eps^1, polynomial in eps2 of order 1
|
995
|
+
3, -8, 16,
|
996
|
+
// C1[2]/eps^2, polynomial in eps2 of order 1
|
997
|
+
1, -2, 32,
|
998
|
+
// C1[3]/eps^3, polynomial in eps2 of order 0
|
999
|
+
-1, 48,
|
1000
|
+
// C1[4]/eps^4, polynomial in eps2 of order 0
|
1001
|
+
-5, 512,
|
1002
|
+
};
|
1003
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1004
|
+
static const real coeff[] = {
|
1005
|
+
// C1[1]/eps^1, polynomial in eps2 of order 2
|
1006
|
+
-1, 6, -16, 32,
|
1007
|
+
// C1[2]/eps^2, polynomial in eps2 of order 1
|
1008
|
+
1, -2, 32,
|
1009
|
+
// C1[3]/eps^3, polynomial in eps2 of order 1
|
1010
|
+
9, -16, 768,
|
1011
|
+
// C1[4]/eps^4, polynomial in eps2 of order 0
|
1012
|
+
-5, 512,
|
1013
|
+
// C1[5]/eps^5, polynomial in eps2 of order 0
|
1014
|
+
-7, 1280,
|
1015
|
+
};
|
1016
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1017
|
+
static const real coeff[] = {
|
1018
|
+
// C1[1]/eps^1, polynomial in eps2 of order 2
|
1019
|
+
-1, 6, -16, 32,
|
1020
|
+
// C1[2]/eps^2, polynomial in eps2 of order 2
|
1021
|
+
-9, 64, -128, 2048,
|
1022
|
+
// C1[3]/eps^3, polynomial in eps2 of order 1
|
1023
|
+
9, -16, 768,
|
1024
|
+
// C1[4]/eps^4, polynomial in eps2 of order 1
|
1025
|
+
3, -5, 512,
|
1026
|
+
// C1[5]/eps^5, polynomial in eps2 of order 0
|
1027
|
+
-7, 1280,
|
1028
|
+
// C1[6]/eps^6, polynomial in eps2 of order 0
|
1029
|
+
-7, 2048,
|
1030
|
+
};
|
1031
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1032
|
+
static const real coeff[] = {
|
1033
|
+
// C1[1]/eps^1, polynomial in eps2 of order 3
|
1034
|
+
19, -64, 384, -1024, 2048,
|
1035
|
+
// C1[2]/eps^2, polynomial in eps2 of order 2
|
1036
|
+
-9, 64, -128, 2048,
|
1037
|
+
// C1[3]/eps^3, polynomial in eps2 of order 2
|
1038
|
+
-9, 72, -128, 6144,
|
1039
|
+
// C1[4]/eps^4, polynomial in eps2 of order 1
|
1040
|
+
3, -5, 512,
|
1041
|
+
// C1[5]/eps^5, polynomial in eps2 of order 1
|
1042
|
+
35, -56, 10240,
|
1043
|
+
// C1[6]/eps^6, polynomial in eps2 of order 0
|
1044
|
+
-7, 2048,
|
1045
|
+
// C1[7]/eps^7, polynomial in eps2 of order 0
|
1046
|
+
-33, 14336,
|
1047
|
+
};
|
1048
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1049
|
+
static const real coeff[] = {
|
1050
|
+
// C1[1]/eps^1, polynomial in eps2 of order 3
|
1051
|
+
19, -64, 384, -1024, 2048,
|
1052
|
+
// C1[2]/eps^2, polynomial in eps2 of order 3
|
1053
|
+
7, -18, 128, -256, 4096,
|
1054
|
+
// C1[3]/eps^3, polynomial in eps2 of order 2
|
1055
|
+
-9, 72, -128, 6144,
|
1056
|
+
// C1[4]/eps^4, polynomial in eps2 of order 2
|
1057
|
+
-11, 96, -160, 16384,
|
1058
|
+
// C1[5]/eps^5, polynomial in eps2 of order 1
|
1059
|
+
35, -56, 10240,
|
1060
|
+
// C1[6]/eps^6, polynomial in eps2 of order 1
|
1061
|
+
9, -14, 4096,
|
1062
|
+
// C1[7]/eps^7, polynomial in eps2 of order 0
|
1063
|
+
-33, 14336,
|
1064
|
+
// C1[8]/eps^8, polynomial in eps2 of order 0
|
1065
|
+
-429, 262144,
|
1066
|
+
};
|
1067
|
+
#else
|
1068
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1069
|
+
#endif
|
1070
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1071
|
+
(nC1_*nC1_ + 7*nC1_ - 2*(nC1_/2)) / 4,
|
1072
|
+
"Coefficient array size mismatch in C1f");
|
1073
|
+
real
|
1074
|
+
eps2 = Math::sq(eps),
|
1075
|
+
d = eps;
|
1076
|
+
int o = 0;
|
1077
|
+
for (int l = 1; l <= nC1_; ++l) { // l is index of C1p[l]
|
1078
|
+
int m = (nC1_ - l) / 2; // order of polynomial in eps^2
|
1079
|
+
c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
1080
|
+
o += m + 2;
|
1081
|
+
d *= eps;
|
1082
|
+
}
|
1083
|
+
// Post condition: o == sizeof(coeff) / sizeof(real)
|
1084
|
+
}
|
1085
|
+
|
1086
|
+
// The coefficients C1p[l] in the Fourier expansion of B1p
|
1087
|
+
void Geodesic::C1pf(real eps, real c[]) {
|
1088
|
+
// Generated by Maxima on 2015-05-05 18:08:12-04:00
|
1089
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
1090
|
+
static const real coeff[] = {
|
1091
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 1
|
1092
|
+
-9, 16, 32,
|
1093
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 0
|
1094
|
+
5, 16,
|
1095
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 0
|
1096
|
+
29, 96,
|
1097
|
+
};
|
1098
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
1099
|
+
static const real coeff[] = {
|
1100
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 1
|
1101
|
+
-9, 16, 32,
|
1102
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 1
|
1103
|
+
-37, 30, 96,
|
1104
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 0
|
1105
|
+
29, 96,
|
1106
|
+
// C1p[4]/eps^4, polynomial in eps2 of order 0
|
1107
|
+
539, 1536,
|
1108
|
+
};
|
1109
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1110
|
+
static const real coeff[] = {
|
1111
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 2
|
1112
|
+
205, -432, 768, 1536,
|
1113
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 1
|
1114
|
+
-37, 30, 96,
|
1115
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 1
|
1116
|
+
-225, 116, 384,
|
1117
|
+
// C1p[4]/eps^4, polynomial in eps2 of order 0
|
1118
|
+
539, 1536,
|
1119
|
+
// C1p[5]/eps^5, polynomial in eps2 of order 0
|
1120
|
+
3467, 7680,
|
1121
|
+
};
|
1122
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1123
|
+
static const real coeff[] = {
|
1124
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 2
|
1125
|
+
205, -432, 768, 1536,
|
1126
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 2
|
1127
|
+
4005, -4736, 3840, 12288,
|
1128
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 1
|
1129
|
+
-225, 116, 384,
|
1130
|
+
// C1p[4]/eps^4, polynomial in eps2 of order 1
|
1131
|
+
-7173, 2695, 7680,
|
1132
|
+
// C1p[5]/eps^5, polynomial in eps2 of order 0
|
1133
|
+
3467, 7680,
|
1134
|
+
// C1p[6]/eps^6, polynomial in eps2 of order 0
|
1135
|
+
38081, 61440,
|
1136
|
+
};
|
1137
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1138
|
+
static const real coeff[] = {
|
1139
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 3
|
1140
|
+
-4879, 9840, -20736, 36864, 73728,
|
1141
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 2
|
1142
|
+
4005, -4736, 3840, 12288,
|
1143
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 2
|
1144
|
+
8703, -7200, 3712, 12288,
|
1145
|
+
// C1p[4]/eps^4, polynomial in eps2 of order 1
|
1146
|
+
-7173, 2695, 7680,
|
1147
|
+
// C1p[5]/eps^5, polynomial in eps2 of order 1
|
1148
|
+
-141115, 41604, 92160,
|
1149
|
+
// C1p[6]/eps^6, polynomial in eps2 of order 0
|
1150
|
+
38081, 61440,
|
1151
|
+
// C1p[7]/eps^7, polynomial in eps2 of order 0
|
1152
|
+
459485, 516096,
|
1153
|
+
};
|
1154
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1155
|
+
static const real coeff[] = {
|
1156
|
+
// C1p[1]/eps^1, polynomial in eps2 of order 3
|
1157
|
+
-4879, 9840, -20736, 36864, 73728,
|
1158
|
+
// C1p[2]/eps^2, polynomial in eps2 of order 3
|
1159
|
+
-86171, 120150, -142080, 115200, 368640,
|
1160
|
+
// C1p[3]/eps^3, polynomial in eps2 of order 2
|
1161
|
+
8703, -7200, 3712, 12288,
|
1162
|
+
// C1p[4]/eps^4, polynomial in eps2 of order 2
|
1163
|
+
1082857, -688608, 258720, 737280,
|
1164
|
+
// C1p[5]/eps^5, polynomial in eps2 of order 1
|
1165
|
+
-141115, 41604, 92160,
|
1166
|
+
// C1p[6]/eps^6, polynomial in eps2 of order 1
|
1167
|
+
-2200311, 533134, 860160,
|
1168
|
+
// C1p[7]/eps^7, polynomial in eps2 of order 0
|
1169
|
+
459485, 516096,
|
1170
|
+
// C1p[8]/eps^8, polynomial in eps2 of order 0
|
1171
|
+
109167851, 82575360,
|
1172
|
+
};
|
1173
|
+
#else
|
1174
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1175
|
+
#endif
|
1176
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1177
|
+
(nC1p_*nC1p_ + 7*nC1p_ - 2*(nC1p_/2)) / 4,
|
1178
|
+
"Coefficient array size mismatch in C1pf");
|
1179
|
+
real
|
1180
|
+
eps2 = Math::sq(eps),
|
1181
|
+
d = eps;
|
1182
|
+
int o = 0;
|
1183
|
+
for (int l = 1; l <= nC1p_; ++l) { // l is index of C1p[l]
|
1184
|
+
int m = (nC1p_ - l) / 2; // order of polynomial in eps^2
|
1185
|
+
c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
1186
|
+
o += m + 2;
|
1187
|
+
d *= eps;
|
1188
|
+
}
|
1189
|
+
// Post condition: o == sizeof(coeff) / sizeof(real)
|
1190
|
+
}
|
1191
|
+
|
1192
|
+
// The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
|
1193
|
+
Math::real Geodesic::A2m1f(real eps) {
|
1194
|
+
// Generated by Maxima on 2015-05-29 08:09:47-04:00
|
1195
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1
|
1196
|
+
static const real coeff[] = {
|
1197
|
+
// (eps+1)*A2-1, polynomial in eps2 of order 1
|
1198
|
+
-3, 0, 4,
|
1199
|
+
}; // count = 3
|
1200
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2
|
1201
|
+
static const real coeff[] = {
|
1202
|
+
// (eps+1)*A2-1, polynomial in eps2 of order 2
|
1203
|
+
-7, -48, 0, 64,
|
1204
|
+
}; // count = 4
|
1205
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3
|
1206
|
+
static const real coeff[] = {
|
1207
|
+
// (eps+1)*A2-1, polynomial in eps2 of order 3
|
1208
|
+
-11, -28, -192, 0, 256,
|
1209
|
+
}; // count = 5
|
1210
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4
|
1211
|
+
static const real coeff[] = {
|
1212
|
+
// (eps+1)*A2-1, polynomial in eps2 of order 4
|
1213
|
+
-375, -704, -1792, -12288, 0, 16384,
|
1214
|
+
}; // count = 6
|
1215
|
+
#else
|
1216
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1217
|
+
#endif
|
1218
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA2_/2 + 2,
|
1219
|
+
"Coefficient array size mismatch in A2m1f");
|
1220
|
+
int m = nA2_/2;
|
1221
|
+
real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1];
|
1222
|
+
return (t - eps) / (1 + eps);
|
1223
|
+
}
|
1224
|
+
|
1225
|
+
// The coefficients C2[l] in the Fourier expansion of B2
|
1226
|
+
void Geodesic::C2f(real eps, real c[]) {
|
1227
|
+
// Generated by Maxima on 2015-05-05 18:08:12-04:00
|
1228
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
1229
|
+
static const real coeff[] = {
|
1230
|
+
// C2[1]/eps^1, polynomial in eps2 of order 1
|
1231
|
+
1, 8, 16,
|
1232
|
+
// C2[2]/eps^2, polynomial in eps2 of order 0
|
1233
|
+
3, 16,
|
1234
|
+
// C2[3]/eps^3, polynomial in eps2 of order 0
|
1235
|
+
5, 48,
|
1236
|
+
};
|
1237
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
1238
|
+
static const real coeff[] = {
|
1239
|
+
// C2[1]/eps^1, polynomial in eps2 of order 1
|
1240
|
+
1, 8, 16,
|
1241
|
+
// C2[2]/eps^2, polynomial in eps2 of order 1
|
1242
|
+
1, 6, 32,
|
1243
|
+
// C2[3]/eps^3, polynomial in eps2 of order 0
|
1244
|
+
5, 48,
|
1245
|
+
// C2[4]/eps^4, polynomial in eps2 of order 0
|
1246
|
+
35, 512,
|
1247
|
+
};
|
1248
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1249
|
+
static const real coeff[] = {
|
1250
|
+
// C2[1]/eps^1, polynomial in eps2 of order 2
|
1251
|
+
1, 2, 16, 32,
|
1252
|
+
// C2[2]/eps^2, polynomial in eps2 of order 1
|
1253
|
+
1, 6, 32,
|
1254
|
+
// C2[3]/eps^3, polynomial in eps2 of order 1
|
1255
|
+
15, 80, 768,
|
1256
|
+
// C2[4]/eps^4, polynomial in eps2 of order 0
|
1257
|
+
35, 512,
|
1258
|
+
// C2[5]/eps^5, polynomial in eps2 of order 0
|
1259
|
+
63, 1280,
|
1260
|
+
};
|
1261
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1262
|
+
static const real coeff[] = {
|
1263
|
+
// C2[1]/eps^1, polynomial in eps2 of order 2
|
1264
|
+
1, 2, 16, 32,
|
1265
|
+
// C2[2]/eps^2, polynomial in eps2 of order 2
|
1266
|
+
35, 64, 384, 2048,
|
1267
|
+
// C2[3]/eps^3, polynomial in eps2 of order 1
|
1268
|
+
15, 80, 768,
|
1269
|
+
// C2[4]/eps^4, polynomial in eps2 of order 1
|
1270
|
+
7, 35, 512,
|
1271
|
+
// C2[5]/eps^5, polynomial in eps2 of order 0
|
1272
|
+
63, 1280,
|
1273
|
+
// C2[6]/eps^6, polynomial in eps2 of order 0
|
1274
|
+
77, 2048,
|
1275
|
+
};
|
1276
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1277
|
+
static const real coeff[] = {
|
1278
|
+
// C2[1]/eps^1, polynomial in eps2 of order 3
|
1279
|
+
41, 64, 128, 1024, 2048,
|
1280
|
+
// C2[2]/eps^2, polynomial in eps2 of order 2
|
1281
|
+
35, 64, 384, 2048,
|
1282
|
+
// C2[3]/eps^3, polynomial in eps2 of order 2
|
1283
|
+
69, 120, 640, 6144,
|
1284
|
+
// C2[4]/eps^4, polynomial in eps2 of order 1
|
1285
|
+
7, 35, 512,
|
1286
|
+
// C2[5]/eps^5, polynomial in eps2 of order 1
|
1287
|
+
105, 504, 10240,
|
1288
|
+
// C2[6]/eps^6, polynomial in eps2 of order 0
|
1289
|
+
77, 2048,
|
1290
|
+
// C2[7]/eps^7, polynomial in eps2 of order 0
|
1291
|
+
429, 14336,
|
1292
|
+
};
|
1293
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1294
|
+
static const real coeff[] = {
|
1295
|
+
// C2[1]/eps^1, polynomial in eps2 of order 3
|
1296
|
+
41, 64, 128, 1024, 2048,
|
1297
|
+
// C2[2]/eps^2, polynomial in eps2 of order 3
|
1298
|
+
47, 70, 128, 768, 4096,
|
1299
|
+
// C2[3]/eps^3, polynomial in eps2 of order 2
|
1300
|
+
69, 120, 640, 6144,
|
1301
|
+
// C2[4]/eps^4, polynomial in eps2 of order 2
|
1302
|
+
133, 224, 1120, 16384,
|
1303
|
+
// C2[5]/eps^5, polynomial in eps2 of order 1
|
1304
|
+
105, 504, 10240,
|
1305
|
+
// C2[6]/eps^6, polynomial in eps2 of order 1
|
1306
|
+
33, 154, 4096,
|
1307
|
+
// C2[7]/eps^7, polynomial in eps2 of order 0
|
1308
|
+
429, 14336,
|
1309
|
+
// C2[8]/eps^8, polynomial in eps2 of order 0
|
1310
|
+
6435, 262144,
|
1311
|
+
};
|
1312
|
+
#else
|
1313
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1314
|
+
#endif
|
1315
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1316
|
+
(nC2_*nC2_ + 7*nC2_ - 2*(nC2_/2)) / 4,
|
1317
|
+
"Coefficient array size mismatch in C2f");
|
1318
|
+
real
|
1319
|
+
eps2 = Math::sq(eps),
|
1320
|
+
d = eps;
|
1321
|
+
int o = 0;
|
1322
|
+
for (int l = 1; l <= nC2_; ++l) { // l is index of C2[l]
|
1323
|
+
int m = (nC2_ - l) / 2; // order of polynomial in eps^2
|
1324
|
+
c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
|
1325
|
+
o += m + 2;
|
1326
|
+
d *= eps;
|
1327
|
+
}
|
1328
|
+
// Post condition: o == sizeof(coeff) / sizeof(real)
|
1329
|
+
}
|
1330
|
+
|
1331
|
+
// The scale factor A3 = mean value of (d/dsigma)I3
|
1332
|
+
void Geodesic::A3coeff() {
|
1333
|
+
// Generated by Maxima on 2015-05-05 18:08:13-04:00
|
1334
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
1335
|
+
static const real coeff[] = {
|
1336
|
+
// A3, coeff of eps^2, polynomial in n of order 0
|
1337
|
+
-1, 4,
|
1338
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1339
|
+
1, -1, 2,
|
1340
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1341
|
+
1, 1,
|
1342
|
+
};
|
1343
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
1344
|
+
static const real coeff[] = {
|
1345
|
+
// A3, coeff of eps^3, polynomial in n of order 0
|
1346
|
+
-1, 16,
|
1347
|
+
// A3, coeff of eps^2, polynomial in n of order 1
|
1348
|
+
-1, -2, 8,
|
1349
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1350
|
+
1, -1, 2,
|
1351
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1352
|
+
1, 1,
|
1353
|
+
};
|
1354
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1355
|
+
static const real coeff[] = {
|
1356
|
+
// A3, coeff of eps^4, polynomial in n of order 0
|
1357
|
+
-3, 64,
|
1358
|
+
// A3, coeff of eps^3, polynomial in n of order 1
|
1359
|
+
-3, -1, 16,
|
1360
|
+
// A3, coeff of eps^2, polynomial in n of order 2
|
1361
|
+
3, -1, -2, 8,
|
1362
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1363
|
+
1, -1, 2,
|
1364
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1365
|
+
1, 1,
|
1366
|
+
};
|
1367
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1368
|
+
static const real coeff[] = {
|
1369
|
+
// A3, coeff of eps^5, polynomial in n of order 0
|
1370
|
+
-3, 128,
|
1371
|
+
// A3, coeff of eps^4, polynomial in n of order 1
|
1372
|
+
-2, -3, 64,
|
1373
|
+
// A3, coeff of eps^3, polynomial in n of order 2
|
1374
|
+
-1, -3, -1, 16,
|
1375
|
+
// A3, coeff of eps^2, polynomial in n of order 2
|
1376
|
+
3, -1, -2, 8,
|
1377
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1378
|
+
1, -1, 2,
|
1379
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1380
|
+
1, 1,
|
1381
|
+
};
|
1382
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1383
|
+
static const real coeff[] = {
|
1384
|
+
// A3, coeff of eps^6, polynomial in n of order 0
|
1385
|
+
-5, 256,
|
1386
|
+
// A3, coeff of eps^5, polynomial in n of order 1
|
1387
|
+
-5, -3, 128,
|
1388
|
+
// A3, coeff of eps^4, polynomial in n of order 2
|
1389
|
+
-10, -2, -3, 64,
|
1390
|
+
// A3, coeff of eps^3, polynomial in n of order 3
|
1391
|
+
5, -1, -3, -1, 16,
|
1392
|
+
// A3, coeff of eps^2, polynomial in n of order 2
|
1393
|
+
3, -1, -2, 8,
|
1394
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1395
|
+
1, -1, 2,
|
1396
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1397
|
+
1, 1,
|
1398
|
+
};
|
1399
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1400
|
+
static const real coeff[] = {
|
1401
|
+
// A3, coeff of eps^7, polynomial in n of order 0
|
1402
|
+
-25, 2048,
|
1403
|
+
// A3, coeff of eps^6, polynomial in n of order 1
|
1404
|
+
-15, -20, 1024,
|
1405
|
+
// A3, coeff of eps^5, polynomial in n of order 2
|
1406
|
+
-5, -10, -6, 256,
|
1407
|
+
// A3, coeff of eps^4, polynomial in n of order 3
|
1408
|
+
-5, -20, -4, -6, 128,
|
1409
|
+
// A3, coeff of eps^3, polynomial in n of order 3
|
1410
|
+
5, -1, -3, -1, 16,
|
1411
|
+
// A3, coeff of eps^2, polynomial in n of order 2
|
1412
|
+
3, -1, -2, 8,
|
1413
|
+
// A3, coeff of eps^1, polynomial in n of order 1
|
1414
|
+
1, -1, 2,
|
1415
|
+
// A3, coeff of eps^0, polynomial in n of order 0
|
1416
|
+
1, 1,
|
1417
|
+
};
|
1418
|
+
#else
|
1419
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1420
|
+
#endif
|
1421
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1422
|
+
(nA3_*nA3_ + 7*nA3_ - 2*(nA3_/2)) / 4,
|
1423
|
+
"Coefficient array size mismatch in A3f");
|
1424
|
+
int o = 0, k = 0;
|
1425
|
+
for (int j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
|
1426
|
+
int m = min(nA3_ - j - 1, j); // order of polynomial in n
|
1427
|
+
_A3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
|
1428
|
+
o += m + 2;
|
1429
|
+
}
|
1430
|
+
// Post condition: o == sizeof(coeff) / sizeof(real) && k == nA3x_
|
1431
|
+
}
|
1432
|
+
|
1433
|
+
// The coefficients C3[l] in the Fourier expansion of B3
|
1434
|
+
void Geodesic::C3coeff() {
|
1435
|
+
// Generated by Maxima on 2015-05-05 18:08:13-04:00
|
1436
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
1437
|
+
static const real coeff[] = {
|
1438
|
+
// C3[1], coeff of eps^2, polynomial in n of order 0
|
1439
|
+
1, 8,
|
1440
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1441
|
+
-1, 1, 4,
|
1442
|
+
// C3[2], coeff of eps^2, polynomial in n of order 0
|
1443
|
+
1, 16,
|
1444
|
+
};
|
1445
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
1446
|
+
static const real coeff[] = {
|
1447
|
+
// C3[1], coeff of eps^3, polynomial in n of order 0
|
1448
|
+
3, 64,
|
1449
|
+
// C3[1], coeff of eps^2, polynomial in n of order 1
|
1450
|
+
// This is a case where a leading 0 term has been inserted to maintain the
|
1451
|
+
// pattern in the orders of the polynomials.
|
1452
|
+
0, 1, 8,
|
1453
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1454
|
+
-1, 1, 4,
|
1455
|
+
// C3[2], coeff of eps^3, polynomial in n of order 0
|
1456
|
+
3, 64,
|
1457
|
+
// C3[2], coeff of eps^2, polynomial in n of order 1
|
1458
|
+
-3, 2, 32,
|
1459
|
+
// C3[3], coeff of eps^3, polynomial in n of order 0
|
1460
|
+
5, 192,
|
1461
|
+
};
|
1462
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1463
|
+
static const real coeff[] = {
|
1464
|
+
// C3[1], coeff of eps^4, polynomial in n of order 0
|
1465
|
+
5, 128,
|
1466
|
+
// C3[1], coeff of eps^3, polynomial in n of order 1
|
1467
|
+
3, 3, 64,
|
1468
|
+
// C3[1], coeff of eps^2, polynomial in n of order 2
|
1469
|
+
-1, 0, 1, 8,
|
1470
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1471
|
+
-1, 1, 4,
|
1472
|
+
// C3[2], coeff of eps^4, polynomial in n of order 0
|
1473
|
+
3, 128,
|
1474
|
+
// C3[2], coeff of eps^3, polynomial in n of order 1
|
1475
|
+
-2, 3, 64,
|
1476
|
+
// C3[2], coeff of eps^2, polynomial in n of order 2
|
1477
|
+
1, -3, 2, 32,
|
1478
|
+
// C3[3], coeff of eps^4, polynomial in n of order 0
|
1479
|
+
3, 128,
|
1480
|
+
// C3[3], coeff of eps^3, polynomial in n of order 1
|
1481
|
+
-9, 5, 192,
|
1482
|
+
// C3[4], coeff of eps^4, polynomial in n of order 0
|
1483
|
+
7, 512,
|
1484
|
+
};
|
1485
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1486
|
+
static const real coeff[] = {
|
1487
|
+
// C3[1], coeff of eps^5, polynomial in n of order 0
|
1488
|
+
3, 128,
|
1489
|
+
// C3[1], coeff of eps^4, polynomial in n of order 1
|
1490
|
+
2, 5, 128,
|
1491
|
+
// C3[1], coeff of eps^3, polynomial in n of order 2
|
1492
|
+
-1, 3, 3, 64,
|
1493
|
+
// C3[1], coeff of eps^2, polynomial in n of order 2
|
1494
|
+
-1, 0, 1, 8,
|
1495
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1496
|
+
-1, 1, 4,
|
1497
|
+
// C3[2], coeff of eps^5, polynomial in n of order 0
|
1498
|
+
5, 256,
|
1499
|
+
// C3[2], coeff of eps^4, polynomial in n of order 1
|
1500
|
+
1, 3, 128,
|
1501
|
+
// C3[2], coeff of eps^3, polynomial in n of order 2
|
1502
|
+
-3, -2, 3, 64,
|
1503
|
+
// C3[2], coeff of eps^2, polynomial in n of order 2
|
1504
|
+
1, -3, 2, 32,
|
1505
|
+
// C3[3], coeff of eps^5, polynomial in n of order 0
|
1506
|
+
7, 512,
|
1507
|
+
// C3[3], coeff of eps^4, polynomial in n of order 1
|
1508
|
+
-10, 9, 384,
|
1509
|
+
// C3[3], coeff of eps^3, polynomial in n of order 2
|
1510
|
+
5, -9, 5, 192,
|
1511
|
+
// C3[4], coeff of eps^5, polynomial in n of order 0
|
1512
|
+
7, 512,
|
1513
|
+
// C3[4], coeff of eps^4, polynomial in n of order 1
|
1514
|
+
-14, 7, 512,
|
1515
|
+
// C3[5], coeff of eps^5, polynomial in n of order 0
|
1516
|
+
21, 2560,
|
1517
|
+
};
|
1518
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1519
|
+
static const real coeff[] = {
|
1520
|
+
// C3[1], coeff of eps^6, polynomial in n of order 0
|
1521
|
+
21, 1024,
|
1522
|
+
// C3[1], coeff of eps^5, polynomial in n of order 1
|
1523
|
+
11, 12, 512,
|
1524
|
+
// C3[1], coeff of eps^4, polynomial in n of order 2
|
1525
|
+
2, 2, 5, 128,
|
1526
|
+
// C3[1], coeff of eps^3, polynomial in n of order 3
|
1527
|
+
-5, -1, 3, 3, 64,
|
1528
|
+
// C3[1], coeff of eps^2, polynomial in n of order 2
|
1529
|
+
-1, 0, 1, 8,
|
1530
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1531
|
+
-1, 1, 4,
|
1532
|
+
// C3[2], coeff of eps^6, polynomial in n of order 0
|
1533
|
+
27, 2048,
|
1534
|
+
// C3[2], coeff of eps^5, polynomial in n of order 1
|
1535
|
+
1, 5, 256,
|
1536
|
+
// C3[2], coeff of eps^4, polynomial in n of order 2
|
1537
|
+
-9, 2, 6, 256,
|
1538
|
+
// C3[2], coeff of eps^3, polynomial in n of order 3
|
1539
|
+
2, -3, -2, 3, 64,
|
1540
|
+
// C3[2], coeff of eps^2, polynomial in n of order 2
|
1541
|
+
1, -3, 2, 32,
|
1542
|
+
// C3[3], coeff of eps^6, polynomial in n of order 0
|
1543
|
+
3, 256,
|
1544
|
+
// C3[3], coeff of eps^5, polynomial in n of order 1
|
1545
|
+
-4, 21, 1536,
|
1546
|
+
// C3[3], coeff of eps^4, polynomial in n of order 2
|
1547
|
+
-6, -10, 9, 384,
|
1548
|
+
// C3[3], coeff of eps^3, polynomial in n of order 3
|
1549
|
+
-1, 5, -9, 5, 192,
|
1550
|
+
// C3[4], coeff of eps^6, polynomial in n of order 0
|
1551
|
+
9, 1024,
|
1552
|
+
// C3[4], coeff of eps^5, polynomial in n of order 1
|
1553
|
+
-10, 7, 512,
|
1554
|
+
// C3[4], coeff of eps^4, polynomial in n of order 2
|
1555
|
+
10, -14, 7, 512,
|
1556
|
+
// C3[5], coeff of eps^6, polynomial in n of order 0
|
1557
|
+
9, 1024,
|
1558
|
+
// C3[5], coeff of eps^5, polynomial in n of order 1
|
1559
|
+
-45, 21, 2560,
|
1560
|
+
// C3[6], coeff of eps^6, polynomial in n of order 0
|
1561
|
+
11, 2048,
|
1562
|
+
};
|
1563
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1564
|
+
static const real coeff[] = {
|
1565
|
+
// C3[1], coeff of eps^7, polynomial in n of order 0
|
1566
|
+
243, 16384,
|
1567
|
+
// C3[1], coeff of eps^6, polynomial in n of order 1
|
1568
|
+
10, 21, 1024,
|
1569
|
+
// C3[1], coeff of eps^5, polynomial in n of order 2
|
1570
|
+
3, 11, 12, 512,
|
1571
|
+
// C3[1], coeff of eps^4, polynomial in n of order 3
|
1572
|
+
-2, 2, 2, 5, 128,
|
1573
|
+
// C3[1], coeff of eps^3, polynomial in n of order 3
|
1574
|
+
-5, -1, 3, 3, 64,
|
1575
|
+
// C3[1], coeff of eps^2, polynomial in n of order 2
|
1576
|
+
-1, 0, 1, 8,
|
1577
|
+
// C3[1], coeff of eps^1, polynomial in n of order 1
|
1578
|
+
-1, 1, 4,
|
1579
|
+
// C3[2], coeff of eps^7, polynomial in n of order 0
|
1580
|
+
187, 16384,
|
1581
|
+
// C3[2], coeff of eps^6, polynomial in n of order 1
|
1582
|
+
69, 108, 8192,
|
1583
|
+
// C3[2], coeff of eps^5, polynomial in n of order 2
|
1584
|
+
-2, 1, 5, 256,
|
1585
|
+
// C3[2], coeff of eps^4, polynomial in n of order 3
|
1586
|
+
-6, -9, 2, 6, 256,
|
1587
|
+
// C3[2], coeff of eps^3, polynomial in n of order 3
|
1588
|
+
2, -3, -2, 3, 64,
|
1589
|
+
// C3[2], coeff of eps^2, polynomial in n of order 2
|
1590
|
+
1, -3, 2, 32,
|
1591
|
+
// C3[3], coeff of eps^7, polynomial in n of order 0
|
1592
|
+
139, 16384,
|
1593
|
+
// C3[3], coeff of eps^6, polynomial in n of order 1
|
1594
|
+
-1, 12, 1024,
|
1595
|
+
// C3[3], coeff of eps^5, polynomial in n of order 2
|
1596
|
+
-77, -8, 42, 3072,
|
1597
|
+
// C3[3], coeff of eps^4, polynomial in n of order 3
|
1598
|
+
10, -6, -10, 9, 384,
|
1599
|
+
// C3[3], coeff of eps^3, polynomial in n of order 3
|
1600
|
+
-1, 5, -9, 5, 192,
|
1601
|
+
// C3[4], coeff of eps^7, polynomial in n of order 0
|
1602
|
+
127, 16384,
|
1603
|
+
// C3[4], coeff of eps^6, polynomial in n of order 1
|
1604
|
+
-43, 72, 8192,
|
1605
|
+
// C3[4], coeff of eps^5, polynomial in n of order 2
|
1606
|
+
-7, -40, 28, 2048,
|
1607
|
+
// C3[4], coeff of eps^4, polynomial in n of order 3
|
1608
|
+
-7, 20, -28, 14, 1024,
|
1609
|
+
// C3[5], coeff of eps^7, polynomial in n of order 0
|
1610
|
+
99, 16384,
|
1611
|
+
// C3[5], coeff of eps^6, polynomial in n of order 1
|
1612
|
+
-15, 9, 1024,
|
1613
|
+
// C3[5], coeff of eps^5, polynomial in n of order 2
|
1614
|
+
75, -90, 42, 5120,
|
1615
|
+
// C3[6], coeff of eps^7, polynomial in n of order 0
|
1616
|
+
99, 16384,
|
1617
|
+
// C3[6], coeff of eps^6, polynomial in n of order 1
|
1618
|
+
-99, 44, 8192,
|
1619
|
+
// C3[7], coeff of eps^7, polynomial in n of order 0
|
1620
|
+
429, 114688,
|
1621
|
+
};
|
1622
|
+
#else
|
1623
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1624
|
+
#endif
|
1625
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1626
|
+
((nC3_-1)*(nC3_*nC3_ + 7*nC3_ - 2*(nC3_/2)))/8,
|
1627
|
+
"Coefficient array size mismatch in C3coeff");
|
1628
|
+
int o = 0, k = 0;
|
1629
|
+
for (int l = 1; l < nC3_; ++l) { // l is index of C3[l]
|
1630
|
+
for (int j = nC3_ - 1; j >= l; --j) { // coeff of eps^j
|
1631
|
+
int m = min(nC3_ - j - 1, j); // order of polynomial in n
|
1632
|
+
_C3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
|
1633
|
+
o += m + 2;
|
1634
|
+
}
|
1635
|
+
}
|
1636
|
+
// Post condition: o == sizeof(coeff) / sizeof(real) && k == nC3x_
|
1637
|
+
}
|
1638
|
+
|
1639
|
+
void Geodesic::C4coeff() {
|
1640
|
+
// Generated by Maxima on 2015-05-05 18:08:13-04:00
|
1641
|
+
#if GEOGRAPHICLIB_GEODESIC_ORDER == 3
|
1642
|
+
static const real coeff[] = {
|
1643
|
+
// C4[0], coeff of eps^2, polynomial in n of order 0
|
1644
|
+
-2, 105,
|
1645
|
+
// C4[0], coeff of eps^1, polynomial in n of order 1
|
1646
|
+
16, -7, 35,
|
1647
|
+
// C4[0], coeff of eps^0, polynomial in n of order 2
|
1648
|
+
8, -28, 70, 105,
|
1649
|
+
// C4[1], coeff of eps^2, polynomial in n of order 0
|
1650
|
+
-2, 105,
|
1651
|
+
// C4[1], coeff of eps^1, polynomial in n of order 1
|
1652
|
+
-16, 7, 315,
|
1653
|
+
// C4[2], coeff of eps^2, polynomial in n of order 0
|
1654
|
+
4, 525,
|
1655
|
+
};
|
1656
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
|
1657
|
+
static const real coeff[] = {
|
1658
|
+
// C4[0], coeff of eps^3, polynomial in n of order 0
|
1659
|
+
11, 315,
|
1660
|
+
// C4[0], coeff of eps^2, polynomial in n of order 1
|
1661
|
+
-32, -6, 315,
|
1662
|
+
// C4[0], coeff of eps^1, polynomial in n of order 2
|
1663
|
+
-32, 48, -21, 105,
|
1664
|
+
// C4[0], coeff of eps^0, polynomial in n of order 3
|
1665
|
+
4, 24, -84, 210, 315,
|
1666
|
+
// C4[1], coeff of eps^3, polynomial in n of order 0
|
1667
|
+
-1, 105,
|
1668
|
+
// C4[1], coeff of eps^2, polynomial in n of order 1
|
1669
|
+
64, -18, 945,
|
1670
|
+
// C4[1], coeff of eps^1, polynomial in n of order 2
|
1671
|
+
32, -48, 21, 945,
|
1672
|
+
// C4[2], coeff of eps^3, polynomial in n of order 0
|
1673
|
+
-8, 1575,
|
1674
|
+
// C4[2], coeff of eps^2, polynomial in n of order 1
|
1675
|
+
-32, 12, 1575,
|
1676
|
+
// C4[3], coeff of eps^3, polynomial in n of order 0
|
1677
|
+
8, 2205,
|
1678
|
+
};
|
1679
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
|
1680
|
+
static const real coeff[] = {
|
1681
|
+
// C4[0], coeff of eps^4, polynomial in n of order 0
|
1682
|
+
4, 1155,
|
1683
|
+
// C4[0], coeff of eps^3, polynomial in n of order 1
|
1684
|
+
-368, 121, 3465,
|
1685
|
+
// C4[0], coeff of eps^2, polynomial in n of order 2
|
1686
|
+
1088, -352, -66, 3465,
|
1687
|
+
// C4[0], coeff of eps^1, polynomial in n of order 3
|
1688
|
+
48, -352, 528, -231, 1155,
|
1689
|
+
// C4[0], coeff of eps^0, polynomial in n of order 4
|
1690
|
+
16, 44, 264, -924, 2310, 3465,
|
1691
|
+
// C4[1], coeff of eps^4, polynomial in n of order 0
|
1692
|
+
4, 1155,
|
1693
|
+
// C4[1], coeff of eps^3, polynomial in n of order 1
|
1694
|
+
80, -99, 10395,
|
1695
|
+
// C4[1], coeff of eps^2, polynomial in n of order 2
|
1696
|
+
-896, 704, -198, 10395,
|
1697
|
+
// C4[1], coeff of eps^1, polynomial in n of order 3
|
1698
|
+
-48, 352, -528, 231, 10395,
|
1699
|
+
// C4[2], coeff of eps^4, polynomial in n of order 0
|
1700
|
+
-8, 1925,
|
1701
|
+
// C4[2], coeff of eps^3, polynomial in n of order 1
|
1702
|
+
384, -88, 17325,
|
1703
|
+
// C4[2], coeff of eps^2, polynomial in n of order 2
|
1704
|
+
320, -352, 132, 17325,
|
1705
|
+
// C4[3], coeff of eps^4, polynomial in n of order 0
|
1706
|
+
-16, 8085,
|
1707
|
+
// C4[3], coeff of eps^3, polynomial in n of order 1
|
1708
|
+
-256, 88, 24255,
|
1709
|
+
// C4[4], coeff of eps^4, polynomial in n of order 0
|
1710
|
+
64, 31185,
|
1711
|
+
};
|
1712
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
|
1713
|
+
static const real coeff[] = {
|
1714
|
+
// C4[0], coeff of eps^5, polynomial in n of order 0
|
1715
|
+
97, 15015,
|
1716
|
+
// C4[0], coeff of eps^4, polynomial in n of order 1
|
1717
|
+
1088, 156, 45045,
|
1718
|
+
// C4[0], coeff of eps^3, polynomial in n of order 2
|
1719
|
+
-224, -4784, 1573, 45045,
|
1720
|
+
// C4[0], coeff of eps^2, polynomial in n of order 3
|
1721
|
+
-10656, 14144, -4576, -858, 45045,
|
1722
|
+
// C4[0], coeff of eps^1, polynomial in n of order 4
|
1723
|
+
64, 624, -4576, 6864, -3003, 15015,
|
1724
|
+
// C4[0], coeff of eps^0, polynomial in n of order 5
|
1725
|
+
100, 208, 572, 3432, -12012, 30030, 45045,
|
1726
|
+
// C4[1], coeff of eps^5, polynomial in n of order 0
|
1727
|
+
1, 9009,
|
1728
|
+
// C4[1], coeff of eps^4, polynomial in n of order 1
|
1729
|
+
-2944, 468, 135135,
|
1730
|
+
// C4[1], coeff of eps^3, polynomial in n of order 2
|
1731
|
+
5792, 1040, -1287, 135135,
|
1732
|
+
// C4[1], coeff of eps^2, polynomial in n of order 3
|
1733
|
+
5952, -11648, 9152, -2574, 135135,
|
1734
|
+
// C4[1], coeff of eps^1, polynomial in n of order 4
|
1735
|
+
-64, -624, 4576, -6864, 3003, 135135,
|
1736
|
+
// C4[2], coeff of eps^5, polynomial in n of order 0
|
1737
|
+
8, 10725,
|
1738
|
+
// C4[2], coeff of eps^4, polynomial in n of order 1
|
1739
|
+
1856, -936, 225225,
|
1740
|
+
// C4[2], coeff of eps^3, polynomial in n of order 2
|
1741
|
+
-8448, 4992, -1144, 225225,
|
1742
|
+
// C4[2], coeff of eps^2, polynomial in n of order 3
|
1743
|
+
-1440, 4160, -4576, 1716, 225225,
|
1744
|
+
// C4[3], coeff of eps^5, polynomial in n of order 0
|
1745
|
+
-136, 63063,
|
1746
|
+
// C4[3], coeff of eps^4, polynomial in n of order 1
|
1747
|
+
1024, -208, 105105,
|
1748
|
+
// C4[3], coeff of eps^3, polynomial in n of order 2
|
1749
|
+
3584, -3328, 1144, 315315,
|
1750
|
+
// C4[4], coeff of eps^5, polynomial in n of order 0
|
1751
|
+
-128, 135135,
|
1752
|
+
// C4[4], coeff of eps^4, polynomial in n of order 1
|
1753
|
+
-2560, 832, 405405,
|
1754
|
+
// C4[5], coeff of eps^5, polynomial in n of order 0
|
1755
|
+
128, 99099,
|
1756
|
+
};
|
1757
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
|
1758
|
+
static const real coeff[] = {
|
1759
|
+
// C4[0], coeff of eps^6, polynomial in n of order 0
|
1760
|
+
10, 9009,
|
1761
|
+
// C4[0], coeff of eps^5, polynomial in n of order 1
|
1762
|
+
-464, 291, 45045,
|
1763
|
+
// C4[0], coeff of eps^4, polynomial in n of order 2
|
1764
|
+
-4480, 1088, 156, 45045,
|
1765
|
+
// C4[0], coeff of eps^3, polynomial in n of order 3
|
1766
|
+
10736, -224, -4784, 1573, 45045,
|
1767
|
+
// C4[0], coeff of eps^2, polynomial in n of order 4
|
1768
|
+
1664, -10656, 14144, -4576, -858, 45045,
|
1769
|
+
// C4[0], coeff of eps^1, polynomial in n of order 5
|
1770
|
+
16, 64, 624, -4576, 6864, -3003, 15015,
|
1771
|
+
// C4[0], coeff of eps^0, polynomial in n of order 6
|
1772
|
+
56, 100, 208, 572, 3432, -12012, 30030, 45045,
|
1773
|
+
// C4[1], coeff of eps^6, polynomial in n of order 0
|
1774
|
+
10, 9009,
|
1775
|
+
// C4[1], coeff of eps^5, polynomial in n of order 1
|
1776
|
+
112, 15, 135135,
|
1777
|
+
// C4[1], coeff of eps^4, polynomial in n of order 2
|
1778
|
+
3840, -2944, 468, 135135,
|
1779
|
+
// C4[1], coeff of eps^3, polynomial in n of order 3
|
1780
|
+
-10704, 5792, 1040, -1287, 135135,
|
1781
|
+
// C4[1], coeff of eps^2, polynomial in n of order 4
|
1782
|
+
-768, 5952, -11648, 9152, -2574, 135135,
|
1783
|
+
// C4[1], coeff of eps^1, polynomial in n of order 5
|
1784
|
+
-16, -64, -624, 4576, -6864, 3003, 135135,
|
1785
|
+
// C4[2], coeff of eps^6, polynomial in n of order 0
|
1786
|
+
-4, 25025,
|
1787
|
+
// C4[2], coeff of eps^5, polynomial in n of order 1
|
1788
|
+
-1664, 168, 225225,
|
1789
|
+
// C4[2], coeff of eps^4, polynomial in n of order 2
|
1790
|
+
1664, 1856, -936, 225225,
|
1791
|
+
// C4[2], coeff of eps^3, polynomial in n of order 3
|
1792
|
+
6784, -8448, 4992, -1144, 225225,
|
1793
|
+
// C4[2], coeff of eps^2, polynomial in n of order 4
|
1794
|
+
128, -1440, 4160, -4576, 1716, 225225,
|
1795
|
+
// C4[3], coeff of eps^6, polynomial in n of order 0
|
1796
|
+
64, 315315,
|
1797
|
+
// C4[3], coeff of eps^5, polynomial in n of order 1
|
1798
|
+
1792, -680, 315315,
|
1799
|
+
// C4[3], coeff of eps^4, polynomial in n of order 2
|
1800
|
+
-2048, 1024, -208, 105105,
|
1801
|
+
// C4[3], coeff of eps^3, polynomial in n of order 3
|
1802
|
+
-1792, 3584, -3328, 1144, 315315,
|
1803
|
+
// C4[4], coeff of eps^6, polynomial in n of order 0
|
1804
|
+
-512, 405405,
|
1805
|
+
// C4[4], coeff of eps^5, polynomial in n of order 1
|
1806
|
+
2048, -384, 405405,
|
1807
|
+
// C4[4], coeff of eps^4, polynomial in n of order 2
|
1808
|
+
3072, -2560, 832, 405405,
|
1809
|
+
// C4[5], coeff of eps^6, polynomial in n of order 0
|
1810
|
+
-256, 495495,
|
1811
|
+
// C4[5], coeff of eps^5, polynomial in n of order 1
|
1812
|
+
-2048, 640, 495495,
|
1813
|
+
// C4[6], coeff of eps^6, polynomial in n of order 0
|
1814
|
+
512, 585585,
|
1815
|
+
};
|
1816
|
+
#elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
|
1817
|
+
static const real coeff[] = {
|
1818
|
+
// C4[0], coeff of eps^7, polynomial in n of order 0
|
1819
|
+
193, 85085,
|
1820
|
+
// C4[0], coeff of eps^6, polynomial in n of order 1
|
1821
|
+
4192, 850, 765765,
|
1822
|
+
// C4[0], coeff of eps^5, polynomial in n of order 2
|
1823
|
+
20960, -7888, 4947, 765765,
|
1824
|
+
// C4[0], coeff of eps^4, polynomial in n of order 3
|
1825
|
+
12480, -76160, 18496, 2652, 765765,
|
1826
|
+
// C4[0], coeff of eps^3, polynomial in n of order 4
|
1827
|
+
-154048, 182512, -3808, -81328, 26741, 765765,
|
1828
|
+
// C4[0], coeff of eps^2, polynomial in n of order 5
|
1829
|
+
3232, 28288, -181152, 240448, -77792, -14586, 765765,
|
1830
|
+
// C4[0], coeff of eps^1, polynomial in n of order 6
|
1831
|
+
96, 272, 1088, 10608, -77792, 116688, -51051, 255255,
|
1832
|
+
// C4[0], coeff of eps^0, polynomial in n of order 7
|
1833
|
+
588, 952, 1700, 3536, 9724, 58344, -204204, 510510, 765765,
|
1834
|
+
// C4[1], coeff of eps^7, polynomial in n of order 0
|
1835
|
+
349, 2297295,
|
1836
|
+
// C4[1], coeff of eps^6, polynomial in n of order 1
|
1837
|
+
-1472, 510, 459459,
|
1838
|
+
// C4[1], coeff of eps^5, polynomial in n of order 2
|
1839
|
+
-39840, 1904, 255, 2297295,
|
1840
|
+
// C4[1], coeff of eps^4, polynomial in n of order 3
|
1841
|
+
52608, 65280, -50048, 7956, 2297295,
|
1842
|
+
// C4[1], coeff of eps^3, polynomial in n of order 4
|
1843
|
+
103744, -181968, 98464, 17680, -21879, 2297295,
|
1844
|
+
// C4[1], coeff of eps^2, polynomial in n of order 5
|
1845
|
+
-1344, -13056, 101184, -198016, 155584, -43758, 2297295,
|
1846
|
+
// C4[1], coeff of eps^1, polynomial in n of order 6
|
1847
|
+
-96, -272, -1088, -10608, 77792, -116688, 51051, 2297295,
|
1848
|
+
// C4[2], coeff of eps^7, polynomial in n of order 0
|
1849
|
+
464, 1276275,
|
1850
|
+
// C4[2], coeff of eps^6, polynomial in n of order 1
|
1851
|
+
-928, -612, 3828825,
|
1852
|
+
// C4[2], coeff of eps^5, polynomial in n of order 2
|
1853
|
+
64256, -28288, 2856, 3828825,
|
1854
|
+
// C4[2], coeff of eps^4, polynomial in n of order 3
|
1855
|
+
-126528, 28288, 31552, -15912, 3828825,
|
1856
|
+
// C4[2], coeff of eps^3, polynomial in n of order 4
|
1857
|
+
-41472, 115328, -143616, 84864, -19448, 3828825,
|
1858
|
+
// C4[2], coeff of eps^2, polynomial in n of order 5
|
1859
|
+
160, 2176, -24480, 70720, -77792, 29172, 3828825,
|
1860
|
+
// C4[3], coeff of eps^7, polynomial in n of order 0
|
1861
|
+
-16, 97461,
|
1862
|
+
// C4[3], coeff of eps^6, polynomial in n of order 1
|
1863
|
+
-16384, 1088, 5360355,
|
1864
|
+
// C4[3], coeff of eps^5, polynomial in n of order 2
|
1865
|
+
-2560, 30464, -11560, 5360355,
|
1866
|
+
// C4[3], coeff of eps^4, polynomial in n of order 3
|
1867
|
+
35840, -34816, 17408, -3536, 1786785,
|
1868
|
+
// C4[3], coeff of eps^3, polynomial in n of order 4
|
1869
|
+
7168, -30464, 60928, -56576, 19448, 5360355,
|
1870
|
+
// C4[4], coeff of eps^7, polynomial in n of order 0
|
1871
|
+
128, 2297295,
|
1872
|
+
// C4[4], coeff of eps^6, polynomial in n of order 1
|
1873
|
+
26624, -8704, 6891885,
|
1874
|
+
// C4[4], coeff of eps^5, polynomial in n of order 2
|
1875
|
+
-77824, 34816, -6528, 6891885,
|
1876
|
+
// C4[4], coeff of eps^4, polynomial in n of order 3
|
1877
|
+
-32256, 52224, -43520, 14144, 6891885,
|
1878
|
+
// C4[5], coeff of eps^7, polynomial in n of order 0
|
1879
|
+
-6784, 8423415,
|
1880
|
+
// C4[5], coeff of eps^6, polynomial in n of order 1
|
1881
|
+
24576, -4352, 8423415,
|
1882
|
+
// C4[5], coeff of eps^5, polynomial in n of order 2
|
1883
|
+
45056, -34816, 10880, 8423415,
|
1884
|
+
// C4[6], coeff of eps^7, polynomial in n of order 0
|
1885
|
+
-1024, 3318315,
|
1886
|
+
// C4[6], coeff of eps^6, polynomial in n of order 1
|
1887
|
+
-28672, 8704, 9954945,
|
1888
|
+
// C4[7], coeff of eps^7, polynomial in n of order 0
|
1889
|
+
1024, 1640925,
|
1890
|
+
};
|
1891
|
+
#else
|
1892
|
+
#error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
|
1893
|
+
#endif
|
1894
|
+
GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
|
1895
|
+
(nC4_ * (nC4_ + 1) * (nC4_ + 5)) / 6,
|
1896
|
+
"Coefficient array size mismatch in C4coeff");
|
1897
|
+
int o = 0, k = 0;
|
1898
|
+
for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
|
1899
|
+
for (int j = nC4_ - 1; j >= l; --j) { // coeff of eps^j
|
1900
|
+
int m = nC4_ - j - 1; // order of polynomial in n
|
1901
|
+
_C4x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
|
1902
|
+
o += m + 2;
|
1903
|
+
}
|
1904
|
+
}
|
1905
|
+
// Post condition: o == sizeof(coeff) / sizeof(real) && k == nC4x_
|
1906
|
+
}
|
1907
|
+
|
1908
|
+
} // namespace GeographicLib
|