xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torch.nn import functional as F
|
|
3
|
+
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
|
8
|
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
|
9
|
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def piecewise_rational_quadratic_transform(
|
|
13
|
+
inputs,
|
|
14
|
+
unnormalized_widths,
|
|
15
|
+
unnormalized_heights,
|
|
16
|
+
unnormalized_derivatives,
|
|
17
|
+
inverse=False,
|
|
18
|
+
tails=None,
|
|
19
|
+
tail_bound=1.0,
|
|
20
|
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
|
21
|
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
|
22
|
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
|
23
|
+
):
|
|
24
|
+
if tails is None:
|
|
25
|
+
spline_fn = rational_quadratic_spline
|
|
26
|
+
spline_kwargs = {}
|
|
27
|
+
else:
|
|
28
|
+
spline_fn = unconstrained_rational_quadratic_spline
|
|
29
|
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
|
30
|
+
|
|
31
|
+
outputs, logabsdet = spline_fn(
|
|
32
|
+
inputs=inputs,
|
|
33
|
+
unnormalized_widths=unnormalized_widths,
|
|
34
|
+
unnormalized_heights=unnormalized_heights,
|
|
35
|
+
unnormalized_derivatives=unnormalized_derivatives,
|
|
36
|
+
inverse=inverse,
|
|
37
|
+
min_bin_width=min_bin_width,
|
|
38
|
+
min_bin_height=min_bin_height,
|
|
39
|
+
min_derivative=min_derivative,
|
|
40
|
+
**spline_kwargs
|
|
41
|
+
)
|
|
42
|
+
return outputs, logabsdet
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
|
46
|
+
bin_locations[..., -1] += eps
|
|
47
|
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def unconstrained_rational_quadratic_spline(
|
|
51
|
+
inputs,
|
|
52
|
+
unnormalized_widths,
|
|
53
|
+
unnormalized_heights,
|
|
54
|
+
unnormalized_derivatives,
|
|
55
|
+
inverse=False,
|
|
56
|
+
tails="linear",
|
|
57
|
+
tail_bound=1.0,
|
|
58
|
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
|
59
|
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
|
60
|
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
|
61
|
+
):
|
|
62
|
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
|
63
|
+
outside_interval_mask = ~inside_interval_mask
|
|
64
|
+
|
|
65
|
+
outputs = torch.zeros_like(inputs)
|
|
66
|
+
logabsdet = torch.zeros_like(inputs)
|
|
67
|
+
|
|
68
|
+
if tails == "linear":
|
|
69
|
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
|
70
|
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
|
71
|
+
unnormalized_derivatives[..., 0] = constant
|
|
72
|
+
unnormalized_derivatives[..., -1] = constant
|
|
73
|
+
|
|
74
|
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
|
75
|
+
logabsdet[outside_interval_mask] = 0
|
|
76
|
+
else:
|
|
77
|
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
|
78
|
+
|
|
79
|
+
(
|
|
80
|
+
outputs[inside_interval_mask],
|
|
81
|
+
logabsdet[inside_interval_mask],
|
|
82
|
+
) = rational_quadratic_spline(
|
|
83
|
+
inputs=inputs[inside_interval_mask],
|
|
84
|
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
|
85
|
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
|
86
|
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
|
87
|
+
inverse=inverse,
|
|
88
|
+
left=-tail_bound,
|
|
89
|
+
right=tail_bound,
|
|
90
|
+
bottom=-tail_bound,
|
|
91
|
+
top=tail_bound,
|
|
92
|
+
min_bin_width=min_bin_width,
|
|
93
|
+
min_bin_height=min_bin_height,
|
|
94
|
+
min_derivative=min_derivative,
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
return outputs, logabsdet
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
def rational_quadratic_spline(
|
|
101
|
+
inputs,
|
|
102
|
+
unnormalized_widths,
|
|
103
|
+
unnormalized_heights,
|
|
104
|
+
unnormalized_derivatives,
|
|
105
|
+
inverse=False,
|
|
106
|
+
left=0.0,
|
|
107
|
+
right=1.0,
|
|
108
|
+
bottom=0.0,
|
|
109
|
+
top=1.0,
|
|
110
|
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
|
111
|
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
|
112
|
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
|
113
|
+
):
|
|
114
|
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
|
115
|
+
raise ValueError("Input to a transform is not within its domain")
|
|
116
|
+
|
|
117
|
+
num_bins = unnormalized_widths.shape[-1]
|
|
118
|
+
|
|
119
|
+
if min_bin_width * num_bins > 1.0:
|
|
120
|
+
raise ValueError("Minimal bin width too large for the number of bins")
|
|
121
|
+
if min_bin_height * num_bins > 1.0:
|
|
122
|
+
raise ValueError("Minimal bin height too large for the number of bins")
|
|
123
|
+
|
|
124
|
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
|
125
|
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
|
126
|
+
cumwidths = torch.cumsum(widths, dim=-1)
|
|
127
|
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
|
128
|
+
cumwidths = (right - left) * cumwidths + left
|
|
129
|
+
cumwidths[..., 0] = left
|
|
130
|
+
cumwidths[..., -1] = right
|
|
131
|
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
|
132
|
+
|
|
133
|
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
|
134
|
+
|
|
135
|
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
|
136
|
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
|
137
|
+
cumheights = torch.cumsum(heights, dim=-1)
|
|
138
|
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
|
139
|
+
cumheights = (top - bottom) * cumheights + bottom
|
|
140
|
+
cumheights[..., 0] = bottom
|
|
141
|
+
cumheights[..., -1] = top
|
|
142
|
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
|
143
|
+
|
|
144
|
+
if inverse:
|
|
145
|
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
|
146
|
+
else:
|
|
147
|
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
|
148
|
+
|
|
149
|
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
|
150
|
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
|
151
|
+
|
|
152
|
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
|
153
|
+
delta = heights / widths
|
|
154
|
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
|
155
|
+
|
|
156
|
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
|
157
|
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
|
158
|
+
|
|
159
|
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
|
160
|
+
|
|
161
|
+
if inverse:
|
|
162
|
+
a = (inputs - input_cumheights) * (
|
|
163
|
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
|
164
|
+
) + input_heights * (input_delta - input_derivatives)
|
|
165
|
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
|
166
|
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
|
167
|
+
)
|
|
168
|
+
c = -input_delta * (inputs - input_cumheights)
|
|
169
|
+
|
|
170
|
+
discriminant = b.pow(2) - 4 * a * c
|
|
171
|
+
assert (discriminant >= 0).all()
|
|
172
|
+
|
|
173
|
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
|
174
|
+
outputs = root * input_bin_widths + input_cumwidths
|
|
175
|
+
|
|
176
|
+
theta_one_minus_theta = root * (1 - root)
|
|
177
|
+
denominator = input_delta + (
|
|
178
|
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
|
179
|
+
* theta_one_minus_theta
|
|
180
|
+
)
|
|
181
|
+
derivative_numerator = input_delta.pow(2) * (
|
|
182
|
+
input_derivatives_plus_one * root.pow(2)
|
|
183
|
+
+ 2 * input_delta * theta_one_minus_theta
|
|
184
|
+
+ input_derivatives * (1 - root).pow(2)
|
|
185
|
+
)
|
|
186
|
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
|
187
|
+
|
|
188
|
+
return outputs, -logabsdet
|
|
189
|
+
else:
|
|
190
|
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
|
191
|
+
theta_one_minus_theta = theta * (1 - theta)
|
|
192
|
+
|
|
193
|
+
numerator = input_heights * (
|
|
194
|
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
|
195
|
+
)
|
|
196
|
+
denominator = input_delta + (
|
|
197
|
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
|
198
|
+
* theta_one_minus_theta
|
|
199
|
+
)
|
|
200
|
+
outputs = input_cumheights + numerator / denominator
|
|
201
|
+
|
|
202
|
+
derivative_numerator = input_delta.pow(2) * (
|
|
203
|
+
input_derivatives_plus_one * theta.pow(2)
|
|
204
|
+
+ 2 * input_delta * theta_one_minus_theta
|
|
205
|
+
+ input_derivatives * (1 - theta).pow(2)
|
|
206
|
+
)
|
|
207
|
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
|
208
|
+
|
|
209
|
+
return outputs, logabsdet
|
|
@@ -0,0 +1,424 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import glob
|
|
3
|
+
import argparse
|
|
4
|
+
import logging
|
|
5
|
+
import json
|
|
6
|
+
import subprocess
|
|
7
|
+
import numpy as np
|
|
8
|
+
from scipy.io.wavfile import read
|
|
9
|
+
import torch
|
|
10
|
+
import torchaudio
|
|
11
|
+
import librosa
|
|
12
|
+
from melo.text import cleaned_text_to_sequence, get_bert
|
|
13
|
+
from melo.text.cleaner import clean_text
|
|
14
|
+
from melo import commons
|
|
15
|
+
|
|
16
|
+
MATPLOTLIB_FLAG = False
|
|
17
|
+
|
|
18
|
+
logger = logging.getLogger(__name__)
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def get_text_for_tts_infer(text, language_str, hps, device, symbol_to_id=None):
|
|
23
|
+
norm_text, phone, tone, word2ph = clean_text(text, language_str)
|
|
24
|
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
|
|
25
|
+
|
|
26
|
+
if hps.data.add_blank:
|
|
27
|
+
phone = commons.intersperse(phone, 0)
|
|
28
|
+
tone = commons.intersperse(tone, 0)
|
|
29
|
+
language = commons.intersperse(language, 0)
|
|
30
|
+
for i in range(len(word2ph)):
|
|
31
|
+
word2ph[i] = word2ph[i] * 2
|
|
32
|
+
word2ph[0] += 1
|
|
33
|
+
|
|
34
|
+
if getattr(hps.data, "disable_bert", False):
|
|
35
|
+
bert = torch.zeros(1024, len(phone))
|
|
36
|
+
ja_bert = torch.zeros(768, len(phone))
|
|
37
|
+
else:
|
|
38
|
+
bert = get_bert(norm_text, word2ph, language_str, device)
|
|
39
|
+
del word2ph
|
|
40
|
+
assert bert.shape[-1] == len(phone), phone
|
|
41
|
+
|
|
42
|
+
if language_str == "ZH":
|
|
43
|
+
bert = bert
|
|
44
|
+
ja_bert = torch.zeros(768, len(phone))
|
|
45
|
+
elif language_str in ["JP", "EN", "ZH_MIX_EN", 'KR', 'SP', 'ES', 'FR', 'DE', 'RU']:
|
|
46
|
+
ja_bert = bert
|
|
47
|
+
bert = torch.zeros(1024, len(phone))
|
|
48
|
+
else:
|
|
49
|
+
raise NotImplementedError()
|
|
50
|
+
|
|
51
|
+
assert bert.shape[-1] == len(
|
|
52
|
+
phone
|
|
53
|
+
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
|
|
54
|
+
|
|
55
|
+
phone = torch.LongTensor(phone)
|
|
56
|
+
tone = torch.LongTensor(tone)
|
|
57
|
+
language = torch.LongTensor(language)
|
|
58
|
+
return bert, ja_bert, phone, tone, language
|
|
59
|
+
|
|
60
|
+
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
|
61
|
+
assert os.path.isfile(checkpoint_path)
|
|
62
|
+
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
|
|
63
|
+
iteration = checkpoint_dict.get("iteration", 0)
|
|
64
|
+
learning_rate = checkpoint_dict.get("learning_rate", 0.)
|
|
65
|
+
if (
|
|
66
|
+
optimizer is not None
|
|
67
|
+
and not skip_optimizer
|
|
68
|
+
and checkpoint_dict["optimizer"] is not None
|
|
69
|
+
):
|
|
70
|
+
optimizer.load_state_dict(checkpoint_dict["optimizer"])
|
|
71
|
+
elif optimizer is None and not skip_optimizer:
|
|
72
|
+
# else: Disable this line if Infer and resume checkpoint,then enable the line upper
|
|
73
|
+
new_opt_dict = optimizer.state_dict()
|
|
74
|
+
new_opt_dict_params = new_opt_dict["param_groups"][0]["params"]
|
|
75
|
+
new_opt_dict["param_groups"] = checkpoint_dict["optimizer"]["param_groups"]
|
|
76
|
+
new_opt_dict["param_groups"][0]["params"] = new_opt_dict_params
|
|
77
|
+
optimizer.load_state_dict(new_opt_dict)
|
|
78
|
+
|
|
79
|
+
saved_state_dict = checkpoint_dict["model"]
|
|
80
|
+
if hasattr(model, "module"):
|
|
81
|
+
state_dict = model.module.state_dict()
|
|
82
|
+
else:
|
|
83
|
+
state_dict = model.state_dict()
|
|
84
|
+
|
|
85
|
+
new_state_dict = {}
|
|
86
|
+
for k, v in state_dict.items():
|
|
87
|
+
try:
|
|
88
|
+
# assert "emb_g" not in k
|
|
89
|
+
new_state_dict[k] = saved_state_dict[k]
|
|
90
|
+
assert saved_state_dict[k].shape == v.shape, (
|
|
91
|
+
saved_state_dict[k].shape,
|
|
92
|
+
v.shape,
|
|
93
|
+
)
|
|
94
|
+
except Exception as e:
|
|
95
|
+
print(e)
|
|
96
|
+
# For upgrading from the old version
|
|
97
|
+
if "ja_bert_proj" in k:
|
|
98
|
+
v = torch.zeros_like(v)
|
|
99
|
+
logger.warn(
|
|
100
|
+
f"Seems you are using the old version of the model, the {k} is automatically set to zero for backward compatibility"
|
|
101
|
+
)
|
|
102
|
+
else:
|
|
103
|
+
logger.error(f"{k} is not in the checkpoint")
|
|
104
|
+
|
|
105
|
+
new_state_dict[k] = v
|
|
106
|
+
|
|
107
|
+
if hasattr(model, "module"):
|
|
108
|
+
model.module.load_state_dict(new_state_dict, strict=False)
|
|
109
|
+
else:
|
|
110
|
+
model.load_state_dict(new_state_dict, strict=False)
|
|
111
|
+
|
|
112
|
+
logger.info(
|
|
113
|
+
"Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
return model, optimizer, learning_rate, iteration
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
120
|
+
logger.info(
|
|
121
|
+
"Saving model and optimizer state at iteration {} to {}".format(
|
|
122
|
+
iteration, checkpoint_path
|
|
123
|
+
)
|
|
124
|
+
)
|
|
125
|
+
if hasattr(model, "module"):
|
|
126
|
+
state_dict = model.module.state_dict()
|
|
127
|
+
else:
|
|
128
|
+
state_dict = model.state_dict()
|
|
129
|
+
torch.save(
|
|
130
|
+
{
|
|
131
|
+
"model": state_dict,
|
|
132
|
+
"iteration": iteration,
|
|
133
|
+
"optimizer": optimizer.state_dict(),
|
|
134
|
+
"learning_rate": learning_rate,
|
|
135
|
+
},
|
|
136
|
+
checkpoint_path,
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def summarize(
|
|
141
|
+
writer,
|
|
142
|
+
global_step,
|
|
143
|
+
scalars={},
|
|
144
|
+
histograms={},
|
|
145
|
+
images={},
|
|
146
|
+
audios={},
|
|
147
|
+
audio_sampling_rate=22050,
|
|
148
|
+
):
|
|
149
|
+
for k, v in scalars.items():
|
|
150
|
+
writer.add_scalar(k, v, global_step)
|
|
151
|
+
for k, v in histograms.items():
|
|
152
|
+
writer.add_histogram(k, v, global_step)
|
|
153
|
+
for k, v in images.items():
|
|
154
|
+
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
155
|
+
for k, v in audios.items():
|
|
156
|
+
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
160
|
+
f_list = glob.glob(os.path.join(dir_path, regex))
|
|
161
|
+
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
162
|
+
x = f_list[-1]
|
|
163
|
+
return x
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def plot_spectrogram_to_numpy(spectrogram):
|
|
167
|
+
global MATPLOTLIB_FLAG
|
|
168
|
+
if not MATPLOTLIB_FLAG:
|
|
169
|
+
import matplotlib
|
|
170
|
+
|
|
171
|
+
matplotlib.use("Agg")
|
|
172
|
+
MATPLOTLIB_FLAG = True
|
|
173
|
+
mpl_logger = logging.getLogger("matplotlib")
|
|
174
|
+
mpl_logger.setLevel(logging.WARNING)
|
|
175
|
+
import matplotlib.pylab as plt
|
|
176
|
+
import numpy as np
|
|
177
|
+
|
|
178
|
+
fig, ax = plt.subplots(figsize=(10, 2))
|
|
179
|
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
|
|
180
|
+
plt.colorbar(im, ax=ax)
|
|
181
|
+
plt.xlabel("Frames")
|
|
182
|
+
plt.ylabel("Channels")
|
|
183
|
+
plt.tight_layout()
|
|
184
|
+
|
|
185
|
+
fig.canvas.draw()
|
|
186
|
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
187
|
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
188
|
+
plt.close()
|
|
189
|
+
return data
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
def plot_alignment_to_numpy(alignment, info=None):
|
|
193
|
+
global MATPLOTLIB_FLAG
|
|
194
|
+
if not MATPLOTLIB_FLAG:
|
|
195
|
+
import matplotlib
|
|
196
|
+
|
|
197
|
+
matplotlib.use("Agg")
|
|
198
|
+
MATPLOTLIB_FLAG = True
|
|
199
|
+
mpl_logger = logging.getLogger("matplotlib")
|
|
200
|
+
mpl_logger.setLevel(logging.WARNING)
|
|
201
|
+
import matplotlib.pylab as plt
|
|
202
|
+
import numpy as np
|
|
203
|
+
|
|
204
|
+
fig, ax = plt.subplots(figsize=(6, 4))
|
|
205
|
+
im = ax.imshow(
|
|
206
|
+
alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
|
|
207
|
+
)
|
|
208
|
+
fig.colorbar(im, ax=ax)
|
|
209
|
+
xlabel = "Decoder timestep"
|
|
210
|
+
if info is not None:
|
|
211
|
+
xlabel += "\n\n" + info
|
|
212
|
+
plt.xlabel(xlabel)
|
|
213
|
+
plt.ylabel("Encoder timestep")
|
|
214
|
+
plt.tight_layout()
|
|
215
|
+
|
|
216
|
+
fig.canvas.draw()
|
|
217
|
+
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
|
|
218
|
+
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
219
|
+
plt.close()
|
|
220
|
+
return data
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
def load_wav_to_torch(full_path):
|
|
224
|
+
sampling_rate, data = read(full_path)
|
|
225
|
+
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def load_wav_to_torch_new(full_path):
|
|
229
|
+
audio_norm, sampling_rate = torchaudio.load(full_path, frame_offset=0, num_frames=-1, normalize=True, channels_first=True)
|
|
230
|
+
audio_norm = audio_norm.mean(dim=0)
|
|
231
|
+
return audio_norm, sampling_rate
|
|
232
|
+
|
|
233
|
+
def load_wav_to_torch_librosa(full_path, sr):
|
|
234
|
+
audio_norm, sampling_rate = librosa.load(full_path, sr=sr, mono=True)
|
|
235
|
+
return torch.FloatTensor(audio_norm.astype(np.float32)), sampling_rate
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
def load_filepaths_and_text(filename, split="|"):
|
|
239
|
+
with open(filename, encoding="utf-8") as f:
|
|
240
|
+
filepaths_and_text = [line.strip().split(split) for line in f]
|
|
241
|
+
return filepaths_and_text
|
|
242
|
+
|
|
243
|
+
|
|
244
|
+
def get_hparams(init=True):
|
|
245
|
+
parser = argparse.ArgumentParser()
|
|
246
|
+
parser.add_argument(
|
|
247
|
+
"-c",
|
|
248
|
+
"--config",
|
|
249
|
+
type=str,
|
|
250
|
+
default="./configs/base.json",
|
|
251
|
+
help="JSON file for configuration",
|
|
252
|
+
)
|
|
253
|
+
parser.add_argument('--local_rank', type=int, default=0)
|
|
254
|
+
parser.add_argument('--world-size', type=int, default=1)
|
|
255
|
+
parser.add_argument('--port', type=int, default=10000)
|
|
256
|
+
parser.add_argument("-m", "--model", type=str, required=True, help="Model name")
|
|
257
|
+
parser.add_argument('--pretrain_G', type=str, default=None,
|
|
258
|
+
help='pretrain model')
|
|
259
|
+
parser.add_argument('--pretrain_D', type=str, default=None,
|
|
260
|
+
help='pretrain model D')
|
|
261
|
+
parser.add_argument('--pretrain_dur', type=str, default=None,
|
|
262
|
+
help='pretrain model duration')
|
|
263
|
+
|
|
264
|
+
args = parser.parse_args()
|
|
265
|
+
model_dir = os.path.join("./logs", args.model)
|
|
266
|
+
|
|
267
|
+
os.makedirs(model_dir, exist_ok=True)
|
|
268
|
+
|
|
269
|
+
config_path = args.config
|
|
270
|
+
config_save_path = os.path.join(model_dir, "config.json")
|
|
271
|
+
if init:
|
|
272
|
+
with open(config_path, "r") as f:
|
|
273
|
+
data = f.read()
|
|
274
|
+
with open(config_save_path, "w") as f:
|
|
275
|
+
f.write(data)
|
|
276
|
+
else:
|
|
277
|
+
with open(config_save_path, "r") as f:
|
|
278
|
+
data = f.read()
|
|
279
|
+
config = json.loads(data)
|
|
280
|
+
|
|
281
|
+
hparams = HParams(**config)
|
|
282
|
+
hparams.model_dir = model_dir
|
|
283
|
+
hparams.pretrain_G = args.pretrain_G
|
|
284
|
+
hparams.pretrain_D = args.pretrain_D
|
|
285
|
+
hparams.pretrain_dur = args.pretrain_dur
|
|
286
|
+
hparams.port = args.port
|
|
287
|
+
return hparams
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
|
|
291
|
+
"""Freeing up space by deleting saved ckpts
|
|
292
|
+
|
|
293
|
+
Arguments:
|
|
294
|
+
path_to_models -- Path to the model directory
|
|
295
|
+
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
|
296
|
+
sort_by_time -- True -> chronologically delete ckpts
|
|
297
|
+
False -> lexicographically delete ckpts
|
|
298
|
+
"""
|
|
299
|
+
import re
|
|
300
|
+
|
|
301
|
+
ckpts_files = [
|
|
302
|
+
f
|
|
303
|
+
for f in os.listdir(path_to_models)
|
|
304
|
+
if os.path.isfile(os.path.join(path_to_models, f))
|
|
305
|
+
]
|
|
306
|
+
|
|
307
|
+
def name_key(_f):
|
|
308
|
+
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
|
309
|
+
|
|
310
|
+
def time_key(_f):
|
|
311
|
+
return os.path.getmtime(os.path.join(path_to_models, _f))
|
|
312
|
+
|
|
313
|
+
sort_key = time_key if sort_by_time else name_key
|
|
314
|
+
|
|
315
|
+
def x_sorted(_x):
|
|
316
|
+
return sorted(
|
|
317
|
+
[f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
|
|
318
|
+
key=sort_key,
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
to_del = [
|
|
322
|
+
os.path.join(path_to_models, fn)
|
|
323
|
+
for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
|
|
324
|
+
]
|
|
325
|
+
|
|
326
|
+
def del_info(fn):
|
|
327
|
+
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
|
328
|
+
|
|
329
|
+
def del_routine(x):
|
|
330
|
+
return [os.remove(x), del_info(x)]
|
|
331
|
+
|
|
332
|
+
[del_routine(fn) for fn in to_del]
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
def get_hparams_from_dir(model_dir):
|
|
336
|
+
config_save_path = os.path.join(model_dir, "config.json")
|
|
337
|
+
with open(config_save_path, "r", encoding="utf-8") as f:
|
|
338
|
+
data = f.read()
|
|
339
|
+
config = json.loads(data)
|
|
340
|
+
|
|
341
|
+
hparams = HParams(**config)
|
|
342
|
+
hparams.model_dir = model_dir
|
|
343
|
+
return hparams
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
def get_hparams_from_file(config_path):
|
|
347
|
+
with open(config_path, "r", encoding="utf-8") as f:
|
|
348
|
+
data = f.read()
|
|
349
|
+
config = json.loads(data)
|
|
350
|
+
|
|
351
|
+
hparams = HParams(**config)
|
|
352
|
+
return hparams
|
|
353
|
+
|
|
354
|
+
|
|
355
|
+
def check_git_hash(model_dir):
|
|
356
|
+
source_dir = os.path.dirname(os.path.realpath(__file__))
|
|
357
|
+
if not os.path.exists(os.path.join(source_dir, ".git")):
|
|
358
|
+
logger.warn(
|
|
359
|
+
"{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
|
360
|
+
source_dir
|
|
361
|
+
)
|
|
362
|
+
)
|
|
363
|
+
return
|
|
364
|
+
|
|
365
|
+
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
|
366
|
+
|
|
367
|
+
path = os.path.join(model_dir, "githash")
|
|
368
|
+
if os.path.exists(path):
|
|
369
|
+
saved_hash = open(path).read()
|
|
370
|
+
if saved_hash != cur_hash:
|
|
371
|
+
logger.warn(
|
|
372
|
+
"git hash values are different. {}(saved) != {}(current)".format(
|
|
373
|
+
saved_hash[:8], cur_hash[:8]
|
|
374
|
+
)
|
|
375
|
+
)
|
|
376
|
+
else:
|
|
377
|
+
open(path, "w").write(cur_hash)
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
def get_logger(model_dir, filename="train.log"):
|
|
381
|
+
global logger
|
|
382
|
+
logger = logging.getLogger(os.path.basename(model_dir))
|
|
383
|
+
logger.setLevel(logging.DEBUG)
|
|
384
|
+
|
|
385
|
+
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
|
386
|
+
if not os.path.exists(model_dir):
|
|
387
|
+
os.makedirs(model_dir, exist_ok=True)
|
|
388
|
+
h = logging.FileHandler(os.path.join(model_dir, filename))
|
|
389
|
+
h.setLevel(logging.DEBUG)
|
|
390
|
+
h.setFormatter(formatter)
|
|
391
|
+
logger.addHandler(h)
|
|
392
|
+
return logger
|
|
393
|
+
|
|
394
|
+
|
|
395
|
+
class HParams:
|
|
396
|
+
def __init__(self, **kwargs):
|
|
397
|
+
for k, v in kwargs.items():
|
|
398
|
+
if type(v) == dict:
|
|
399
|
+
v = HParams(**v)
|
|
400
|
+
self[k] = v
|
|
401
|
+
|
|
402
|
+
def keys(self):
|
|
403
|
+
return self.__dict__.keys()
|
|
404
|
+
|
|
405
|
+
def items(self):
|
|
406
|
+
return self.__dict__.items()
|
|
407
|
+
|
|
408
|
+
def values(self):
|
|
409
|
+
return self.__dict__.values()
|
|
410
|
+
|
|
411
|
+
def __len__(self):
|
|
412
|
+
return len(self.__dict__)
|
|
413
|
+
|
|
414
|
+
def __getitem__(self, key):
|
|
415
|
+
return getattr(self, key)
|
|
416
|
+
|
|
417
|
+
def __setitem__(self, key, value):
|
|
418
|
+
return setattr(self, key, value)
|
|
419
|
+
|
|
420
|
+
def __contains__(self, key):
|
|
421
|
+
return key in self.__dict__
|
|
422
|
+
|
|
423
|
+
def __repr__(self):
|
|
424
|
+
return self.__dict__.__repr__()
|
xinference/types.py
CHANGED
|
@@ -71,7 +71,8 @@ class EmbeddingUsage(TypedDict):
|
|
|
71
71
|
class EmbeddingData(TypedDict):
|
|
72
72
|
index: int
|
|
73
73
|
object: str
|
|
74
|
-
embedding
|
|
74
|
+
# support sparse embedding
|
|
75
|
+
embedding: Union[List[float], Dict[str, float]]
|
|
75
76
|
|
|
76
77
|
|
|
77
78
|
class Embedding(TypedDict):
|
|
@@ -301,6 +302,19 @@ class PytorchGenerateConfig(TypedDict, total=False):
|
|
|
301
302
|
request_id: Optional[str]
|
|
302
303
|
|
|
303
304
|
|
|
305
|
+
class CogagentGenerateConfig(PytorchGenerateConfig, total=False):
|
|
306
|
+
platform: Optional[Literal["Mac", "WIN", "Mobile"]]
|
|
307
|
+
format: Optional[
|
|
308
|
+
Literal[
|
|
309
|
+
"(Answer in Action-Operation-Sensitive format.)",
|
|
310
|
+
"(Answer in Status-Plan-Action-Operation format.)",
|
|
311
|
+
"(Answer in Status-Action-Operation-Sensitive format.)",
|
|
312
|
+
"(Answer in Status-Action-Operation format.)",
|
|
313
|
+
"(Answer in Action-Operation format.)",
|
|
314
|
+
]
|
|
315
|
+
]
|
|
316
|
+
|
|
317
|
+
|
|
304
318
|
class PytorchModelConfig(TypedDict, total=False):
|
|
305
319
|
revision: Optional[str]
|
|
306
320
|
device: str
|
|
@@ -321,8 +335,10 @@ def get_pydantic_model_from_method(
|
|
|
321
335
|
exclude_fields: Optional[Iterable[str]] = None,
|
|
322
336
|
include_fields: Optional[Dict[str, Any]] = None,
|
|
323
337
|
) -> BaseModel:
|
|
338
|
+
# The validate_arguments set Config.extra = "forbid" by default.
|
|
324
339
|
f = validate_arguments(meth, config={"arbitrary_types_allowed": True})
|
|
325
340
|
model = f.model
|
|
341
|
+
model.Config.extra = "ignore"
|
|
326
342
|
model.__fields__.pop("self", None)
|
|
327
343
|
model.__fields__.pop("args", None)
|
|
328
344
|
model.__fields__.pop("kwargs", None)
|
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
{
|
|
2
2
|
"files": {
|
|
3
|
-
"main.css": "./static/css/main.
|
|
4
|
-
"main.js": "./static/js/main.
|
|
3
|
+
"main.css": "./static/css/main.51a587ff.css",
|
|
4
|
+
"main.js": "./static/js/main.b0936c54.js",
|
|
5
5
|
"static/media/icon.webp": "./static/media/icon.4603d52c63041e5dfbfd.webp",
|
|
6
6
|
"index.html": "./index.html",
|
|
7
|
-
"main.
|
|
8
|
-
"main.
|
|
7
|
+
"main.51a587ff.css.map": "./static/css/main.51a587ff.css.map",
|
|
8
|
+
"main.b0936c54.js.map": "./static/js/main.b0936c54.js.map"
|
|
9
9
|
},
|
|
10
10
|
"entrypoints": [
|
|
11
|
-
"static/css/main.
|
|
12
|
-
"static/js/main.
|
|
11
|
+
"static/css/main.51a587ff.css",
|
|
12
|
+
"static/js/main.b0936c54.js"
|
|
13
13
|
]
|
|
14
14
|
}
|
|
@@ -1 +1 @@
|
|
|
1
|
-
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.
|
|
1
|
+
<!doctype html><html lang="en"><head><meta charset="utf-8"/><link rel="icon" href="./favicon.svg"/><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="theme-color" content="#000000"/><meta name="description" content="Web site created using create-react-app"/><link rel="apple-touch-icon" href="./logo192.png"/><link rel="manifest" href="./manifest.json"/><title>Xinference</title><script defer="defer" src="./static/js/main.b0936c54.js"></script><link href="./static/css/main.51a587ff.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>
|