geographiclib 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
Files changed (87) hide show
  1. checksums.yaml +7 -0
  2. data/AUTHORS +12 -0
  3. data/LICENSE +24 -0
  4. data/ext/geographiclib/Accumulator.cpp +23 -0
  5. data/ext/geographiclib/AlbersEqualArea.cpp +445 -0
  6. data/ext/geographiclib/AzimuthalEquidistant.cpp +41 -0
  7. data/ext/geographiclib/CassiniSoldner.cpp +89 -0
  8. data/ext/geographiclib/CircularEngine.cpp +96 -0
  9. data/ext/geographiclib/DMS.cpp +381 -0
  10. data/ext/geographiclib/Ellipsoid.cpp +125 -0
  11. data/ext/geographiclib/EllipticFunction.cpp +512 -0
  12. data/ext/geographiclib/GARS.cpp +122 -0
  13. data/ext/geographiclib/GeoCoords.cpp +175 -0
  14. data/ext/geographiclib/Geocentric.cpp +172 -0
  15. data/ext/geographiclib/Geodesic.cpp +1908 -0
  16. data/ext/geographiclib/GeodesicExact.cpp +927 -0
  17. data/ext/geographiclib/GeodesicExactC4.cpp +7879 -0
  18. data/ext/geographiclib/GeodesicLine.cpp +321 -0
  19. data/ext/geographiclib/GeodesicLineExact.cpp +289 -0
  20. data/ext/geographiclib/GeographicLib/Accumulator.hpp +184 -0
  21. data/ext/geographiclib/GeographicLib/AlbersEqualArea.hpp +312 -0
  22. data/ext/geographiclib/GeographicLib/AzimuthalEquidistant.hpp +139 -0
  23. data/ext/geographiclib/GeographicLib/CassiniSoldner.hpp +204 -0
  24. data/ext/geographiclib/GeographicLib/CircularEngine.hpp +195 -0
  25. data/ext/geographiclib/GeographicLib/Config.h +12 -0
  26. data/ext/geographiclib/GeographicLib/Constants.hpp +387 -0
  27. data/ext/geographiclib/GeographicLib/DMS.hpp +370 -0
  28. data/ext/geographiclib/GeographicLib/Ellipsoid.hpp +534 -0
  29. data/ext/geographiclib/GeographicLib/EllipticFunction.hpp +692 -0
  30. data/ext/geographiclib/GeographicLib/GARS.hpp +143 -0
  31. data/ext/geographiclib/GeographicLib/GeoCoords.hpp +544 -0
  32. data/ext/geographiclib/GeographicLib/Geocentric.hpp +267 -0
  33. data/ext/geographiclib/GeographicLib/Geodesic.hpp +970 -0
  34. data/ext/geographiclib/GeographicLib/GeodesicExact.hpp +862 -0
  35. data/ext/geographiclib/GeographicLib/GeodesicLine.hpp +701 -0
  36. data/ext/geographiclib/GeographicLib/GeodesicLineExact.hpp +667 -0
  37. data/ext/geographiclib/GeographicLib/Geohash.hpp +180 -0
  38. data/ext/geographiclib/GeographicLib/Geoid.hpp +472 -0
  39. data/ext/geographiclib/GeographicLib/Georef.hpp +160 -0
  40. data/ext/geographiclib/GeographicLib/Gnomonic.hpp +206 -0
  41. data/ext/geographiclib/GeographicLib/GravityCircle.hpp +301 -0
  42. data/ext/geographiclib/GeographicLib/GravityModel.hpp +520 -0
  43. data/ext/geographiclib/GeographicLib/LambertConformalConic.hpp +313 -0
  44. data/ext/geographiclib/GeographicLib/LocalCartesian.hpp +236 -0
  45. data/ext/geographiclib/GeographicLib/MGRS.hpp +355 -0
  46. data/ext/geographiclib/GeographicLib/MagneticCircle.hpp +178 -0
  47. data/ext/geographiclib/GeographicLib/MagneticModel.hpp +347 -0
  48. data/ext/geographiclib/GeographicLib/Math.hpp +920 -0
  49. data/ext/geographiclib/GeographicLib/NormalGravity.hpp +350 -0
  50. data/ext/geographiclib/GeographicLib/OSGB.hpp +249 -0
  51. data/ext/geographiclib/GeographicLib/PolarStereographic.hpp +150 -0
  52. data/ext/geographiclib/GeographicLib/PolygonArea.hpp +288 -0
  53. data/ext/geographiclib/GeographicLib/Rhumb.hpp +589 -0
  54. data/ext/geographiclib/GeographicLib/SphericalEngine.hpp +376 -0
  55. data/ext/geographiclib/GeographicLib/SphericalHarmonic.hpp +354 -0
  56. data/ext/geographiclib/GeographicLib/SphericalHarmonic1.hpp +281 -0
  57. data/ext/geographiclib/GeographicLib/SphericalHarmonic2.hpp +315 -0
  58. data/ext/geographiclib/GeographicLib/TransverseMercator.hpp +196 -0
  59. data/ext/geographiclib/GeographicLib/TransverseMercatorExact.hpp +254 -0
  60. data/ext/geographiclib/GeographicLib/UTMUPS.hpp +421 -0
  61. data/ext/geographiclib/GeographicLib/Utility.hpp +612 -0
  62. data/ext/geographiclib/Geohash.cpp +102 -0
  63. data/ext/geographiclib/Geoid.cpp +509 -0
  64. data/ext/geographiclib/Georef.cpp +135 -0
  65. data/ext/geographiclib/Gnomonic.cpp +85 -0
  66. data/ext/geographiclib/GravityCircle.cpp +129 -0
  67. data/ext/geographiclib/GravityModel.cpp +360 -0
  68. data/ext/geographiclib/LambertConformalConic.cpp +456 -0
  69. data/ext/geographiclib/LocalCartesian.cpp +62 -0
  70. data/ext/geographiclib/MGRS.cpp +461 -0
  71. data/ext/geographiclib/MagneticCircle.cpp +52 -0
  72. data/ext/geographiclib/MagneticModel.cpp +269 -0
  73. data/ext/geographiclib/Math.cpp +63 -0
  74. data/ext/geographiclib/NormalGravity.cpp +262 -0
  75. data/ext/geographiclib/OSGB.cpp +167 -0
  76. data/ext/geographiclib/PolarStereographic.cpp +108 -0
  77. data/ext/geographiclib/PolygonArea.cpp +204 -0
  78. data/ext/geographiclib/Rhumb.cpp +383 -0
  79. data/ext/geographiclib/SphericalEngine.cpp +477 -0
  80. data/ext/geographiclib/TransverseMercator.cpp +603 -0
  81. data/ext/geographiclib/TransverseMercatorExact.cpp +464 -0
  82. data/ext/geographiclib/UTMUPS.cpp +296 -0
  83. data/ext/geographiclib/Utility.cpp +61 -0
  84. data/ext/geographiclib/extconf.rb +3 -0
  85. data/ext/geographiclib/geographiclib.cpp +62 -0
  86. data/lib/geographiclib.rb +20 -0
  87. metadata +140 -0
@@ -0,0 +1,1908 @@
1
+ /**
2
+ * \file Geodesic.cpp
3
+ * \brief Implementation for GeographicLib::Geodesic class
4
+ *
5
+ * Copyright (c) Charles Karney (2009-2016) <charles@karney.com> and licensed
6
+ * under the MIT/X11 License. For more information, see
7
+ * http://geographiclib.sourceforge.net/
8
+ *
9
+ * This is a reformulation of the geodesic problem. The notation is as
10
+ * follows:
11
+ * - at a general point (no suffix or 1 or 2 as suffix)
12
+ * - phi = latitude
13
+ * - beta = latitude on auxiliary sphere
14
+ * - omega = longitude on auxiliary sphere
15
+ * - lambda = longitude
16
+ * - alpha = azimuth of great circle
17
+ * - sigma = arc length along great circle
18
+ * - s = distance
19
+ * - tau = scaled distance (= sigma at multiples of pi/2)
20
+ * - at northwards equator crossing
21
+ * - beta = phi = 0
22
+ * - omega = lambda = 0
23
+ * - alpha = alpha0
24
+ * - sigma = s = 0
25
+ * - a 12 suffix means a difference, e.g., s12 = s2 - s1.
26
+ * - s and c prefixes mean sin and cos
27
+ **********************************************************************/
28
+
29
+ #include <GeographicLib/Geodesic.hpp>
30
+ #include <GeographicLib/GeodesicLine.hpp>
31
+
32
+ #if defined(_MSC_VER)
33
+ // Squelch warnings about potentially uninitialized local variables and
34
+ // constant conditional expressions
35
+ # pragma warning (disable: 4701 4127)
36
+ #endif
37
+
38
+ namespace GeographicLib {
39
+
40
+ using namespace std;
41
+
42
+ Geodesic::Geodesic(real a, real f)
43
+ : maxit2_(maxit1_ + Math::digits() + 10)
44
+ // Underflow guard. We require
45
+ // tiny_ * epsilon() > 0
46
+ // tiny_ + epsilon() == epsilon()
47
+ , tiny_(sqrt(numeric_limits<real>::min()))
48
+ , tol0_(numeric_limits<real>::epsilon())
49
+ // Increase multiplier in defn of tol1_ from 100 to 200 to fix inverse
50
+ // case 52.784459512564 0 -52.784459512563990912 179.634407464943777557
51
+ // which otherwise failed for Visual Studio 10 (Release and Debug)
52
+ , tol1_(200 * tol0_)
53
+ , tol2_(sqrt(tol0_))
54
+ , tolb_(tol0_ * tol2_) // Check on bisection interval
55
+ , xthresh_(1000 * tol2_)
56
+ , _a(a)
57
+ , _f(f)
58
+ , _f1(1 - _f)
59
+ , _e2(_f * (2 - _f))
60
+ , _ep2(_e2 / Math::sq(_f1)) // e2 / (1 - e2)
61
+ , _n(_f / ( 2 - _f))
62
+ , _b(_a * _f1)
63
+ , _c2((Math::sq(_a) + Math::sq(_b) *
64
+ (_e2 == 0 ? 1 :
65
+ Math::eatanhe(real(1), (_f < 0 ? -1 : 1) * sqrt(abs(_e2))) / _e2))
66
+ / 2) // authalic radius squared
67
+ // The sig12 threshold for "really short". Using the auxiliary sphere
68
+ // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
69
+ // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
70
+ // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a
71
+ // given f and sig12, the max error occurs for lines near the pole. If
72
+ // the old rule for computing dnm = (dn1 + dn2)/2 is used, then the error
73
+ // increases by a factor of 2.) Setting this equal to epsilon gives
74
+ // sig12 = etol2. Here 0.1 is a safety factor (error decreased by 100)
75
+ // and max(0.001, abs(f)) stops etol2 getting too large in the nearly
76
+ // spherical case.
77
+ , _etol2(0.1 * tol2_ /
78
+ sqrt( max(real(0.001), abs(_f)) * min(real(1), 1 - _f/2) / 2 ))
79
+ {
80
+ if (!(Math::isfinite(_a) && _a > 0))
81
+ throw GeographicErr("Major radius is not positive");
82
+ if (!(Math::isfinite(_b) && _b > 0))
83
+ throw GeographicErr("Minor radius is not positive");
84
+ A3coeff();
85
+ C3coeff();
86
+ C4coeff();
87
+ }
88
+
89
+ const Geodesic& Geodesic::WGS84() {
90
+ static const Geodesic wgs84(Constants::WGS84_a(), Constants::WGS84_f());
91
+ return wgs84;
92
+ }
93
+
94
+ Math::real Geodesic::SinCosSeries(bool sinp,
95
+ real sinx, real cosx,
96
+ const real c[], int n) {
97
+ // Evaluate
98
+ // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
99
+ // sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
100
+ // using Clenshaw summation. N.B. c[0] is unused for sin series
101
+ // Approx operation count = (n + 5) mult and (2 * n + 2) add
102
+ c += (n + sinp); // Point to one beyond last element
103
+ real
104
+ ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
105
+ y0 = n & 1 ? *--c : 0, y1 = 0; // accumulators for sum
106
+ // Now n is even
107
+ n /= 2;
108
+ while (n--) {
109
+ // Unroll loop x 2, so accumulators return to their original role
110
+ y1 = ar * y0 - y1 + *--c;
111
+ y0 = ar * y1 - y0 + *--c;
112
+ }
113
+ return sinp
114
+ ? 2 * sinx * cosx * y0 // sin(2 * x) * y0
115
+ : cosx * (y0 - y1); // cos(x) * (y0 - y1)
116
+ }
117
+
118
+ GeodesicLine Geodesic::Line(real lat1, real lon1, real azi1, unsigned caps)
119
+ const {
120
+ return GeodesicLine(*this, lat1, lon1, azi1, caps);
121
+ }
122
+
123
+ Math::real Geodesic::GenDirect(real lat1, real lon1, real azi1,
124
+ bool arcmode, real s12_a12, unsigned outmask,
125
+ real& lat2, real& lon2, real& azi2,
126
+ real& s12, real& m12, real& M12, real& M21,
127
+ real& S12) const {
128
+ // Automatically supply DISTANCE_IN if necessary
129
+ if (!arcmode) outmask |= DISTANCE_IN;
130
+ return GeodesicLine(*this, lat1, lon1, azi1, outmask)
131
+ . // Note the dot!
132
+ GenPosition(arcmode, s12_a12, outmask,
133
+ lat2, lon2, azi2, s12, m12, M12, M21, S12);
134
+ }
135
+
136
+ GeodesicLine Geodesic::GenDirectLine(real lat1, real lon1, real azi1,
137
+ bool arcmode, real s12_a12,
138
+ unsigned caps) const {
139
+ azi1 = Math::AngNormalize(azi1);
140
+ real salp1, calp1;
141
+ // Guard against underflow in salp0. Also -0 is converted to +0.
142
+ Math::sincosd(Math::AngRound(azi1), salp1, calp1);
143
+ // Automatically supply DISTANCE_IN if necessary
144
+ if (!arcmode) caps |= DISTANCE_IN;
145
+ return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1,
146
+ caps, arcmode, s12_a12);
147
+ }
148
+
149
+ GeodesicLine Geodesic::DirectLine(real lat1, real lon1, real azi1, real s12,
150
+ unsigned caps) const {
151
+ return GenDirectLine(lat1, lon1, azi1, false, s12, caps);
152
+ }
153
+
154
+ GeodesicLine Geodesic::ArcDirectLine(real lat1, real lon1, real azi1,
155
+ real a12, unsigned caps) const {
156
+ return GenDirectLine(lat1, lon1, azi1, true, a12, caps);
157
+ }
158
+
159
+ Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2,
160
+ unsigned outmask, real& s12,
161
+ real& salp1, real& calp1,
162
+ real& salp2, real& calp2,
163
+ real& m12, real& M12, real& M21, real& S12)
164
+ const {
165
+ // Compute longitude difference (AngDiff does this carefully). Result is
166
+ // in [-180, 180] but -180 is only for west-going geodesics. 180 is for
167
+ // east-going and meridional geodesics.
168
+ real lon12s, lon12 = Math::AngDiff(lon1, lon2, lon12s);
169
+ // Make longitude difference positive.
170
+ int lonsign = lon12 >= 0 ? 1 : -1;
171
+ // If very close to being on the same half-meridian, then make it so.
172
+ lon12 = lonsign * Math::AngRound(lon12);
173
+ lon12s = Math::AngRound((180 - lon12) - lonsign * lon12s);
174
+ real
175
+ lam12 = lon12 * Math::degree(),
176
+ slam12, clam12;
177
+ if (lon12 > 90) {
178
+ Math::sincosd(lon12s, slam12, clam12);
179
+ clam12 = -clam12;
180
+ } else
181
+ Math::sincosd(lon12, slam12, clam12);
182
+
183
+ // If really close to the equator, treat as on equator.
184
+ lat1 = Math::AngRound(Math::LatFix(lat1));
185
+ lat2 = Math::AngRound(Math::LatFix(lat2));
186
+ // Swap points so that point with higher (abs) latitude is point 1
187
+ // If one latitude is a nan, then it becomes lat1.
188
+ int swapp = abs(lat1) < abs(lat2) ? -1 : 1;
189
+ if (swapp < 0) {
190
+ lonsign *= -1;
191
+ swap(lat1, lat2);
192
+ }
193
+ // Make lat1 <= 0
194
+ int latsign = lat1 < 0 ? 1 : -1;
195
+ lat1 *= latsign;
196
+ lat2 *= latsign;
197
+ // Now we have
198
+ //
199
+ // 0 <= lon12 <= 180
200
+ // -90 <= lat1 <= 0
201
+ // lat1 <= lat2 <= -lat1
202
+ //
203
+ // longsign, swapp, latsign register the transformation to bring the
204
+ // coordinates to this canonical form. In all cases, 1 means no change was
205
+ // made. We make these transformations so that there are few cases to
206
+ // check, e.g., on verifying quadrants in atan2. In addition, this
207
+ // enforces some symmetries in the results returned.
208
+
209
+ real sbet1, cbet1, sbet2, cbet2, s12x, m12x;
210
+
211
+ Math::sincosd(lat1, sbet1, cbet1); sbet1 *= _f1;
212
+ // Ensure cbet1 = +epsilon at poles; doing the fix on beta means that sig12
213
+ // will be <= 2*tiny for two points at the same pole.
214
+ Math::norm(sbet1, cbet1); cbet1 = max(tiny_, cbet1);
215
+
216
+ Math::sincosd(lat2, sbet2, cbet2); sbet2 *= _f1;
217
+ // Ensure cbet2 = +epsilon at poles
218
+ Math::norm(sbet2, cbet2); cbet2 = max(tiny_, cbet2);
219
+
220
+ // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
221
+ // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
222
+ // a better measure. This logic is used in assigning calp2 in Lambda12.
223
+ // Sometimes these quantities vanish and in that case we force bet2 = +/-
224
+ // bet1 exactly. An example where is is necessary is the inverse problem
225
+ // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
226
+ // which failed with Visual Studio 10 (Release and Debug)
227
+
228
+ if (cbet1 < -sbet1) {
229
+ if (cbet2 == cbet1)
230
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
231
+ } else {
232
+ if (abs(sbet2) == -sbet1)
233
+ cbet2 = cbet1;
234
+ }
235
+
236
+ real
237
+ dn1 = sqrt(1 + _ep2 * Math::sq(sbet1)),
238
+ dn2 = sqrt(1 + _ep2 * Math::sq(sbet2));
239
+
240
+ real a12, sig12;
241
+ // index zero element of this array is unused
242
+ real Ca[nC_];
243
+
244
+ bool meridian = lat1 == -90 || slam12 == 0;
245
+
246
+ if (meridian) {
247
+
248
+ // Endpoints are on a single full meridian, so the geodesic might lie on
249
+ // a meridian.
250
+
251
+ calp1 = clam12; salp1 = slam12; // Head to the target longitude
252
+ calp2 = 1; salp2 = 0; // At the target we're heading north
253
+
254
+ real
255
+ // tan(bet) = tan(sig) * cos(alp)
256
+ ssig1 = sbet1, csig1 = calp1 * cbet1,
257
+ ssig2 = sbet2, csig2 = calp2 * cbet2;
258
+
259
+ // sig12 = sig2 - sig1
260
+ sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
261
+ csig1 * csig2 + ssig1 * ssig2);
262
+ {
263
+ real dummy;
264
+ Lengths(_n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
265
+ outmask | DISTANCE | REDUCEDLENGTH,
266
+ s12x, m12x, dummy, M12, M21, Ca);
267
+ }
268
+ // Add the check for sig12 since zero length geodesics might yield m12 <
269
+ // 0. Test case was
270
+ //
271
+ // echo 20.001 0 20.001 0 | GeodSolve -i
272
+ //
273
+ // In fact, we will have sig12 > pi/2 for meridional geodesic which is
274
+ // not a shortest path.
275
+ if (sig12 < 1 || m12x >= 0) {
276
+ // Need at least 2, to handle 90 0 90 180
277
+ if (sig12 < 3 * tiny_)
278
+ sig12 = m12x = s12x = 0;
279
+ m12x *= _b;
280
+ s12x *= _b;
281
+ a12 = sig12 / Math::degree();
282
+ } else
283
+ // m12 < 0, i.e., prolate and too close to anti-podal
284
+ meridian = false;
285
+ }
286
+
287
+ // somg12 > 1 marks that it needs to be calculated
288
+ real omg12 = 0, somg12 = 2, comg12 = 0;
289
+ if (!meridian &&
290
+ sbet1 == 0 && // and sbet2 == 0
291
+ (_f <= 0 || lon12s >= _f * 180)) {
292
+
293
+ // Geodesic runs along equator
294
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
295
+ s12x = _a * lam12;
296
+ sig12 = omg12 = lam12 / _f1;
297
+ m12x = _b * sin(sig12);
298
+ if (outmask & GEODESICSCALE)
299
+ M12 = M21 = cos(sig12);
300
+ a12 = lon12 / _f1;
301
+
302
+ } else if (!meridian) {
303
+
304
+ // Now point1 and point2 belong within a hemisphere bounded by a
305
+ // meridian and geodesic is neither meridional or equatorial.
306
+
307
+ // Figure a starting point for Newton's method
308
+ real dnm;
309
+ sig12 = InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
310
+ lam12, slam12, clam12,
311
+ salp1, calp1, salp2, calp2, dnm,
312
+ Ca);
313
+
314
+ if (sig12 >= 0) {
315
+ // Short lines (InverseStart sets salp2, calp2, dnm)
316
+ s12x = sig12 * _b * dnm;
317
+ m12x = Math::sq(dnm) * _b * sin(sig12 / dnm);
318
+ if (outmask & GEODESICSCALE)
319
+ M12 = M21 = cos(sig12 / dnm);
320
+ a12 = sig12 / Math::degree();
321
+ omg12 = lam12 / (_f1 * dnm);
322
+ } else {
323
+
324
+ // Newton's method. This is a straightforward solution of f(alp1) =
325
+ // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
326
+ // root in the interval (0, pi) and its derivative is positive at the
327
+ // root. Thus f(alp) is positive for alp > alp1 and negative for alp <
328
+ // alp1. During the course of the iteration, a range (alp1a, alp1b) is
329
+ // maintained which brackets the root and with each evaluation of
330
+ // f(alp) the range is shrunk, if possible. Newton's method is
331
+ // restarted whenever the derivative of f is negative (because the new
332
+ // value of alp1 is then further from the solution) or if the new
333
+ // estimate of alp1 lies outside (0,pi); in this case, the new starting
334
+ // guess is taken to be (alp1a + alp1b) / 2.
335
+ //
336
+ // initial values to suppress warnings (if loop is executed 0 times)
337
+ real ssig1 = 0, csig1 = 0, ssig2 = 0, csig2 = 0, eps = 0;
338
+ unsigned numit = 0;
339
+ // Bracketing range
340
+ real salp1a = tiny_, calp1a = 1, salp1b = tiny_, calp1b = -1;
341
+ for (bool tripn = false, tripb = false;
342
+ numit < maxit2_ || GEOGRAPHICLIB_PANIC;
343
+ ++numit) {
344
+ // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
345
+ // WGS84 and random input: mean = 2.85, sd = 0.60
346
+ real dv;
347
+ real v = Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
348
+ slam12, clam12,
349
+ salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
350
+ eps, somg12, comg12, numit < maxit1_, dv, Ca);
351
+ // Reversed test to allow escape with NaNs
352
+ if (tripb || !(abs(v) >= (tripn ? 8 : 1) * tol0_)) break;
353
+ // Update bracketing values
354
+ if (v > 0 && (numit > maxit1_ || calp1/salp1 > calp1b/salp1b))
355
+ { salp1b = salp1; calp1b = calp1; }
356
+ else if (v < 0 && (numit > maxit1_ || calp1/salp1 < calp1a/salp1a))
357
+ { salp1a = salp1; calp1a = calp1; }
358
+ if (numit < maxit1_ && dv > 0) {
359
+ real
360
+ dalp1 = -v/dv;
361
+ real
362
+ sdalp1 = sin(dalp1), cdalp1 = cos(dalp1),
363
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
364
+ if (nsalp1 > 0 && abs(dalp1) < Math::pi()) {
365
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
366
+ salp1 = nsalp1;
367
+ Math::norm(salp1, calp1);
368
+ // In some regimes we don't get quadratic convergence because
369
+ // slope -> 0. So use convergence conditions based on epsilon
370
+ // instead of sqrt(epsilon).
371
+ tripn = abs(v) <= 16 * tol0_;
372
+ continue;
373
+ }
374
+ }
375
+ // Either dv was not postive or updated value was outside legal
376
+ // range. Use the midpoint of the bracket as the next estimate.
377
+ // This mechanism is not needed for the WGS84 ellipsoid, but it does
378
+ // catch problems with more eccentric ellipsoids. Its efficacy is
379
+ // such for the WGS84 test set with the starting guess set to alp1 =
380
+ // 90deg:
381
+ // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
382
+ // WGS84 and random input: mean = 4.74, sd = 0.99
383
+ salp1 = (salp1a + salp1b)/2;
384
+ calp1 = (calp1a + calp1b)/2;
385
+ Math::norm(salp1, calp1);
386
+ tripn = false;
387
+ tripb = (abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
388
+ abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
389
+ }
390
+ {
391
+ real dummy;
392
+ // Ensure that the reduced length and geodesic scale are computed in
393
+ // a "canonical" way, with the I2 integral.
394
+ unsigned lengthmask = outmask |
395
+ (outmask & (REDUCEDLENGTH | GEODESICSCALE) ? DISTANCE : NONE);
396
+ Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
397
+ cbet1, cbet2, lengthmask, s12x, m12x, dummy, M12, M21, Ca);
398
+ }
399
+ m12x *= _b;
400
+ s12x *= _b;
401
+ a12 = sig12 / Math::degree();
402
+ }
403
+ }
404
+
405
+ if (outmask & DISTANCE)
406
+ s12 = 0 + s12x; // Convert -0 to 0
407
+
408
+ if (outmask & REDUCEDLENGTH)
409
+ m12 = 0 + m12x; // Convert -0 to 0
410
+
411
+ if (outmask & AREA) {
412
+ real
413
+ // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
414
+ salp0 = salp1 * cbet1,
415
+ calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
416
+ real alp12;
417
+ if (calp0 != 0 && salp0 != 0) {
418
+ real
419
+ // From Lambda12: tan(bet) = tan(sig) * cos(alp)
420
+ ssig1 = sbet1, csig1 = calp1 * cbet1,
421
+ ssig2 = sbet2, csig2 = calp2 * cbet2,
422
+ k2 = Math::sq(calp0) * _ep2,
423
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2),
424
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
425
+ A4 = Math::sq(_a) * calp0 * salp0 * _e2;
426
+ Math::norm(ssig1, csig1);
427
+ Math::norm(ssig2, csig2);
428
+ C4f(eps, Ca);
429
+ real
430
+ B41 = SinCosSeries(false, ssig1, csig1, Ca, nC4_),
431
+ B42 = SinCosSeries(false, ssig2, csig2, Ca, nC4_);
432
+ S12 = A4 * (B42 - B41);
433
+ } else
434
+ // Avoid problems with indeterminate sig1, sig2 on equator
435
+ S12 = 0;
436
+
437
+ if (!meridian) {
438
+ if (somg12 > 1) {
439
+ somg12 = sin(omg12); comg12 = cos(omg12);
440
+ } else
441
+ Math::norm(somg12, comg12);
442
+ }
443
+
444
+ if (!meridian &&
445
+ // omg12 < 3/4 * pi
446
+ comg12 > -real(0.7071) && // Long difference not too big
447
+ sbet2 - sbet1 < real(1.75)) { // Lat difference not too big
448
+ // Use tan(Gamma/2) = tan(omg12/2)
449
+ // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
450
+ // with tan(x/2) = sin(x)/(1+cos(x))
451
+ real domg12 = 1 + comg12, dbet1 = 1 + cbet1, dbet2 = 1 + cbet2;
452
+ alp12 = 2 * atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
453
+ domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) );
454
+ } else {
455
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
456
+ real
457
+ salp12 = salp2 * calp1 - calp2 * salp1,
458
+ calp12 = calp2 * calp1 + salp2 * salp1;
459
+ // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
460
+ // salp12 = -0 and alp12 = -180. However this depends on the sign
461
+ // being attached to 0 correctly. The following ensures the correct
462
+ // behavior.
463
+ if (salp12 == 0 && calp12 < 0) {
464
+ salp12 = tiny_ * calp1;
465
+ calp12 = -1;
466
+ }
467
+ alp12 = atan2(salp12, calp12);
468
+ }
469
+ S12 += _c2 * alp12;
470
+ S12 *= swapp * lonsign * latsign;
471
+ // Convert -0 to 0
472
+ S12 += 0;
473
+ }
474
+
475
+ // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
476
+ if (swapp < 0) {
477
+ swap(salp1, salp2);
478
+ swap(calp1, calp2);
479
+ if (outmask & GEODESICSCALE)
480
+ swap(M12, M21);
481
+ }
482
+
483
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
484
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
485
+
486
+ // Returned value in [0, 180]
487
+ return a12;
488
+ }
489
+
490
+ Math::real Geodesic::GenInverse(real lat1, real lon1, real lat2, real lon2,
491
+ unsigned outmask,
492
+ real& s12, real& azi1, real& azi2,
493
+ real& m12, real& M12, real& M21, real& S12)
494
+ const {
495
+ outmask &= OUT_MASK;
496
+ real salp1, calp1, salp2, calp2,
497
+ a12 = GenInverse(lat1, lon1, lat2, lon2,
498
+ outmask, s12, salp1, calp1, salp2, calp2,
499
+ m12, M12, M21, S12);
500
+ if (outmask & AZIMUTH) {
501
+ azi1 = Math::atan2d(salp1, calp1);
502
+ azi2 = Math::atan2d(salp2, calp2);
503
+ }
504
+ return a12;
505
+ }
506
+
507
+ GeodesicLine Geodesic::InverseLine(real lat1, real lon1, real lat2, real lon2,
508
+ unsigned caps) const {
509
+ real t, salp1, calp1, salp2, calp2,
510
+ a12 = GenInverse(lat1, lon1, lat2, lon2,
511
+ // No need to specify AZIMUTH here
512
+ 0u, t, salp1, calp1, salp2, calp2,
513
+ t, t, t, t),
514
+ azi1 = Math::atan2d(salp1, calp1);
515
+ // Ensure that a12 can be converted to a distance
516
+ if (caps & (OUT_MASK & DISTANCE_IN)) caps |= DISTANCE;
517
+ return GeodesicLine(*this, lat1, lon1, azi1, salp1, calp1, caps, true, a12);
518
+ }
519
+
520
+ void Geodesic::Lengths(real eps, real sig12,
521
+ real ssig1, real csig1, real dn1,
522
+ real ssig2, real csig2, real dn2,
523
+ real cbet1, real cbet2, unsigned outmask,
524
+ real& s12b, real& m12b, real& m0, real& M12, real& M21,
525
+ // Scratch area of the right size
526
+ real Ca[]) const {
527
+ // Return m12b = (reduced length)/_b; also calculate s12b = distance/_b,
528
+ // and m0 = coefficient of secular term in expression for reduced length.
529
+
530
+ outmask &= OUT_MASK;
531
+ // outmask & DISTANCE: set s12b
532
+ // outmask & REDUCEDLENGTH: set m12b & m0
533
+ // outmask & GEODESICSCALE: set M12 & M21
534
+
535
+ real m0x = 0, J12 = 0, A1 = 0, A2 = 0;
536
+ real Cb[nC2_ + 1];
537
+ if (outmask & (DISTANCE | REDUCEDLENGTH | GEODESICSCALE)) {
538
+ A1 = A1m1f(eps);
539
+ C1f(eps, Ca);
540
+ if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
541
+ A2 = A2m1f(eps);
542
+ C2f(eps, Cb);
543
+ m0x = A1 - A2;
544
+ A2 = 1 + A2;
545
+ }
546
+ A1 = 1 + A1;
547
+ }
548
+ if (outmask & DISTANCE) {
549
+ real B1 = SinCosSeries(true, ssig2, csig2, Ca, nC1_) -
550
+ SinCosSeries(true, ssig1, csig1, Ca, nC1_);
551
+ // Missing a factor of _b
552
+ s12b = A1 * (sig12 + B1);
553
+ if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
554
+ real B2 = SinCosSeries(true, ssig2, csig2, Cb, nC2_) -
555
+ SinCosSeries(true, ssig1, csig1, Cb, nC2_);
556
+ J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
557
+ }
558
+ } else if (outmask & (REDUCEDLENGTH | GEODESICSCALE)) {
559
+ // Assume here that nC1_ >= nC2_
560
+ for (int l = 1; l <= nC2_; ++l)
561
+ Cb[l] = A1 * Ca[l] - A2 * Cb[l];
562
+ J12 = m0x * sig12 + (SinCosSeries(true, ssig2, csig2, Cb, nC2_) -
563
+ SinCosSeries(true, ssig1, csig1, Cb, nC2_));
564
+ }
565
+ if (outmask & REDUCEDLENGTH) {
566
+ m0 = m0x;
567
+ // Missing a factor of _b.
568
+ // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
569
+ // accurate cancellation in the case of coincident points.
570
+ m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
571
+ csig1 * csig2 * J12;
572
+ }
573
+ if (outmask & GEODESICSCALE) {
574
+ real csig12 = csig1 * csig2 + ssig1 * ssig2;
575
+ real t = _ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
576
+ M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
577
+ M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
578
+ }
579
+ }
580
+
581
+ Math::real Geodesic::Astroid(real x, real y) {
582
+ // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
583
+ // This solution is adapted from Geocentric::Reverse.
584
+ real k;
585
+ real
586
+ p = Math::sq(x),
587
+ q = Math::sq(y),
588
+ r = (p + q - 1) / 6;
589
+ if ( !(q == 0 && r <= 0) ) {
590
+ real
591
+ // Avoid possible division by zero when r = 0 by multiplying equations
592
+ // for s and t by r^3 and r, resp.
593
+ S = p * q / 4, // S = r^3 * s
594
+ r2 = Math::sq(r),
595
+ r3 = r * r2,
596
+ // The discriminant of the quadratic equation for T3. This is zero on
597
+ // the evolute curve p^(1/3)+q^(1/3) = 1
598
+ disc = S * (S + 2 * r3);
599
+ real u = r;
600
+ if (disc >= 0) {
601
+ real T3 = S + r3;
602
+ // Pick the sign on the sqrt to maximize abs(T3). This minimizes loss
603
+ // of precision due to cancellation. The result is unchanged because
604
+ // of the way the T is used in definition of u.
605
+ T3 += T3 < 0 ? -sqrt(disc) : sqrt(disc); // T3 = (r * t)^3
606
+ // N.B. cbrt always returns the real root. cbrt(-8) = -2.
607
+ real T = Math::cbrt(T3); // T = r * t
608
+ // T can be zero; but then r2 / T -> 0.
609
+ u += T + (T ? r2 / T : 0);
610
+ } else {
611
+ // T is complex, but the way u is defined the result is real.
612
+ real ang = atan2(sqrt(-disc), -(S + r3));
613
+ // There are three possible cube roots. We choose the root which
614
+ // avoids cancellation. Note that disc < 0 implies that r < 0.
615
+ u += 2 * r * cos(ang / 3);
616
+ }
617
+ real
618
+ v = sqrt(Math::sq(u) + q), // guaranteed positive
619
+ // Avoid loss of accuracy when u < 0.
620
+ uv = u < 0 ? q / (v - u) : u + v, // u+v, guaranteed positive
621
+ w = (uv - q) / (2 * v); // positive?
622
+ // Rearrange expression for k to avoid loss of accuracy due to
623
+ // subtraction. Division by 0 not possible because uv > 0, w >= 0.
624
+ k = uv / (sqrt(uv + Math::sq(w)) + w); // guaranteed positive
625
+ } else { // q == 0 && r <= 0
626
+ // y = 0 with |x| <= 1. Handle this case directly.
627
+ // for y small, positive root is k = abs(y)/sqrt(1-x^2)
628
+ k = 0;
629
+ }
630
+ return k;
631
+ }
632
+
633
+ Math::real Geodesic::InverseStart(real sbet1, real cbet1, real dn1,
634
+ real sbet2, real cbet2, real dn2,
635
+ real lam12, real slam12, real clam12,
636
+ real& salp1, real& calp1,
637
+ // Only updated if return val >= 0
638
+ real& salp2, real& calp2,
639
+ // Only updated for short lines
640
+ real& dnm,
641
+ // Scratch area of the right size
642
+ real Ca[]) const {
643
+ // Return a starting point for Newton's method in salp1 and calp1 (function
644
+ // value is -1). If Newton's method doesn't need to be used, return also
645
+ // salp2 and calp2 and function value is sig12.
646
+ real
647
+ sig12 = -1, // Return value
648
+ // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
649
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
650
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1;
651
+ #if defined(__GNUC__) && __GNUC__ == 4 && \
652
+ (__GNUC_MINOR__ < 6 || defined(__MINGW32__))
653
+ // Volatile declaration needed to fix inverse cases
654
+ // 88.202499451857 0 -88.202499451857 179.981022032992859592
655
+ // 89.262080389218 0 -89.262080389218 179.992207982775375662
656
+ // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
657
+ // which otherwise fail with g++ 4.4.4 x86 -O3 (Linux)
658
+ // and g++ 4.4.0 (mingw) and g++ 4.6.1 (tdm mingw).
659
+ real sbet12a;
660
+ {
661
+ GEOGRAPHICLIB_VOLATILE real xx1 = sbet2 * cbet1;
662
+ GEOGRAPHICLIB_VOLATILE real xx2 = cbet2 * sbet1;
663
+ sbet12a = xx1 + xx2;
664
+ }
665
+ #else
666
+ real sbet12a = sbet2 * cbet1 + cbet2 * sbet1;
667
+ #endif
668
+ bool shortline = cbet12 >= 0 && sbet12 < real(0.5) &&
669
+ cbet2 * lam12 < real(0.5);
670
+ real somg12, comg12;
671
+ if (shortline) {
672
+ real sbetm2 = Math::sq(sbet1 + sbet2);
673
+ // sin((bet1+bet2)/2)^2
674
+ // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
675
+ sbetm2 /= sbetm2 + Math::sq(cbet1 + cbet2);
676
+ dnm = sqrt(1 + _ep2 * sbetm2);
677
+ real omg12 = lam12 / (_f1 * dnm);
678
+ somg12 = sin(omg12); comg12 = cos(omg12);
679
+ } else {
680
+ somg12 = slam12; comg12 = clam12;
681
+ }
682
+
683
+ salp1 = cbet2 * somg12;
684
+ calp1 = comg12 >= 0 ?
685
+ sbet12 + cbet2 * sbet1 * Math::sq(somg12) / (1 + comg12) :
686
+ sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
687
+
688
+ real
689
+ ssig12 = Math::hypot(salp1, calp1),
690
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
691
+
692
+ if (shortline && ssig12 < _etol2) {
693
+ // really short lines
694
+ salp2 = cbet1 * somg12;
695
+ calp2 = sbet12 - cbet1 * sbet2 *
696
+ (comg12 >= 0 ? Math::sq(somg12) / (1 + comg12) : 1 - comg12);
697
+ Math::norm(salp2, calp2);
698
+ // Set return value
699
+ sig12 = atan2(ssig12, csig12);
700
+ } else if (abs(_n) > real(0.1) || // Skip astroid calc if too eccentric
701
+ csig12 >= 0 ||
702
+ ssig12 >= 6 * abs(_n) * Math::pi() * Math::sq(cbet1)) {
703
+ // Nothing to do, zeroth order spherical approximation is OK
704
+ } else {
705
+ // Scale lam12 and bet2 to x, y coordinate system where antipodal point
706
+ // is at origin and singular point is at y = 0, x = -1.
707
+ real y, lamscale, betscale;
708
+ // Volatile declaration needed to fix inverse case
709
+ // 56.320923501171 0 -56.320923501171 179.664747671772880215
710
+ // which otherwise fails with g++ 4.4.4 x86 -O3
711
+ GEOGRAPHICLIB_VOLATILE real x;
712
+ real lam12x = atan2(-slam12, -clam12); // lam12 - pi
713
+ if (_f >= 0) { // In fact f == 0 does not get here
714
+ // x = dlong, y = dlat
715
+ {
716
+ real
717
+ k2 = Math::sq(sbet1) * _ep2,
718
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
719
+ lamscale = _f * cbet1 * A3f(eps) * Math::pi();
720
+ }
721
+ betscale = lamscale * cbet1;
722
+
723
+ x = lam12x / lamscale;
724
+ y = sbet12a / betscale;
725
+ } else { // _f < 0
726
+ // x = dlat, y = dlong
727
+ real
728
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1,
729
+ bet12a = atan2(sbet12a, cbet12a);
730
+ real m12b, m0, dummy;
731
+ // In the case of lon12 = 180, this repeats a calculation made in
732
+ // Inverse.
733
+ Lengths(_n, Math::pi() + bet12a,
734
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
735
+ cbet1, cbet2, REDUCEDLENGTH, dummy, m12b, m0, dummy, dummy, Ca);
736
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * Math::pi());
737
+ betscale = x < -real(0.01) ? sbet12a / x :
738
+ -_f * Math::sq(cbet1) * Math::pi();
739
+ lamscale = betscale / cbet1;
740
+ y = lam12x / lamscale;
741
+ }
742
+
743
+ if (y > -tol1_ && x > -1 - xthresh_) {
744
+ // strip near cut
745
+ // Need real(x) here to cast away the volatility of x for min/max
746
+ if (_f >= 0) {
747
+ salp1 = min(real(1), -real(x)); calp1 = - sqrt(1 - Math::sq(salp1));
748
+ } else {
749
+ calp1 = max(real(x > -tol1_ ? 0 : -1), real(x));
750
+ salp1 = sqrt(1 - Math::sq(calp1));
751
+ }
752
+ } else {
753
+ // Estimate alp1, by solving the astroid problem.
754
+ //
755
+ // Could estimate alpha1 = theta + pi/2, directly, i.e.,
756
+ // calp1 = y/k; salp1 = -x/(1+k); for _f >= 0
757
+ // calp1 = x/(1+k); salp1 = -y/k; for _f < 0 (need to check)
758
+ //
759
+ // However, it's better to estimate omg12 from astroid and use
760
+ // spherical formula to compute alp1. This reduces the mean number of
761
+ // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
762
+ // (min 0 max 5). The changes in the number of iterations are as
763
+ // follows:
764
+ //
765
+ // change percent
766
+ // 1 5
767
+ // 0 78
768
+ // -1 16
769
+ // -2 0.6
770
+ // -3 0.04
771
+ // -4 0.002
772
+ //
773
+ // The histogram of iterations is (m = number of iterations estimating
774
+ // alp1 directly, n = number of iterations estimating via omg12, total
775
+ // number of trials = 148605):
776
+ //
777
+ // iter m n
778
+ // 0 148 186
779
+ // 1 13046 13845
780
+ // 2 93315 102225
781
+ // 3 36189 32341
782
+ // 4 5396 7
783
+ // 5 455 1
784
+ // 6 56 0
785
+ //
786
+ // Because omg12 is near pi, estimate work with omg12a = pi - omg12
787
+ real k = Astroid(x, y);
788
+ real
789
+ omg12a = lamscale * ( _f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
790
+ somg12 = sin(omg12a); comg12 = -cos(omg12a);
791
+ // Update spherical estimate of alp1 using omg12 instead of lam12
792
+ salp1 = cbet2 * somg12;
793
+ calp1 = sbet12a - cbet2 * sbet1 * Math::sq(somg12) / (1 - comg12);
794
+ }
795
+ }
796
+ // Sanity check on starting guess. Backwards check allows NaN through.
797
+ if (!(salp1 <= 0))
798
+ Math::norm(salp1, calp1);
799
+ else {
800
+ salp1 = 1; calp1 = 0;
801
+ }
802
+ return sig12;
803
+ }
804
+
805
+ Math::real Geodesic::Lambda12(real sbet1, real cbet1, real dn1,
806
+ real sbet2, real cbet2, real dn2,
807
+ real salp1, real calp1,
808
+ real slam120, real clam120,
809
+ real& salp2, real& calp2,
810
+ real& sig12,
811
+ real& ssig1, real& csig1,
812
+ real& ssig2, real& csig2,
813
+ real& eps, real& somg12, real& comg12,
814
+ bool diffp, real& dlam12,
815
+ // Scratch area of the right size
816
+ real Ca[]) const {
817
+
818
+ if (sbet1 == 0 && calp1 == 0)
819
+ // Break degeneracy of equatorial line. This case has already been
820
+ // handled.
821
+ calp1 = -tiny_;
822
+
823
+ real
824
+ // sin(alp1) * cos(bet1) = sin(alp0)
825
+ salp0 = salp1 * cbet1,
826
+ calp0 = Math::hypot(calp1, salp1 * sbet1); // calp0 > 0
827
+
828
+ real somg1, comg1, somg2, comg2, lam12;
829
+ // tan(bet1) = tan(sig1) * cos(alp1)
830
+ // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
831
+ ssig1 = sbet1; somg1 = salp0 * sbet1;
832
+ csig1 = comg1 = calp1 * cbet1;
833
+ Math::norm(ssig1, csig1);
834
+ // Math::norm(somg1, comg1); -- don't need to normalize!
835
+
836
+ // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
837
+ // about this case, since this can yield singularities in the Newton
838
+ // iteration.
839
+ // sin(alp2) * cos(bet2) = sin(alp0)
840
+ salp2 = cbet2 != cbet1 ? salp0 / cbet2 : salp1;
841
+ // calp2 = sqrt(1 - sq(salp2))
842
+ // = sqrt(sq(calp0) - sq(sbet2)) / cbet2
843
+ // and subst for calp0 and rearrange to give (choose positive sqrt
844
+ // to give alp2 in [0, pi/2]).
845
+ calp2 = cbet2 != cbet1 || abs(sbet2) != -sbet1 ?
846
+ sqrt(Math::sq(calp1 * cbet1) +
847
+ (cbet1 < -sbet1 ?
848
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
849
+ (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2 :
850
+ abs(calp1);
851
+ // tan(bet2) = tan(sig2) * cos(alp2)
852
+ // tan(omg2) = sin(alp0) * tan(sig2).
853
+ ssig2 = sbet2; somg2 = salp0 * sbet2;
854
+ csig2 = comg2 = calp2 * cbet2;
855
+ Math::norm(ssig2, csig2);
856
+ // Math::norm(somg2, comg2); -- don't need to normalize!
857
+
858
+ // sig12 = sig2 - sig1, limit to [0, pi]
859
+ sig12 = atan2(max(real(0), csig1 * ssig2 - ssig1 * csig2),
860
+ csig1 * csig2 + ssig1 * ssig2);
861
+
862
+ // omg12 = omg2 - omg1, limit to [0, pi]
863
+ somg12 = max(real(0), comg1 * somg2 - somg1 * comg2);
864
+ comg12 = comg1 * comg2 + somg1 * somg2;
865
+ // eta = omg12 - lam120
866
+ real eta = atan2(somg12 * clam120 - comg12 * slam120,
867
+ comg12 * clam120 + somg12 * slam120);
868
+ real B312;
869
+ real k2 = Math::sq(calp0) * _ep2;
870
+ eps = k2 / (2 * (1 + sqrt(1 + k2)) + k2);
871
+ C3f(eps, Ca);
872
+ B312 = (SinCosSeries(true, ssig2, csig2, Ca, nC3_-1) -
873
+ SinCosSeries(true, ssig1, csig1, Ca, nC3_-1));
874
+ lam12 = eta - _f * A3f(eps) * salp0 * (sig12 + B312);
875
+
876
+ if (diffp) {
877
+ if (calp2 == 0)
878
+ dlam12 = - 2 * _f1 * dn1 / sbet1;
879
+ else {
880
+ real dummy;
881
+ Lengths(eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2,
882
+ cbet1, cbet2, REDUCEDLENGTH,
883
+ dummy, dlam12, dummy, dummy, dummy, Ca);
884
+ dlam12 *= _f1 / (calp2 * cbet2);
885
+ }
886
+ }
887
+
888
+ return lam12;
889
+ }
890
+
891
+ Math::real Geodesic::A3f(real eps) const {
892
+ // Evaluate A3
893
+ return Math::polyval(nA3_ - 1, _A3x, eps);
894
+ }
895
+
896
+ void Geodesic::C3f(real eps, real c[]) const {
897
+ // Evaluate C3 coeffs
898
+ // Elements c[1] thru c[nC3_ - 1] are set
899
+ real mult = 1;
900
+ int o = 0;
901
+ for (int l = 1; l < nC3_; ++l) { // l is index of C3[l]
902
+ int m = nC3_ - l - 1; // order of polynomial in eps
903
+ mult *= eps;
904
+ c[l] = mult * Math::polyval(m, _C3x + o, eps);
905
+ o += m + 1;
906
+ }
907
+ // Post condition: o == nC3x_
908
+ }
909
+
910
+ void Geodesic::C4f(real eps, real c[]) const {
911
+ // Evaluate C4 coeffs
912
+ // Elements c[0] thru c[nC4_ - 1] are set
913
+ real mult = 1;
914
+ int o = 0;
915
+ for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
916
+ int m = nC4_ - l - 1; // order of polynomial in eps
917
+ c[l] = mult * Math::polyval(m, _C4x + o, eps);
918
+ o += m + 1;
919
+ mult *= eps;
920
+ }
921
+ // Post condition: o == nC4x_
922
+ }
923
+
924
+ // The static const coefficient arrays in the following functions are
925
+ // generated by Maxima and give the coefficients of the Taylor expansions for
926
+ // the geodesics. The convention on the order of these coefficients is as
927
+ // follows:
928
+ //
929
+ // ascending order in the trigonometric expansion,
930
+ // then powers of eps in descending order,
931
+ // finally powers of n in descending order.
932
+ //
933
+ // (For some expansions, only a subset of levels occur.) For each polynomial
934
+ // of order n at the lowest level, the (n+1) coefficients of the polynomial
935
+ // are followed by a divisor which is applied to the whole polynomial. In
936
+ // this way, the coefficients are expressible with no round off error. The
937
+ // sizes of the coefficient arrays are:
938
+ //
939
+ // A1m1f, A2m1f = floor(N/2) + 2
940
+ // C1f, C1pf, C2f, A3coeff = (N^2 + 7*N - 2*floor(N/2)) / 4
941
+ // C3coeff = (N - 1) * (N^2 + 7*N - 2*floor(N/2)) / 8
942
+ // C4coeff = N * (N + 1) * (N + 5) / 6
943
+ //
944
+ // where N = GEOGRAPHICLIB_GEODESIC_ORDER
945
+ // = nA1 = nA2 = nC1 = nC1p = nA3 = nC4
946
+
947
+ // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
948
+ Math::real Geodesic::A1m1f(real eps) {
949
+ // Generated by Maxima on 2015-05-05 18:08:12-04:00
950
+ #if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1
951
+ static const real coeff[] = {
952
+ // (1-eps)*A1-1, polynomial in eps2 of order 1
953
+ 1, 0, 4,
954
+ };
955
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2
956
+ static const real coeff[] = {
957
+ // (1-eps)*A1-1, polynomial in eps2 of order 2
958
+ 1, 16, 0, 64,
959
+ };
960
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3
961
+ static const real coeff[] = {
962
+ // (1-eps)*A1-1, polynomial in eps2 of order 3
963
+ 1, 4, 64, 0, 256,
964
+ };
965
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4
966
+ static const real coeff[] = {
967
+ // (1-eps)*A1-1, polynomial in eps2 of order 4
968
+ 25, 64, 256, 4096, 0, 16384,
969
+ };
970
+ #else
971
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
972
+ #endif
973
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA1_/2 + 2,
974
+ "Coefficient array size mismatch in A1m1f");
975
+ int m = nA1_/2;
976
+ real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1];
977
+ return (t + eps) / (1 - eps);
978
+ }
979
+
980
+ // The coefficients C1[l] in the Fourier expansion of B1
981
+ void Geodesic::C1f(real eps, real c[]) {
982
+ // Generated by Maxima on 2015-05-05 18:08:12-04:00
983
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
984
+ static const real coeff[] = {
985
+ // C1[1]/eps^1, polynomial in eps2 of order 1
986
+ 3, -8, 16,
987
+ // C1[2]/eps^2, polynomial in eps2 of order 0
988
+ -1, 16,
989
+ // C1[3]/eps^3, polynomial in eps2 of order 0
990
+ -1, 48,
991
+ };
992
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
993
+ static const real coeff[] = {
994
+ // C1[1]/eps^1, polynomial in eps2 of order 1
995
+ 3, -8, 16,
996
+ // C1[2]/eps^2, polynomial in eps2 of order 1
997
+ 1, -2, 32,
998
+ // C1[3]/eps^3, polynomial in eps2 of order 0
999
+ -1, 48,
1000
+ // C1[4]/eps^4, polynomial in eps2 of order 0
1001
+ -5, 512,
1002
+ };
1003
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1004
+ static const real coeff[] = {
1005
+ // C1[1]/eps^1, polynomial in eps2 of order 2
1006
+ -1, 6, -16, 32,
1007
+ // C1[2]/eps^2, polynomial in eps2 of order 1
1008
+ 1, -2, 32,
1009
+ // C1[3]/eps^3, polynomial in eps2 of order 1
1010
+ 9, -16, 768,
1011
+ // C1[4]/eps^4, polynomial in eps2 of order 0
1012
+ -5, 512,
1013
+ // C1[5]/eps^5, polynomial in eps2 of order 0
1014
+ -7, 1280,
1015
+ };
1016
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1017
+ static const real coeff[] = {
1018
+ // C1[1]/eps^1, polynomial in eps2 of order 2
1019
+ -1, 6, -16, 32,
1020
+ // C1[2]/eps^2, polynomial in eps2 of order 2
1021
+ -9, 64, -128, 2048,
1022
+ // C1[3]/eps^3, polynomial in eps2 of order 1
1023
+ 9, -16, 768,
1024
+ // C1[4]/eps^4, polynomial in eps2 of order 1
1025
+ 3, -5, 512,
1026
+ // C1[5]/eps^5, polynomial in eps2 of order 0
1027
+ -7, 1280,
1028
+ // C1[6]/eps^6, polynomial in eps2 of order 0
1029
+ -7, 2048,
1030
+ };
1031
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1032
+ static const real coeff[] = {
1033
+ // C1[1]/eps^1, polynomial in eps2 of order 3
1034
+ 19, -64, 384, -1024, 2048,
1035
+ // C1[2]/eps^2, polynomial in eps2 of order 2
1036
+ -9, 64, -128, 2048,
1037
+ // C1[3]/eps^3, polynomial in eps2 of order 2
1038
+ -9, 72, -128, 6144,
1039
+ // C1[4]/eps^4, polynomial in eps2 of order 1
1040
+ 3, -5, 512,
1041
+ // C1[5]/eps^5, polynomial in eps2 of order 1
1042
+ 35, -56, 10240,
1043
+ // C1[6]/eps^6, polynomial in eps2 of order 0
1044
+ -7, 2048,
1045
+ // C1[7]/eps^7, polynomial in eps2 of order 0
1046
+ -33, 14336,
1047
+ };
1048
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1049
+ static const real coeff[] = {
1050
+ // C1[1]/eps^1, polynomial in eps2 of order 3
1051
+ 19, -64, 384, -1024, 2048,
1052
+ // C1[2]/eps^2, polynomial in eps2 of order 3
1053
+ 7, -18, 128, -256, 4096,
1054
+ // C1[3]/eps^3, polynomial in eps2 of order 2
1055
+ -9, 72, -128, 6144,
1056
+ // C1[4]/eps^4, polynomial in eps2 of order 2
1057
+ -11, 96, -160, 16384,
1058
+ // C1[5]/eps^5, polynomial in eps2 of order 1
1059
+ 35, -56, 10240,
1060
+ // C1[6]/eps^6, polynomial in eps2 of order 1
1061
+ 9, -14, 4096,
1062
+ // C1[7]/eps^7, polynomial in eps2 of order 0
1063
+ -33, 14336,
1064
+ // C1[8]/eps^8, polynomial in eps2 of order 0
1065
+ -429, 262144,
1066
+ };
1067
+ #else
1068
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1069
+ #endif
1070
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1071
+ (nC1_*nC1_ + 7*nC1_ - 2*(nC1_/2)) / 4,
1072
+ "Coefficient array size mismatch in C1f");
1073
+ real
1074
+ eps2 = Math::sq(eps),
1075
+ d = eps;
1076
+ int o = 0;
1077
+ for (int l = 1; l <= nC1_; ++l) { // l is index of C1p[l]
1078
+ int m = (nC1_ - l) / 2; // order of polynomial in eps^2
1079
+ c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
1080
+ o += m + 2;
1081
+ d *= eps;
1082
+ }
1083
+ // Post condition: o == sizeof(coeff) / sizeof(real)
1084
+ }
1085
+
1086
+ // The coefficients C1p[l] in the Fourier expansion of B1p
1087
+ void Geodesic::C1pf(real eps, real c[]) {
1088
+ // Generated by Maxima on 2015-05-05 18:08:12-04:00
1089
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
1090
+ static const real coeff[] = {
1091
+ // C1p[1]/eps^1, polynomial in eps2 of order 1
1092
+ -9, 16, 32,
1093
+ // C1p[2]/eps^2, polynomial in eps2 of order 0
1094
+ 5, 16,
1095
+ // C1p[3]/eps^3, polynomial in eps2 of order 0
1096
+ 29, 96,
1097
+ };
1098
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
1099
+ static const real coeff[] = {
1100
+ // C1p[1]/eps^1, polynomial in eps2 of order 1
1101
+ -9, 16, 32,
1102
+ // C1p[2]/eps^2, polynomial in eps2 of order 1
1103
+ -37, 30, 96,
1104
+ // C1p[3]/eps^3, polynomial in eps2 of order 0
1105
+ 29, 96,
1106
+ // C1p[4]/eps^4, polynomial in eps2 of order 0
1107
+ 539, 1536,
1108
+ };
1109
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1110
+ static const real coeff[] = {
1111
+ // C1p[1]/eps^1, polynomial in eps2 of order 2
1112
+ 205, -432, 768, 1536,
1113
+ // C1p[2]/eps^2, polynomial in eps2 of order 1
1114
+ -37, 30, 96,
1115
+ // C1p[3]/eps^3, polynomial in eps2 of order 1
1116
+ -225, 116, 384,
1117
+ // C1p[4]/eps^4, polynomial in eps2 of order 0
1118
+ 539, 1536,
1119
+ // C1p[5]/eps^5, polynomial in eps2 of order 0
1120
+ 3467, 7680,
1121
+ };
1122
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1123
+ static const real coeff[] = {
1124
+ // C1p[1]/eps^1, polynomial in eps2 of order 2
1125
+ 205, -432, 768, 1536,
1126
+ // C1p[2]/eps^2, polynomial in eps2 of order 2
1127
+ 4005, -4736, 3840, 12288,
1128
+ // C1p[3]/eps^3, polynomial in eps2 of order 1
1129
+ -225, 116, 384,
1130
+ // C1p[4]/eps^4, polynomial in eps2 of order 1
1131
+ -7173, 2695, 7680,
1132
+ // C1p[5]/eps^5, polynomial in eps2 of order 0
1133
+ 3467, 7680,
1134
+ // C1p[6]/eps^6, polynomial in eps2 of order 0
1135
+ 38081, 61440,
1136
+ };
1137
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1138
+ static const real coeff[] = {
1139
+ // C1p[1]/eps^1, polynomial in eps2 of order 3
1140
+ -4879, 9840, -20736, 36864, 73728,
1141
+ // C1p[2]/eps^2, polynomial in eps2 of order 2
1142
+ 4005, -4736, 3840, 12288,
1143
+ // C1p[3]/eps^3, polynomial in eps2 of order 2
1144
+ 8703, -7200, 3712, 12288,
1145
+ // C1p[4]/eps^4, polynomial in eps2 of order 1
1146
+ -7173, 2695, 7680,
1147
+ // C1p[5]/eps^5, polynomial in eps2 of order 1
1148
+ -141115, 41604, 92160,
1149
+ // C1p[6]/eps^6, polynomial in eps2 of order 0
1150
+ 38081, 61440,
1151
+ // C1p[7]/eps^7, polynomial in eps2 of order 0
1152
+ 459485, 516096,
1153
+ };
1154
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1155
+ static const real coeff[] = {
1156
+ // C1p[1]/eps^1, polynomial in eps2 of order 3
1157
+ -4879, 9840, -20736, 36864, 73728,
1158
+ // C1p[2]/eps^2, polynomial in eps2 of order 3
1159
+ -86171, 120150, -142080, 115200, 368640,
1160
+ // C1p[3]/eps^3, polynomial in eps2 of order 2
1161
+ 8703, -7200, 3712, 12288,
1162
+ // C1p[4]/eps^4, polynomial in eps2 of order 2
1163
+ 1082857, -688608, 258720, 737280,
1164
+ // C1p[5]/eps^5, polynomial in eps2 of order 1
1165
+ -141115, 41604, 92160,
1166
+ // C1p[6]/eps^6, polynomial in eps2 of order 1
1167
+ -2200311, 533134, 860160,
1168
+ // C1p[7]/eps^7, polynomial in eps2 of order 0
1169
+ 459485, 516096,
1170
+ // C1p[8]/eps^8, polynomial in eps2 of order 0
1171
+ 109167851, 82575360,
1172
+ };
1173
+ #else
1174
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1175
+ #endif
1176
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1177
+ (nC1p_*nC1p_ + 7*nC1p_ - 2*(nC1p_/2)) / 4,
1178
+ "Coefficient array size mismatch in C1pf");
1179
+ real
1180
+ eps2 = Math::sq(eps),
1181
+ d = eps;
1182
+ int o = 0;
1183
+ for (int l = 1; l <= nC1p_; ++l) { // l is index of C1p[l]
1184
+ int m = (nC1p_ - l) / 2; // order of polynomial in eps^2
1185
+ c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
1186
+ o += m + 2;
1187
+ d *= eps;
1188
+ }
1189
+ // Post condition: o == sizeof(coeff) / sizeof(real)
1190
+ }
1191
+
1192
+ // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
1193
+ Math::real Geodesic::A2m1f(real eps) {
1194
+ // Generated by Maxima on 2015-05-29 08:09:47-04:00
1195
+ #if GEOGRAPHICLIB_GEODESIC_ORDER/2 == 1
1196
+ static const real coeff[] = {
1197
+ // (eps+1)*A2-1, polynomial in eps2 of order 1
1198
+ -3, 0, 4,
1199
+ }; // count = 3
1200
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 2
1201
+ static const real coeff[] = {
1202
+ // (eps+1)*A2-1, polynomial in eps2 of order 2
1203
+ -7, -48, 0, 64,
1204
+ }; // count = 4
1205
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 3
1206
+ static const real coeff[] = {
1207
+ // (eps+1)*A2-1, polynomial in eps2 of order 3
1208
+ -11, -28, -192, 0, 256,
1209
+ }; // count = 5
1210
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER/2 == 4
1211
+ static const real coeff[] = {
1212
+ // (eps+1)*A2-1, polynomial in eps2 of order 4
1213
+ -375, -704, -1792, -12288, 0, 16384,
1214
+ }; // count = 6
1215
+ #else
1216
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1217
+ #endif
1218
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) == nA2_/2 + 2,
1219
+ "Coefficient array size mismatch in A2m1f");
1220
+ int m = nA2_/2;
1221
+ real t = Math::polyval(m, coeff, Math::sq(eps)) / coeff[m + 1];
1222
+ return (t - eps) / (1 + eps);
1223
+ }
1224
+
1225
+ // The coefficients C2[l] in the Fourier expansion of B2
1226
+ void Geodesic::C2f(real eps, real c[]) {
1227
+ // Generated by Maxima on 2015-05-05 18:08:12-04:00
1228
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
1229
+ static const real coeff[] = {
1230
+ // C2[1]/eps^1, polynomial in eps2 of order 1
1231
+ 1, 8, 16,
1232
+ // C2[2]/eps^2, polynomial in eps2 of order 0
1233
+ 3, 16,
1234
+ // C2[3]/eps^3, polynomial in eps2 of order 0
1235
+ 5, 48,
1236
+ };
1237
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
1238
+ static const real coeff[] = {
1239
+ // C2[1]/eps^1, polynomial in eps2 of order 1
1240
+ 1, 8, 16,
1241
+ // C2[2]/eps^2, polynomial in eps2 of order 1
1242
+ 1, 6, 32,
1243
+ // C2[3]/eps^3, polynomial in eps2 of order 0
1244
+ 5, 48,
1245
+ // C2[4]/eps^4, polynomial in eps2 of order 0
1246
+ 35, 512,
1247
+ };
1248
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1249
+ static const real coeff[] = {
1250
+ // C2[1]/eps^1, polynomial in eps2 of order 2
1251
+ 1, 2, 16, 32,
1252
+ // C2[2]/eps^2, polynomial in eps2 of order 1
1253
+ 1, 6, 32,
1254
+ // C2[3]/eps^3, polynomial in eps2 of order 1
1255
+ 15, 80, 768,
1256
+ // C2[4]/eps^4, polynomial in eps2 of order 0
1257
+ 35, 512,
1258
+ // C2[5]/eps^5, polynomial in eps2 of order 0
1259
+ 63, 1280,
1260
+ };
1261
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1262
+ static const real coeff[] = {
1263
+ // C2[1]/eps^1, polynomial in eps2 of order 2
1264
+ 1, 2, 16, 32,
1265
+ // C2[2]/eps^2, polynomial in eps2 of order 2
1266
+ 35, 64, 384, 2048,
1267
+ // C2[3]/eps^3, polynomial in eps2 of order 1
1268
+ 15, 80, 768,
1269
+ // C2[4]/eps^4, polynomial in eps2 of order 1
1270
+ 7, 35, 512,
1271
+ // C2[5]/eps^5, polynomial in eps2 of order 0
1272
+ 63, 1280,
1273
+ // C2[6]/eps^6, polynomial in eps2 of order 0
1274
+ 77, 2048,
1275
+ };
1276
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1277
+ static const real coeff[] = {
1278
+ // C2[1]/eps^1, polynomial in eps2 of order 3
1279
+ 41, 64, 128, 1024, 2048,
1280
+ // C2[2]/eps^2, polynomial in eps2 of order 2
1281
+ 35, 64, 384, 2048,
1282
+ // C2[3]/eps^3, polynomial in eps2 of order 2
1283
+ 69, 120, 640, 6144,
1284
+ // C2[4]/eps^4, polynomial in eps2 of order 1
1285
+ 7, 35, 512,
1286
+ // C2[5]/eps^5, polynomial in eps2 of order 1
1287
+ 105, 504, 10240,
1288
+ // C2[6]/eps^6, polynomial in eps2 of order 0
1289
+ 77, 2048,
1290
+ // C2[7]/eps^7, polynomial in eps2 of order 0
1291
+ 429, 14336,
1292
+ };
1293
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1294
+ static const real coeff[] = {
1295
+ // C2[1]/eps^1, polynomial in eps2 of order 3
1296
+ 41, 64, 128, 1024, 2048,
1297
+ // C2[2]/eps^2, polynomial in eps2 of order 3
1298
+ 47, 70, 128, 768, 4096,
1299
+ // C2[3]/eps^3, polynomial in eps2 of order 2
1300
+ 69, 120, 640, 6144,
1301
+ // C2[4]/eps^4, polynomial in eps2 of order 2
1302
+ 133, 224, 1120, 16384,
1303
+ // C2[5]/eps^5, polynomial in eps2 of order 1
1304
+ 105, 504, 10240,
1305
+ // C2[6]/eps^6, polynomial in eps2 of order 1
1306
+ 33, 154, 4096,
1307
+ // C2[7]/eps^7, polynomial in eps2 of order 0
1308
+ 429, 14336,
1309
+ // C2[8]/eps^8, polynomial in eps2 of order 0
1310
+ 6435, 262144,
1311
+ };
1312
+ #else
1313
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1314
+ #endif
1315
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1316
+ (nC2_*nC2_ + 7*nC2_ - 2*(nC2_/2)) / 4,
1317
+ "Coefficient array size mismatch in C2f");
1318
+ real
1319
+ eps2 = Math::sq(eps),
1320
+ d = eps;
1321
+ int o = 0;
1322
+ for (int l = 1; l <= nC2_; ++l) { // l is index of C2[l]
1323
+ int m = (nC2_ - l) / 2; // order of polynomial in eps^2
1324
+ c[l] = d * Math::polyval(m, coeff + o, eps2) / coeff[o + m + 1];
1325
+ o += m + 2;
1326
+ d *= eps;
1327
+ }
1328
+ // Post condition: o == sizeof(coeff) / sizeof(real)
1329
+ }
1330
+
1331
+ // The scale factor A3 = mean value of (d/dsigma)I3
1332
+ void Geodesic::A3coeff() {
1333
+ // Generated by Maxima on 2015-05-05 18:08:13-04:00
1334
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
1335
+ static const real coeff[] = {
1336
+ // A3, coeff of eps^2, polynomial in n of order 0
1337
+ -1, 4,
1338
+ // A3, coeff of eps^1, polynomial in n of order 1
1339
+ 1, -1, 2,
1340
+ // A3, coeff of eps^0, polynomial in n of order 0
1341
+ 1, 1,
1342
+ };
1343
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
1344
+ static const real coeff[] = {
1345
+ // A3, coeff of eps^3, polynomial in n of order 0
1346
+ -1, 16,
1347
+ // A3, coeff of eps^2, polynomial in n of order 1
1348
+ -1, -2, 8,
1349
+ // A3, coeff of eps^1, polynomial in n of order 1
1350
+ 1, -1, 2,
1351
+ // A3, coeff of eps^0, polynomial in n of order 0
1352
+ 1, 1,
1353
+ };
1354
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1355
+ static const real coeff[] = {
1356
+ // A3, coeff of eps^4, polynomial in n of order 0
1357
+ -3, 64,
1358
+ // A3, coeff of eps^3, polynomial in n of order 1
1359
+ -3, -1, 16,
1360
+ // A3, coeff of eps^2, polynomial in n of order 2
1361
+ 3, -1, -2, 8,
1362
+ // A3, coeff of eps^1, polynomial in n of order 1
1363
+ 1, -1, 2,
1364
+ // A3, coeff of eps^0, polynomial in n of order 0
1365
+ 1, 1,
1366
+ };
1367
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1368
+ static const real coeff[] = {
1369
+ // A3, coeff of eps^5, polynomial in n of order 0
1370
+ -3, 128,
1371
+ // A3, coeff of eps^4, polynomial in n of order 1
1372
+ -2, -3, 64,
1373
+ // A3, coeff of eps^3, polynomial in n of order 2
1374
+ -1, -3, -1, 16,
1375
+ // A3, coeff of eps^2, polynomial in n of order 2
1376
+ 3, -1, -2, 8,
1377
+ // A3, coeff of eps^1, polynomial in n of order 1
1378
+ 1, -1, 2,
1379
+ // A3, coeff of eps^0, polynomial in n of order 0
1380
+ 1, 1,
1381
+ };
1382
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1383
+ static const real coeff[] = {
1384
+ // A3, coeff of eps^6, polynomial in n of order 0
1385
+ -5, 256,
1386
+ // A3, coeff of eps^5, polynomial in n of order 1
1387
+ -5, -3, 128,
1388
+ // A3, coeff of eps^4, polynomial in n of order 2
1389
+ -10, -2, -3, 64,
1390
+ // A3, coeff of eps^3, polynomial in n of order 3
1391
+ 5, -1, -3, -1, 16,
1392
+ // A3, coeff of eps^2, polynomial in n of order 2
1393
+ 3, -1, -2, 8,
1394
+ // A3, coeff of eps^1, polynomial in n of order 1
1395
+ 1, -1, 2,
1396
+ // A3, coeff of eps^0, polynomial in n of order 0
1397
+ 1, 1,
1398
+ };
1399
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1400
+ static const real coeff[] = {
1401
+ // A3, coeff of eps^7, polynomial in n of order 0
1402
+ -25, 2048,
1403
+ // A3, coeff of eps^6, polynomial in n of order 1
1404
+ -15, -20, 1024,
1405
+ // A3, coeff of eps^5, polynomial in n of order 2
1406
+ -5, -10, -6, 256,
1407
+ // A3, coeff of eps^4, polynomial in n of order 3
1408
+ -5, -20, -4, -6, 128,
1409
+ // A3, coeff of eps^3, polynomial in n of order 3
1410
+ 5, -1, -3, -1, 16,
1411
+ // A3, coeff of eps^2, polynomial in n of order 2
1412
+ 3, -1, -2, 8,
1413
+ // A3, coeff of eps^1, polynomial in n of order 1
1414
+ 1, -1, 2,
1415
+ // A3, coeff of eps^0, polynomial in n of order 0
1416
+ 1, 1,
1417
+ };
1418
+ #else
1419
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1420
+ #endif
1421
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1422
+ (nA3_*nA3_ + 7*nA3_ - 2*(nA3_/2)) / 4,
1423
+ "Coefficient array size mismatch in A3f");
1424
+ int o = 0, k = 0;
1425
+ for (int j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
1426
+ int m = min(nA3_ - j - 1, j); // order of polynomial in n
1427
+ _A3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
1428
+ o += m + 2;
1429
+ }
1430
+ // Post condition: o == sizeof(coeff) / sizeof(real) && k == nA3x_
1431
+ }
1432
+
1433
+ // The coefficients C3[l] in the Fourier expansion of B3
1434
+ void Geodesic::C3coeff() {
1435
+ // Generated by Maxima on 2015-05-05 18:08:13-04:00
1436
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
1437
+ static const real coeff[] = {
1438
+ // C3[1], coeff of eps^2, polynomial in n of order 0
1439
+ 1, 8,
1440
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1441
+ -1, 1, 4,
1442
+ // C3[2], coeff of eps^2, polynomial in n of order 0
1443
+ 1, 16,
1444
+ };
1445
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
1446
+ static const real coeff[] = {
1447
+ // C3[1], coeff of eps^3, polynomial in n of order 0
1448
+ 3, 64,
1449
+ // C3[1], coeff of eps^2, polynomial in n of order 1
1450
+ // This is a case where a leading 0 term has been inserted to maintain the
1451
+ // pattern in the orders of the polynomials.
1452
+ 0, 1, 8,
1453
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1454
+ -1, 1, 4,
1455
+ // C3[2], coeff of eps^3, polynomial in n of order 0
1456
+ 3, 64,
1457
+ // C3[2], coeff of eps^2, polynomial in n of order 1
1458
+ -3, 2, 32,
1459
+ // C3[3], coeff of eps^3, polynomial in n of order 0
1460
+ 5, 192,
1461
+ };
1462
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1463
+ static const real coeff[] = {
1464
+ // C3[1], coeff of eps^4, polynomial in n of order 0
1465
+ 5, 128,
1466
+ // C3[1], coeff of eps^3, polynomial in n of order 1
1467
+ 3, 3, 64,
1468
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1469
+ -1, 0, 1, 8,
1470
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1471
+ -1, 1, 4,
1472
+ // C3[2], coeff of eps^4, polynomial in n of order 0
1473
+ 3, 128,
1474
+ // C3[2], coeff of eps^3, polynomial in n of order 1
1475
+ -2, 3, 64,
1476
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1477
+ 1, -3, 2, 32,
1478
+ // C3[3], coeff of eps^4, polynomial in n of order 0
1479
+ 3, 128,
1480
+ // C3[3], coeff of eps^3, polynomial in n of order 1
1481
+ -9, 5, 192,
1482
+ // C3[4], coeff of eps^4, polynomial in n of order 0
1483
+ 7, 512,
1484
+ };
1485
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1486
+ static const real coeff[] = {
1487
+ // C3[1], coeff of eps^5, polynomial in n of order 0
1488
+ 3, 128,
1489
+ // C3[1], coeff of eps^4, polynomial in n of order 1
1490
+ 2, 5, 128,
1491
+ // C3[1], coeff of eps^3, polynomial in n of order 2
1492
+ -1, 3, 3, 64,
1493
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1494
+ -1, 0, 1, 8,
1495
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1496
+ -1, 1, 4,
1497
+ // C3[2], coeff of eps^5, polynomial in n of order 0
1498
+ 5, 256,
1499
+ // C3[2], coeff of eps^4, polynomial in n of order 1
1500
+ 1, 3, 128,
1501
+ // C3[2], coeff of eps^3, polynomial in n of order 2
1502
+ -3, -2, 3, 64,
1503
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1504
+ 1, -3, 2, 32,
1505
+ // C3[3], coeff of eps^5, polynomial in n of order 0
1506
+ 7, 512,
1507
+ // C3[3], coeff of eps^4, polynomial in n of order 1
1508
+ -10, 9, 384,
1509
+ // C3[3], coeff of eps^3, polynomial in n of order 2
1510
+ 5, -9, 5, 192,
1511
+ // C3[4], coeff of eps^5, polynomial in n of order 0
1512
+ 7, 512,
1513
+ // C3[4], coeff of eps^4, polynomial in n of order 1
1514
+ -14, 7, 512,
1515
+ // C3[5], coeff of eps^5, polynomial in n of order 0
1516
+ 21, 2560,
1517
+ };
1518
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1519
+ static const real coeff[] = {
1520
+ // C3[1], coeff of eps^6, polynomial in n of order 0
1521
+ 21, 1024,
1522
+ // C3[1], coeff of eps^5, polynomial in n of order 1
1523
+ 11, 12, 512,
1524
+ // C3[1], coeff of eps^4, polynomial in n of order 2
1525
+ 2, 2, 5, 128,
1526
+ // C3[1], coeff of eps^3, polynomial in n of order 3
1527
+ -5, -1, 3, 3, 64,
1528
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1529
+ -1, 0, 1, 8,
1530
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1531
+ -1, 1, 4,
1532
+ // C3[2], coeff of eps^6, polynomial in n of order 0
1533
+ 27, 2048,
1534
+ // C3[2], coeff of eps^5, polynomial in n of order 1
1535
+ 1, 5, 256,
1536
+ // C3[2], coeff of eps^4, polynomial in n of order 2
1537
+ -9, 2, 6, 256,
1538
+ // C3[2], coeff of eps^3, polynomial in n of order 3
1539
+ 2, -3, -2, 3, 64,
1540
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1541
+ 1, -3, 2, 32,
1542
+ // C3[3], coeff of eps^6, polynomial in n of order 0
1543
+ 3, 256,
1544
+ // C3[3], coeff of eps^5, polynomial in n of order 1
1545
+ -4, 21, 1536,
1546
+ // C3[3], coeff of eps^4, polynomial in n of order 2
1547
+ -6, -10, 9, 384,
1548
+ // C3[3], coeff of eps^3, polynomial in n of order 3
1549
+ -1, 5, -9, 5, 192,
1550
+ // C3[4], coeff of eps^6, polynomial in n of order 0
1551
+ 9, 1024,
1552
+ // C3[4], coeff of eps^5, polynomial in n of order 1
1553
+ -10, 7, 512,
1554
+ // C3[4], coeff of eps^4, polynomial in n of order 2
1555
+ 10, -14, 7, 512,
1556
+ // C3[5], coeff of eps^6, polynomial in n of order 0
1557
+ 9, 1024,
1558
+ // C3[5], coeff of eps^5, polynomial in n of order 1
1559
+ -45, 21, 2560,
1560
+ // C3[6], coeff of eps^6, polynomial in n of order 0
1561
+ 11, 2048,
1562
+ };
1563
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1564
+ static const real coeff[] = {
1565
+ // C3[1], coeff of eps^7, polynomial in n of order 0
1566
+ 243, 16384,
1567
+ // C3[1], coeff of eps^6, polynomial in n of order 1
1568
+ 10, 21, 1024,
1569
+ // C3[1], coeff of eps^5, polynomial in n of order 2
1570
+ 3, 11, 12, 512,
1571
+ // C3[1], coeff of eps^4, polynomial in n of order 3
1572
+ -2, 2, 2, 5, 128,
1573
+ // C3[1], coeff of eps^3, polynomial in n of order 3
1574
+ -5, -1, 3, 3, 64,
1575
+ // C3[1], coeff of eps^2, polynomial in n of order 2
1576
+ -1, 0, 1, 8,
1577
+ // C3[1], coeff of eps^1, polynomial in n of order 1
1578
+ -1, 1, 4,
1579
+ // C3[2], coeff of eps^7, polynomial in n of order 0
1580
+ 187, 16384,
1581
+ // C3[2], coeff of eps^6, polynomial in n of order 1
1582
+ 69, 108, 8192,
1583
+ // C3[2], coeff of eps^5, polynomial in n of order 2
1584
+ -2, 1, 5, 256,
1585
+ // C3[2], coeff of eps^4, polynomial in n of order 3
1586
+ -6, -9, 2, 6, 256,
1587
+ // C3[2], coeff of eps^3, polynomial in n of order 3
1588
+ 2, -3, -2, 3, 64,
1589
+ // C3[2], coeff of eps^2, polynomial in n of order 2
1590
+ 1, -3, 2, 32,
1591
+ // C3[3], coeff of eps^7, polynomial in n of order 0
1592
+ 139, 16384,
1593
+ // C3[3], coeff of eps^6, polynomial in n of order 1
1594
+ -1, 12, 1024,
1595
+ // C3[3], coeff of eps^5, polynomial in n of order 2
1596
+ -77, -8, 42, 3072,
1597
+ // C3[3], coeff of eps^4, polynomial in n of order 3
1598
+ 10, -6, -10, 9, 384,
1599
+ // C3[3], coeff of eps^3, polynomial in n of order 3
1600
+ -1, 5, -9, 5, 192,
1601
+ // C3[4], coeff of eps^7, polynomial in n of order 0
1602
+ 127, 16384,
1603
+ // C3[4], coeff of eps^6, polynomial in n of order 1
1604
+ -43, 72, 8192,
1605
+ // C3[4], coeff of eps^5, polynomial in n of order 2
1606
+ -7, -40, 28, 2048,
1607
+ // C3[4], coeff of eps^4, polynomial in n of order 3
1608
+ -7, 20, -28, 14, 1024,
1609
+ // C3[5], coeff of eps^7, polynomial in n of order 0
1610
+ 99, 16384,
1611
+ // C3[5], coeff of eps^6, polynomial in n of order 1
1612
+ -15, 9, 1024,
1613
+ // C3[5], coeff of eps^5, polynomial in n of order 2
1614
+ 75, -90, 42, 5120,
1615
+ // C3[6], coeff of eps^7, polynomial in n of order 0
1616
+ 99, 16384,
1617
+ // C3[6], coeff of eps^6, polynomial in n of order 1
1618
+ -99, 44, 8192,
1619
+ // C3[7], coeff of eps^7, polynomial in n of order 0
1620
+ 429, 114688,
1621
+ };
1622
+ #else
1623
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1624
+ #endif
1625
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1626
+ ((nC3_-1)*(nC3_*nC3_ + 7*nC3_ - 2*(nC3_/2)))/8,
1627
+ "Coefficient array size mismatch in C3coeff");
1628
+ int o = 0, k = 0;
1629
+ for (int l = 1; l < nC3_; ++l) { // l is index of C3[l]
1630
+ for (int j = nC3_ - 1; j >= l; --j) { // coeff of eps^j
1631
+ int m = min(nC3_ - j - 1, j); // order of polynomial in n
1632
+ _C3x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
1633
+ o += m + 2;
1634
+ }
1635
+ }
1636
+ // Post condition: o == sizeof(coeff) / sizeof(real) && k == nC3x_
1637
+ }
1638
+
1639
+ void Geodesic::C4coeff() {
1640
+ // Generated by Maxima on 2015-05-05 18:08:13-04:00
1641
+ #if GEOGRAPHICLIB_GEODESIC_ORDER == 3
1642
+ static const real coeff[] = {
1643
+ // C4[0], coeff of eps^2, polynomial in n of order 0
1644
+ -2, 105,
1645
+ // C4[0], coeff of eps^1, polynomial in n of order 1
1646
+ 16, -7, 35,
1647
+ // C4[0], coeff of eps^0, polynomial in n of order 2
1648
+ 8, -28, 70, 105,
1649
+ // C4[1], coeff of eps^2, polynomial in n of order 0
1650
+ -2, 105,
1651
+ // C4[1], coeff of eps^1, polynomial in n of order 1
1652
+ -16, 7, 315,
1653
+ // C4[2], coeff of eps^2, polynomial in n of order 0
1654
+ 4, 525,
1655
+ };
1656
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 4
1657
+ static const real coeff[] = {
1658
+ // C4[0], coeff of eps^3, polynomial in n of order 0
1659
+ 11, 315,
1660
+ // C4[0], coeff of eps^2, polynomial in n of order 1
1661
+ -32, -6, 315,
1662
+ // C4[0], coeff of eps^1, polynomial in n of order 2
1663
+ -32, 48, -21, 105,
1664
+ // C4[0], coeff of eps^0, polynomial in n of order 3
1665
+ 4, 24, -84, 210, 315,
1666
+ // C4[1], coeff of eps^3, polynomial in n of order 0
1667
+ -1, 105,
1668
+ // C4[1], coeff of eps^2, polynomial in n of order 1
1669
+ 64, -18, 945,
1670
+ // C4[1], coeff of eps^1, polynomial in n of order 2
1671
+ 32, -48, 21, 945,
1672
+ // C4[2], coeff of eps^3, polynomial in n of order 0
1673
+ -8, 1575,
1674
+ // C4[2], coeff of eps^2, polynomial in n of order 1
1675
+ -32, 12, 1575,
1676
+ // C4[3], coeff of eps^3, polynomial in n of order 0
1677
+ 8, 2205,
1678
+ };
1679
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 5
1680
+ static const real coeff[] = {
1681
+ // C4[0], coeff of eps^4, polynomial in n of order 0
1682
+ 4, 1155,
1683
+ // C4[0], coeff of eps^3, polynomial in n of order 1
1684
+ -368, 121, 3465,
1685
+ // C4[0], coeff of eps^2, polynomial in n of order 2
1686
+ 1088, -352, -66, 3465,
1687
+ // C4[0], coeff of eps^1, polynomial in n of order 3
1688
+ 48, -352, 528, -231, 1155,
1689
+ // C4[0], coeff of eps^0, polynomial in n of order 4
1690
+ 16, 44, 264, -924, 2310, 3465,
1691
+ // C4[1], coeff of eps^4, polynomial in n of order 0
1692
+ 4, 1155,
1693
+ // C4[1], coeff of eps^3, polynomial in n of order 1
1694
+ 80, -99, 10395,
1695
+ // C4[1], coeff of eps^2, polynomial in n of order 2
1696
+ -896, 704, -198, 10395,
1697
+ // C4[1], coeff of eps^1, polynomial in n of order 3
1698
+ -48, 352, -528, 231, 10395,
1699
+ // C4[2], coeff of eps^4, polynomial in n of order 0
1700
+ -8, 1925,
1701
+ // C4[2], coeff of eps^3, polynomial in n of order 1
1702
+ 384, -88, 17325,
1703
+ // C4[2], coeff of eps^2, polynomial in n of order 2
1704
+ 320, -352, 132, 17325,
1705
+ // C4[3], coeff of eps^4, polynomial in n of order 0
1706
+ -16, 8085,
1707
+ // C4[3], coeff of eps^3, polynomial in n of order 1
1708
+ -256, 88, 24255,
1709
+ // C4[4], coeff of eps^4, polynomial in n of order 0
1710
+ 64, 31185,
1711
+ };
1712
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 6
1713
+ static const real coeff[] = {
1714
+ // C4[0], coeff of eps^5, polynomial in n of order 0
1715
+ 97, 15015,
1716
+ // C4[0], coeff of eps^4, polynomial in n of order 1
1717
+ 1088, 156, 45045,
1718
+ // C4[0], coeff of eps^3, polynomial in n of order 2
1719
+ -224, -4784, 1573, 45045,
1720
+ // C4[0], coeff of eps^2, polynomial in n of order 3
1721
+ -10656, 14144, -4576, -858, 45045,
1722
+ // C4[0], coeff of eps^1, polynomial in n of order 4
1723
+ 64, 624, -4576, 6864, -3003, 15015,
1724
+ // C4[0], coeff of eps^0, polynomial in n of order 5
1725
+ 100, 208, 572, 3432, -12012, 30030, 45045,
1726
+ // C4[1], coeff of eps^5, polynomial in n of order 0
1727
+ 1, 9009,
1728
+ // C4[1], coeff of eps^4, polynomial in n of order 1
1729
+ -2944, 468, 135135,
1730
+ // C4[1], coeff of eps^3, polynomial in n of order 2
1731
+ 5792, 1040, -1287, 135135,
1732
+ // C4[1], coeff of eps^2, polynomial in n of order 3
1733
+ 5952, -11648, 9152, -2574, 135135,
1734
+ // C4[1], coeff of eps^1, polynomial in n of order 4
1735
+ -64, -624, 4576, -6864, 3003, 135135,
1736
+ // C4[2], coeff of eps^5, polynomial in n of order 0
1737
+ 8, 10725,
1738
+ // C4[2], coeff of eps^4, polynomial in n of order 1
1739
+ 1856, -936, 225225,
1740
+ // C4[2], coeff of eps^3, polynomial in n of order 2
1741
+ -8448, 4992, -1144, 225225,
1742
+ // C4[2], coeff of eps^2, polynomial in n of order 3
1743
+ -1440, 4160, -4576, 1716, 225225,
1744
+ // C4[3], coeff of eps^5, polynomial in n of order 0
1745
+ -136, 63063,
1746
+ // C4[3], coeff of eps^4, polynomial in n of order 1
1747
+ 1024, -208, 105105,
1748
+ // C4[3], coeff of eps^3, polynomial in n of order 2
1749
+ 3584, -3328, 1144, 315315,
1750
+ // C4[4], coeff of eps^5, polynomial in n of order 0
1751
+ -128, 135135,
1752
+ // C4[4], coeff of eps^4, polynomial in n of order 1
1753
+ -2560, 832, 405405,
1754
+ // C4[5], coeff of eps^5, polynomial in n of order 0
1755
+ 128, 99099,
1756
+ };
1757
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 7
1758
+ static const real coeff[] = {
1759
+ // C4[0], coeff of eps^6, polynomial in n of order 0
1760
+ 10, 9009,
1761
+ // C4[0], coeff of eps^5, polynomial in n of order 1
1762
+ -464, 291, 45045,
1763
+ // C4[0], coeff of eps^4, polynomial in n of order 2
1764
+ -4480, 1088, 156, 45045,
1765
+ // C4[0], coeff of eps^3, polynomial in n of order 3
1766
+ 10736, -224, -4784, 1573, 45045,
1767
+ // C4[0], coeff of eps^2, polynomial in n of order 4
1768
+ 1664, -10656, 14144, -4576, -858, 45045,
1769
+ // C4[0], coeff of eps^1, polynomial in n of order 5
1770
+ 16, 64, 624, -4576, 6864, -3003, 15015,
1771
+ // C4[0], coeff of eps^0, polynomial in n of order 6
1772
+ 56, 100, 208, 572, 3432, -12012, 30030, 45045,
1773
+ // C4[1], coeff of eps^6, polynomial in n of order 0
1774
+ 10, 9009,
1775
+ // C4[1], coeff of eps^5, polynomial in n of order 1
1776
+ 112, 15, 135135,
1777
+ // C4[1], coeff of eps^4, polynomial in n of order 2
1778
+ 3840, -2944, 468, 135135,
1779
+ // C4[1], coeff of eps^3, polynomial in n of order 3
1780
+ -10704, 5792, 1040, -1287, 135135,
1781
+ // C4[1], coeff of eps^2, polynomial in n of order 4
1782
+ -768, 5952, -11648, 9152, -2574, 135135,
1783
+ // C4[1], coeff of eps^1, polynomial in n of order 5
1784
+ -16, -64, -624, 4576, -6864, 3003, 135135,
1785
+ // C4[2], coeff of eps^6, polynomial in n of order 0
1786
+ -4, 25025,
1787
+ // C4[2], coeff of eps^5, polynomial in n of order 1
1788
+ -1664, 168, 225225,
1789
+ // C4[2], coeff of eps^4, polynomial in n of order 2
1790
+ 1664, 1856, -936, 225225,
1791
+ // C4[2], coeff of eps^3, polynomial in n of order 3
1792
+ 6784, -8448, 4992, -1144, 225225,
1793
+ // C4[2], coeff of eps^2, polynomial in n of order 4
1794
+ 128, -1440, 4160, -4576, 1716, 225225,
1795
+ // C4[3], coeff of eps^6, polynomial in n of order 0
1796
+ 64, 315315,
1797
+ // C4[3], coeff of eps^5, polynomial in n of order 1
1798
+ 1792, -680, 315315,
1799
+ // C4[3], coeff of eps^4, polynomial in n of order 2
1800
+ -2048, 1024, -208, 105105,
1801
+ // C4[3], coeff of eps^3, polynomial in n of order 3
1802
+ -1792, 3584, -3328, 1144, 315315,
1803
+ // C4[4], coeff of eps^6, polynomial in n of order 0
1804
+ -512, 405405,
1805
+ // C4[4], coeff of eps^5, polynomial in n of order 1
1806
+ 2048, -384, 405405,
1807
+ // C4[4], coeff of eps^4, polynomial in n of order 2
1808
+ 3072, -2560, 832, 405405,
1809
+ // C4[5], coeff of eps^6, polynomial in n of order 0
1810
+ -256, 495495,
1811
+ // C4[5], coeff of eps^5, polynomial in n of order 1
1812
+ -2048, 640, 495495,
1813
+ // C4[6], coeff of eps^6, polynomial in n of order 0
1814
+ 512, 585585,
1815
+ };
1816
+ #elif GEOGRAPHICLIB_GEODESIC_ORDER == 8
1817
+ static const real coeff[] = {
1818
+ // C4[0], coeff of eps^7, polynomial in n of order 0
1819
+ 193, 85085,
1820
+ // C4[0], coeff of eps^6, polynomial in n of order 1
1821
+ 4192, 850, 765765,
1822
+ // C4[0], coeff of eps^5, polynomial in n of order 2
1823
+ 20960, -7888, 4947, 765765,
1824
+ // C4[0], coeff of eps^4, polynomial in n of order 3
1825
+ 12480, -76160, 18496, 2652, 765765,
1826
+ // C4[0], coeff of eps^3, polynomial in n of order 4
1827
+ -154048, 182512, -3808, -81328, 26741, 765765,
1828
+ // C4[0], coeff of eps^2, polynomial in n of order 5
1829
+ 3232, 28288, -181152, 240448, -77792, -14586, 765765,
1830
+ // C4[0], coeff of eps^1, polynomial in n of order 6
1831
+ 96, 272, 1088, 10608, -77792, 116688, -51051, 255255,
1832
+ // C4[0], coeff of eps^0, polynomial in n of order 7
1833
+ 588, 952, 1700, 3536, 9724, 58344, -204204, 510510, 765765,
1834
+ // C4[1], coeff of eps^7, polynomial in n of order 0
1835
+ 349, 2297295,
1836
+ // C4[1], coeff of eps^6, polynomial in n of order 1
1837
+ -1472, 510, 459459,
1838
+ // C4[1], coeff of eps^5, polynomial in n of order 2
1839
+ -39840, 1904, 255, 2297295,
1840
+ // C4[1], coeff of eps^4, polynomial in n of order 3
1841
+ 52608, 65280, -50048, 7956, 2297295,
1842
+ // C4[1], coeff of eps^3, polynomial in n of order 4
1843
+ 103744, -181968, 98464, 17680, -21879, 2297295,
1844
+ // C4[1], coeff of eps^2, polynomial in n of order 5
1845
+ -1344, -13056, 101184, -198016, 155584, -43758, 2297295,
1846
+ // C4[1], coeff of eps^1, polynomial in n of order 6
1847
+ -96, -272, -1088, -10608, 77792, -116688, 51051, 2297295,
1848
+ // C4[2], coeff of eps^7, polynomial in n of order 0
1849
+ 464, 1276275,
1850
+ // C4[2], coeff of eps^6, polynomial in n of order 1
1851
+ -928, -612, 3828825,
1852
+ // C4[2], coeff of eps^5, polynomial in n of order 2
1853
+ 64256, -28288, 2856, 3828825,
1854
+ // C4[2], coeff of eps^4, polynomial in n of order 3
1855
+ -126528, 28288, 31552, -15912, 3828825,
1856
+ // C4[2], coeff of eps^3, polynomial in n of order 4
1857
+ -41472, 115328, -143616, 84864, -19448, 3828825,
1858
+ // C4[2], coeff of eps^2, polynomial in n of order 5
1859
+ 160, 2176, -24480, 70720, -77792, 29172, 3828825,
1860
+ // C4[3], coeff of eps^7, polynomial in n of order 0
1861
+ -16, 97461,
1862
+ // C4[3], coeff of eps^6, polynomial in n of order 1
1863
+ -16384, 1088, 5360355,
1864
+ // C4[3], coeff of eps^5, polynomial in n of order 2
1865
+ -2560, 30464, -11560, 5360355,
1866
+ // C4[3], coeff of eps^4, polynomial in n of order 3
1867
+ 35840, -34816, 17408, -3536, 1786785,
1868
+ // C4[3], coeff of eps^3, polynomial in n of order 4
1869
+ 7168, -30464, 60928, -56576, 19448, 5360355,
1870
+ // C4[4], coeff of eps^7, polynomial in n of order 0
1871
+ 128, 2297295,
1872
+ // C4[4], coeff of eps^6, polynomial in n of order 1
1873
+ 26624, -8704, 6891885,
1874
+ // C4[4], coeff of eps^5, polynomial in n of order 2
1875
+ -77824, 34816, -6528, 6891885,
1876
+ // C4[4], coeff of eps^4, polynomial in n of order 3
1877
+ -32256, 52224, -43520, 14144, 6891885,
1878
+ // C4[5], coeff of eps^7, polynomial in n of order 0
1879
+ -6784, 8423415,
1880
+ // C4[5], coeff of eps^6, polynomial in n of order 1
1881
+ 24576, -4352, 8423415,
1882
+ // C4[5], coeff of eps^5, polynomial in n of order 2
1883
+ 45056, -34816, 10880, 8423415,
1884
+ // C4[6], coeff of eps^7, polynomial in n of order 0
1885
+ -1024, 3318315,
1886
+ // C4[6], coeff of eps^6, polynomial in n of order 1
1887
+ -28672, 8704, 9954945,
1888
+ // C4[7], coeff of eps^7, polynomial in n of order 0
1889
+ 1024, 1640925,
1890
+ };
1891
+ #else
1892
+ #error "Bad value for GEOGRAPHICLIB_GEODESIC_ORDER"
1893
+ #endif
1894
+ GEOGRAPHICLIB_STATIC_ASSERT(sizeof(coeff) / sizeof(real) ==
1895
+ (nC4_ * (nC4_ + 1) * (nC4_ + 5)) / 6,
1896
+ "Coefficient array size mismatch in C4coeff");
1897
+ int o = 0, k = 0;
1898
+ for (int l = 0; l < nC4_; ++l) { // l is index of C4[l]
1899
+ for (int j = nC4_ - 1; j >= l; --j) { // coeff of eps^j
1900
+ int m = nC4_ - j - 1; // order of polynomial in n
1901
+ _C4x[k++] = Math::polyval(m, coeff + o, _n) / coeff[o + m + 1];
1902
+ o += m + 2;
1903
+ }
1904
+ }
1905
+ // Post condition: o == sizeof(coeff) / sizeof(real) && k == nC4x_
1906
+ }
1907
+
1908
+ } // namespace GeographicLib