xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1030 @@
|
|
|
1
|
+
import math
|
|
2
|
+
import torch
|
|
3
|
+
from torch import nn
|
|
4
|
+
from torch.nn import functional as F
|
|
5
|
+
|
|
6
|
+
from melo import commons
|
|
7
|
+
from melo import modules
|
|
8
|
+
from melo import attentions
|
|
9
|
+
|
|
10
|
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
|
11
|
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
|
12
|
+
|
|
13
|
+
from melo.commons import init_weights, get_padding
|
|
14
|
+
import melo.monotonic_align as monotonic_align
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class DurationDiscriminator(nn.Module): # vits2
|
|
18
|
+
def __init__(
|
|
19
|
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
|
20
|
+
):
|
|
21
|
+
super().__init__()
|
|
22
|
+
self.in_channels = in_channels
|
|
23
|
+
self.filter_channels = filter_channels
|
|
24
|
+
self.kernel_size = kernel_size
|
|
25
|
+
self.p_dropout = p_dropout
|
|
26
|
+
self.gin_channels = gin_channels
|
|
27
|
+
|
|
28
|
+
self.drop = nn.Dropout(p_dropout)
|
|
29
|
+
self.conv_1 = nn.Conv1d(
|
|
30
|
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
31
|
+
)
|
|
32
|
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
|
33
|
+
self.conv_2 = nn.Conv1d(
|
|
34
|
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
35
|
+
)
|
|
36
|
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
|
37
|
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
|
38
|
+
|
|
39
|
+
self.pre_out_conv_1 = nn.Conv1d(
|
|
40
|
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
41
|
+
)
|
|
42
|
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
|
43
|
+
self.pre_out_conv_2 = nn.Conv1d(
|
|
44
|
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
45
|
+
)
|
|
46
|
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
|
47
|
+
|
|
48
|
+
if gin_channels != 0:
|
|
49
|
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
|
50
|
+
|
|
51
|
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
|
52
|
+
|
|
53
|
+
def forward_probability(self, x, x_mask, dur, g=None):
|
|
54
|
+
dur = self.dur_proj(dur)
|
|
55
|
+
x = torch.cat([x, dur], dim=1)
|
|
56
|
+
x = self.pre_out_conv_1(x * x_mask)
|
|
57
|
+
x = torch.relu(x)
|
|
58
|
+
x = self.pre_out_norm_1(x)
|
|
59
|
+
x = self.drop(x)
|
|
60
|
+
x = self.pre_out_conv_2(x * x_mask)
|
|
61
|
+
x = torch.relu(x)
|
|
62
|
+
x = self.pre_out_norm_2(x)
|
|
63
|
+
x = self.drop(x)
|
|
64
|
+
x = x * x_mask
|
|
65
|
+
x = x.transpose(1, 2)
|
|
66
|
+
output_prob = self.output_layer(x)
|
|
67
|
+
return output_prob
|
|
68
|
+
|
|
69
|
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
|
70
|
+
x = torch.detach(x)
|
|
71
|
+
if g is not None:
|
|
72
|
+
g = torch.detach(g)
|
|
73
|
+
x = x + self.cond(g)
|
|
74
|
+
x = self.conv_1(x * x_mask)
|
|
75
|
+
x = torch.relu(x)
|
|
76
|
+
x = self.norm_1(x)
|
|
77
|
+
x = self.drop(x)
|
|
78
|
+
x = self.conv_2(x * x_mask)
|
|
79
|
+
x = torch.relu(x)
|
|
80
|
+
x = self.norm_2(x)
|
|
81
|
+
x = self.drop(x)
|
|
82
|
+
|
|
83
|
+
output_probs = []
|
|
84
|
+
for dur in [dur_r, dur_hat]:
|
|
85
|
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
|
86
|
+
output_probs.append(output_prob)
|
|
87
|
+
|
|
88
|
+
return output_probs
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class TransformerCouplingBlock(nn.Module):
|
|
92
|
+
def __init__(
|
|
93
|
+
self,
|
|
94
|
+
channels,
|
|
95
|
+
hidden_channels,
|
|
96
|
+
filter_channels,
|
|
97
|
+
n_heads,
|
|
98
|
+
n_layers,
|
|
99
|
+
kernel_size,
|
|
100
|
+
p_dropout,
|
|
101
|
+
n_flows=4,
|
|
102
|
+
gin_channels=0,
|
|
103
|
+
share_parameter=False,
|
|
104
|
+
):
|
|
105
|
+
super().__init__()
|
|
106
|
+
self.channels = channels
|
|
107
|
+
self.hidden_channels = hidden_channels
|
|
108
|
+
self.kernel_size = kernel_size
|
|
109
|
+
self.n_layers = n_layers
|
|
110
|
+
self.n_flows = n_flows
|
|
111
|
+
self.gin_channels = gin_channels
|
|
112
|
+
|
|
113
|
+
self.flows = nn.ModuleList()
|
|
114
|
+
|
|
115
|
+
self.wn = (
|
|
116
|
+
attentions.FFT(
|
|
117
|
+
hidden_channels,
|
|
118
|
+
filter_channels,
|
|
119
|
+
n_heads,
|
|
120
|
+
n_layers,
|
|
121
|
+
kernel_size,
|
|
122
|
+
p_dropout,
|
|
123
|
+
isflow=True,
|
|
124
|
+
gin_channels=self.gin_channels,
|
|
125
|
+
)
|
|
126
|
+
if share_parameter
|
|
127
|
+
else None
|
|
128
|
+
)
|
|
129
|
+
|
|
130
|
+
for i in range(n_flows):
|
|
131
|
+
self.flows.append(
|
|
132
|
+
modules.TransformerCouplingLayer(
|
|
133
|
+
channels,
|
|
134
|
+
hidden_channels,
|
|
135
|
+
kernel_size,
|
|
136
|
+
n_layers,
|
|
137
|
+
n_heads,
|
|
138
|
+
p_dropout,
|
|
139
|
+
filter_channels,
|
|
140
|
+
mean_only=True,
|
|
141
|
+
wn_sharing_parameter=self.wn,
|
|
142
|
+
gin_channels=self.gin_channels,
|
|
143
|
+
)
|
|
144
|
+
)
|
|
145
|
+
self.flows.append(modules.Flip())
|
|
146
|
+
|
|
147
|
+
def forward(self, x, x_mask, g=None, reverse=False):
|
|
148
|
+
if not reverse:
|
|
149
|
+
for flow in self.flows:
|
|
150
|
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
151
|
+
else:
|
|
152
|
+
for flow in reversed(self.flows):
|
|
153
|
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
154
|
+
return x
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
class StochasticDurationPredictor(nn.Module):
|
|
158
|
+
def __init__(
|
|
159
|
+
self,
|
|
160
|
+
in_channels,
|
|
161
|
+
filter_channels,
|
|
162
|
+
kernel_size,
|
|
163
|
+
p_dropout,
|
|
164
|
+
n_flows=4,
|
|
165
|
+
gin_channels=0,
|
|
166
|
+
):
|
|
167
|
+
super().__init__()
|
|
168
|
+
filter_channels = in_channels # it needs to be removed from future version.
|
|
169
|
+
self.in_channels = in_channels
|
|
170
|
+
self.filter_channels = filter_channels
|
|
171
|
+
self.kernel_size = kernel_size
|
|
172
|
+
self.p_dropout = p_dropout
|
|
173
|
+
self.n_flows = n_flows
|
|
174
|
+
self.gin_channels = gin_channels
|
|
175
|
+
|
|
176
|
+
self.log_flow = modules.Log()
|
|
177
|
+
self.flows = nn.ModuleList()
|
|
178
|
+
self.flows.append(modules.ElementwiseAffine(2))
|
|
179
|
+
for i in range(n_flows):
|
|
180
|
+
self.flows.append(
|
|
181
|
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
182
|
+
)
|
|
183
|
+
self.flows.append(modules.Flip())
|
|
184
|
+
|
|
185
|
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
|
186
|
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
187
|
+
self.post_convs = modules.DDSConv(
|
|
188
|
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
189
|
+
)
|
|
190
|
+
self.post_flows = nn.ModuleList()
|
|
191
|
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
|
192
|
+
for i in range(4):
|
|
193
|
+
self.post_flows.append(
|
|
194
|
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
195
|
+
)
|
|
196
|
+
self.post_flows.append(modules.Flip())
|
|
197
|
+
|
|
198
|
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
|
199
|
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
200
|
+
self.convs = modules.DDSConv(
|
|
201
|
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
202
|
+
)
|
|
203
|
+
if gin_channels != 0:
|
|
204
|
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
|
205
|
+
|
|
206
|
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
|
207
|
+
x = torch.detach(x)
|
|
208
|
+
x = self.pre(x)
|
|
209
|
+
if g is not None:
|
|
210
|
+
g = torch.detach(g)
|
|
211
|
+
x = x + self.cond(g)
|
|
212
|
+
x = self.convs(x, x_mask)
|
|
213
|
+
x = self.proj(x) * x_mask
|
|
214
|
+
|
|
215
|
+
if not reverse:
|
|
216
|
+
flows = self.flows
|
|
217
|
+
assert w is not None
|
|
218
|
+
|
|
219
|
+
logdet_tot_q = 0
|
|
220
|
+
h_w = self.post_pre(w)
|
|
221
|
+
h_w = self.post_convs(h_w, x_mask)
|
|
222
|
+
h_w = self.post_proj(h_w) * x_mask
|
|
223
|
+
e_q = (
|
|
224
|
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
|
225
|
+
* x_mask
|
|
226
|
+
)
|
|
227
|
+
z_q = e_q
|
|
228
|
+
for flow in self.post_flows:
|
|
229
|
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
|
230
|
+
logdet_tot_q += logdet_q
|
|
231
|
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
|
232
|
+
u = torch.sigmoid(z_u) * x_mask
|
|
233
|
+
z0 = (w - u) * x_mask
|
|
234
|
+
logdet_tot_q += torch.sum(
|
|
235
|
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
|
236
|
+
)
|
|
237
|
+
logq = (
|
|
238
|
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
|
239
|
+
- logdet_tot_q
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
logdet_tot = 0
|
|
243
|
+
z0, logdet = self.log_flow(z0, x_mask)
|
|
244
|
+
logdet_tot += logdet
|
|
245
|
+
z = torch.cat([z0, z1], 1)
|
|
246
|
+
for flow in flows:
|
|
247
|
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
|
248
|
+
logdet_tot = logdet_tot + logdet
|
|
249
|
+
nll = (
|
|
250
|
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
|
251
|
+
- logdet_tot
|
|
252
|
+
)
|
|
253
|
+
return nll + logq # [b]
|
|
254
|
+
else:
|
|
255
|
+
flows = list(reversed(self.flows))
|
|
256
|
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
|
257
|
+
z = (
|
|
258
|
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
|
259
|
+
* noise_scale
|
|
260
|
+
)
|
|
261
|
+
for flow in flows:
|
|
262
|
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
|
263
|
+
z0, z1 = torch.split(z, [1, 1], 1)
|
|
264
|
+
logw = z0
|
|
265
|
+
return logw
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
class DurationPredictor(nn.Module):
|
|
269
|
+
def __init__(
|
|
270
|
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
|
271
|
+
):
|
|
272
|
+
super().__init__()
|
|
273
|
+
|
|
274
|
+
self.in_channels = in_channels
|
|
275
|
+
self.filter_channels = filter_channels
|
|
276
|
+
self.kernel_size = kernel_size
|
|
277
|
+
self.p_dropout = p_dropout
|
|
278
|
+
self.gin_channels = gin_channels
|
|
279
|
+
|
|
280
|
+
self.drop = nn.Dropout(p_dropout)
|
|
281
|
+
self.conv_1 = nn.Conv1d(
|
|
282
|
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
283
|
+
)
|
|
284
|
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
|
285
|
+
self.conv_2 = nn.Conv1d(
|
|
286
|
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
287
|
+
)
|
|
288
|
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
|
289
|
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
|
290
|
+
|
|
291
|
+
if gin_channels != 0:
|
|
292
|
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
|
293
|
+
|
|
294
|
+
def forward(self, x, x_mask, g=None):
|
|
295
|
+
x = torch.detach(x)
|
|
296
|
+
if g is not None:
|
|
297
|
+
g = torch.detach(g)
|
|
298
|
+
x = x + self.cond(g)
|
|
299
|
+
x = self.conv_1(x * x_mask)
|
|
300
|
+
x = torch.relu(x)
|
|
301
|
+
x = self.norm_1(x)
|
|
302
|
+
x = self.drop(x)
|
|
303
|
+
x = self.conv_2(x * x_mask)
|
|
304
|
+
x = torch.relu(x)
|
|
305
|
+
x = self.norm_2(x)
|
|
306
|
+
x = self.drop(x)
|
|
307
|
+
x = self.proj(x * x_mask)
|
|
308
|
+
return x * x_mask
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class TextEncoder(nn.Module):
|
|
312
|
+
def __init__(
|
|
313
|
+
self,
|
|
314
|
+
n_vocab,
|
|
315
|
+
out_channels,
|
|
316
|
+
hidden_channels,
|
|
317
|
+
filter_channels,
|
|
318
|
+
n_heads,
|
|
319
|
+
n_layers,
|
|
320
|
+
kernel_size,
|
|
321
|
+
p_dropout,
|
|
322
|
+
gin_channels=0,
|
|
323
|
+
num_languages=None,
|
|
324
|
+
num_tones=None,
|
|
325
|
+
):
|
|
326
|
+
super().__init__()
|
|
327
|
+
if num_languages is None:
|
|
328
|
+
from text import num_languages
|
|
329
|
+
if num_tones is None:
|
|
330
|
+
from text import num_tones
|
|
331
|
+
self.n_vocab = n_vocab
|
|
332
|
+
self.out_channels = out_channels
|
|
333
|
+
self.hidden_channels = hidden_channels
|
|
334
|
+
self.filter_channels = filter_channels
|
|
335
|
+
self.n_heads = n_heads
|
|
336
|
+
self.n_layers = n_layers
|
|
337
|
+
self.kernel_size = kernel_size
|
|
338
|
+
self.p_dropout = p_dropout
|
|
339
|
+
self.gin_channels = gin_channels
|
|
340
|
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
|
341
|
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
|
342
|
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
|
343
|
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
|
344
|
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
|
345
|
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
|
346
|
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
|
347
|
+
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
|
348
|
+
|
|
349
|
+
self.encoder = attentions.Encoder(
|
|
350
|
+
hidden_channels,
|
|
351
|
+
filter_channels,
|
|
352
|
+
n_heads,
|
|
353
|
+
n_layers,
|
|
354
|
+
kernel_size,
|
|
355
|
+
p_dropout,
|
|
356
|
+
gin_channels=self.gin_channels,
|
|
357
|
+
)
|
|
358
|
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
359
|
+
|
|
360
|
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
|
361
|
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
|
362
|
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
|
363
|
+
x = (
|
|
364
|
+
self.emb(x)
|
|
365
|
+
+ self.tone_emb(tone)
|
|
366
|
+
+ self.language_emb(language)
|
|
367
|
+
+ bert_emb
|
|
368
|
+
+ ja_bert_emb
|
|
369
|
+
) * math.sqrt(
|
|
370
|
+
self.hidden_channels
|
|
371
|
+
) # [b, t, h]
|
|
372
|
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
|
373
|
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
374
|
+
x.dtype
|
|
375
|
+
)
|
|
376
|
+
|
|
377
|
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
|
378
|
+
stats = self.proj(x) * x_mask
|
|
379
|
+
|
|
380
|
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
381
|
+
return x, m, logs, x_mask
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
class ResidualCouplingBlock(nn.Module):
|
|
385
|
+
def __init__(
|
|
386
|
+
self,
|
|
387
|
+
channels,
|
|
388
|
+
hidden_channels,
|
|
389
|
+
kernel_size,
|
|
390
|
+
dilation_rate,
|
|
391
|
+
n_layers,
|
|
392
|
+
n_flows=4,
|
|
393
|
+
gin_channels=0,
|
|
394
|
+
):
|
|
395
|
+
super().__init__()
|
|
396
|
+
self.channels = channels
|
|
397
|
+
self.hidden_channels = hidden_channels
|
|
398
|
+
self.kernel_size = kernel_size
|
|
399
|
+
self.dilation_rate = dilation_rate
|
|
400
|
+
self.n_layers = n_layers
|
|
401
|
+
self.n_flows = n_flows
|
|
402
|
+
self.gin_channels = gin_channels
|
|
403
|
+
|
|
404
|
+
self.flows = nn.ModuleList()
|
|
405
|
+
for i in range(n_flows):
|
|
406
|
+
self.flows.append(
|
|
407
|
+
modules.ResidualCouplingLayer(
|
|
408
|
+
channels,
|
|
409
|
+
hidden_channels,
|
|
410
|
+
kernel_size,
|
|
411
|
+
dilation_rate,
|
|
412
|
+
n_layers,
|
|
413
|
+
gin_channels=gin_channels,
|
|
414
|
+
mean_only=True,
|
|
415
|
+
)
|
|
416
|
+
)
|
|
417
|
+
self.flows.append(modules.Flip())
|
|
418
|
+
|
|
419
|
+
def forward(self, x, x_mask, g=None, reverse=False):
|
|
420
|
+
if not reverse:
|
|
421
|
+
for flow in self.flows:
|
|
422
|
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
423
|
+
else:
|
|
424
|
+
for flow in reversed(self.flows):
|
|
425
|
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
426
|
+
return x
|
|
427
|
+
|
|
428
|
+
|
|
429
|
+
class PosteriorEncoder(nn.Module):
|
|
430
|
+
def __init__(
|
|
431
|
+
self,
|
|
432
|
+
in_channels,
|
|
433
|
+
out_channels,
|
|
434
|
+
hidden_channels,
|
|
435
|
+
kernel_size,
|
|
436
|
+
dilation_rate,
|
|
437
|
+
n_layers,
|
|
438
|
+
gin_channels=0,
|
|
439
|
+
):
|
|
440
|
+
super().__init__()
|
|
441
|
+
self.in_channels = in_channels
|
|
442
|
+
self.out_channels = out_channels
|
|
443
|
+
self.hidden_channels = hidden_channels
|
|
444
|
+
self.kernel_size = kernel_size
|
|
445
|
+
self.dilation_rate = dilation_rate
|
|
446
|
+
self.n_layers = n_layers
|
|
447
|
+
self.gin_channels = gin_channels
|
|
448
|
+
|
|
449
|
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
450
|
+
self.enc = modules.WN(
|
|
451
|
+
hidden_channels,
|
|
452
|
+
kernel_size,
|
|
453
|
+
dilation_rate,
|
|
454
|
+
n_layers,
|
|
455
|
+
gin_channels=gin_channels,
|
|
456
|
+
)
|
|
457
|
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
458
|
+
|
|
459
|
+
def forward(self, x, x_lengths, g=None, tau=1.0):
|
|
460
|
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
461
|
+
x.dtype
|
|
462
|
+
)
|
|
463
|
+
x = self.pre(x) * x_mask
|
|
464
|
+
x = self.enc(x, x_mask, g=g)
|
|
465
|
+
stats = self.proj(x) * x_mask
|
|
466
|
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
467
|
+
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
|
468
|
+
return z, m, logs, x_mask
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
class Generator(torch.nn.Module):
|
|
472
|
+
def __init__(
|
|
473
|
+
self,
|
|
474
|
+
initial_channel,
|
|
475
|
+
resblock,
|
|
476
|
+
resblock_kernel_sizes,
|
|
477
|
+
resblock_dilation_sizes,
|
|
478
|
+
upsample_rates,
|
|
479
|
+
upsample_initial_channel,
|
|
480
|
+
upsample_kernel_sizes,
|
|
481
|
+
gin_channels=0,
|
|
482
|
+
):
|
|
483
|
+
super(Generator, self).__init__()
|
|
484
|
+
self.num_kernels = len(resblock_kernel_sizes)
|
|
485
|
+
self.num_upsamples = len(upsample_rates)
|
|
486
|
+
self.conv_pre = Conv1d(
|
|
487
|
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
|
488
|
+
)
|
|
489
|
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
|
490
|
+
|
|
491
|
+
self.ups = nn.ModuleList()
|
|
492
|
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
493
|
+
self.ups.append(
|
|
494
|
+
weight_norm(
|
|
495
|
+
ConvTranspose1d(
|
|
496
|
+
upsample_initial_channel // (2**i),
|
|
497
|
+
upsample_initial_channel // (2 ** (i + 1)),
|
|
498
|
+
k,
|
|
499
|
+
u,
|
|
500
|
+
padding=(k - u) // 2,
|
|
501
|
+
)
|
|
502
|
+
)
|
|
503
|
+
)
|
|
504
|
+
|
|
505
|
+
self.resblocks = nn.ModuleList()
|
|
506
|
+
for i in range(len(self.ups)):
|
|
507
|
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
508
|
+
for j, (k, d) in enumerate(
|
|
509
|
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
|
510
|
+
):
|
|
511
|
+
self.resblocks.append(resblock(ch, k, d))
|
|
512
|
+
|
|
513
|
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
514
|
+
self.ups.apply(init_weights)
|
|
515
|
+
|
|
516
|
+
if gin_channels != 0:
|
|
517
|
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
518
|
+
|
|
519
|
+
def forward(self, x, g=None):
|
|
520
|
+
x = self.conv_pre(x)
|
|
521
|
+
if g is not None:
|
|
522
|
+
x = x + self.cond(g)
|
|
523
|
+
|
|
524
|
+
for i in range(self.num_upsamples):
|
|
525
|
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
526
|
+
x = self.ups[i](x)
|
|
527
|
+
xs = None
|
|
528
|
+
for j in range(self.num_kernels):
|
|
529
|
+
if xs is None:
|
|
530
|
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
531
|
+
else:
|
|
532
|
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
533
|
+
x = xs / self.num_kernels
|
|
534
|
+
x = F.leaky_relu(x)
|
|
535
|
+
x = self.conv_post(x)
|
|
536
|
+
x = torch.tanh(x)
|
|
537
|
+
|
|
538
|
+
return x
|
|
539
|
+
|
|
540
|
+
def remove_weight_norm(self):
|
|
541
|
+
print("Removing weight norm...")
|
|
542
|
+
for layer in self.ups:
|
|
543
|
+
remove_weight_norm(layer)
|
|
544
|
+
for layer in self.resblocks:
|
|
545
|
+
layer.remove_weight_norm()
|
|
546
|
+
|
|
547
|
+
|
|
548
|
+
class DiscriminatorP(torch.nn.Module):
|
|
549
|
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
|
550
|
+
super(DiscriminatorP, self).__init__()
|
|
551
|
+
self.period = period
|
|
552
|
+
self.use_spectral_norm = use_spectral_norm
|
|
553
|
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
|
554
|
+
self.convs = nn.ModuleList(
|
|
555
|
+
[
|
|
556
|
+
norm_f(
|
|
557
|
+
Conv2d(
|
|
558
|
+
1,
|
|
559
|
+
32,
|
|
560
|
+
(kernel_size, 1),
|
|
561
|
+
(stride, 1),
|
|
562
|
+
padding=(get_padding(kernel_size, 1), 0),
|
|
563
|
+
)
|
|
564
|
+
),
|
|
565
|
+
norm_f(
|
|
566
|
+
Conv2d(
|
|
567
|
+
32,
|
|
568
|
+
128,
|
|
569
|
+
(kernel_size, 1),
|
|
570
|
+
(stride, 1),
|
|
571
|
+
padding=(get_padding(kernel_size, 1), 0),
|
|
572
|
+
)
|
|
573
|
+
),
|
|
574
|
+
norm_f(
|
|
575
|
+
Conv2d(
|
|
576
|
+
128,
|
|
577
|
+
512,
|
|
578
|
+
(kernel_size, 1),
|
|
579
|
+
(stride, 1),
|
|
580
|
+
padding=(get_padding(kernel_size, 1), 0),
|
|
581
|
+
)
|
|
582
|
+
),
|
|
583
|
+
norm_f(
|
|
584
|
+
Conv2d(
|
|
585
|
+
512,
|
|
586
|
+
1024,
|
|
587
|
+
(kernel_size, 1),
|
|
588
|
+
(stride, 1),
|
|
589
|
+
padding=(get_padding(kernel_size, 1), 0),
|
|
590
|
+
)
|
|
591
|
+
),
|
|
592
|
+
norm_f(
|
|
593
|
+
Conv2d(
|
|
594
|
+
1024,
|
|
595
|
+
1024,
|
|
596
|
+
(kernel_size, 1),
|
|
597
|
+
1,
|
|
598
|
+
padding=(get_padding(kernel_size, 1), 0),
|
|
599
|
+
)
|
|
600
|
+
),
|
|
601
|
+
]
|
|
602
|
+
)
|
|
603
|
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
604
|
+
|
|
605
|
+
def forward(self, x):
|
|
606
|
+
fmap = []
|
|
607
|
+
|
|
608
|
+
# 1d to 2d
|
|
609
|
+
b, c, t = x.shape
|
|
610
|
+
if t % self.period != 0: # pad first
|
|
611
|
+
n_pad = self.period - (t % self.period)
|
|
612
|
+
x = F.pad(x, (0, n_pad), "reflect")
|
|
613
|
+
t = t + n_pad
|
|
614
|
+
x = x.view(b, c, t // self.period, self.period)
|
|
615
|
+
|
|
616
|
+
for layer in self.convs:
|
|
617
|
+
x = layer(x)
|
|
618
|
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
619
|
+
fmap.append(x)
|
|
620
|
+
x = self.conv_post(x)
|
|
621
|
+
fmap.append(x)
|
|
622
|
+
x = torch.flatten(x, 1, -1)
|
|
623
|
+
|
|
624
|
+
return x, fmap
|
|
625
|
+
|
|
626
|
+
|
|
627
|
+
class DiscriminatorS(torch.nn.Module):
|
|
628
|
+
def __init__(self, use_spectral_norm=False):
|
|
629
|
+
super(DiscriminatorS, self).__init__()
|
|
630
|
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
|
631
|
+
self.convs = nn.ModuleList(
|
|
632
|
+
[
|
|
633
|
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
|
634
|
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
635
|
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
|
636
|
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
|
637
|
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
|
638
|
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
|
639
|
+
]
|
|
640
|
+
)
|
|
641
|
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
|
642
|
+
|
|
643
|
+
def forward(self, x):
|
|
644
|
+
fmap = []
|
|
645
|
+
|
|
646
|
+
for layer in self.convs:
|
|
647
|
+
x = layer(x)
|
|
648
|
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
649
|
+
fmap.append(x)
|
|
650
|
+
x = self.conv_post(x)
|
|
651
|
+
fmap.append(x)
|
|
652
|
+
x = torch.flatten(x, 1, -1)
|
|
653
|
+
|
|
654
|
+
return x, fmap
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
658
|
+
def __init__(self, use_spectral_norm=False):
|
|
659
|
+
super(MultiPeriodDiscriminator, self).__init__()
|
|
660
|
+
periods = [2, 3, 5, 7, 11]
|
|
661
|
+
|
|
662
|
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
|
663
|
+
discs = discs + [
|
|
664
|
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
|
665
|
+
]
|
|
666
|
+
self.discriminators = nn.ModuleList(discs)
|
|
667
|
+
|
|
668
|
+
def forward(self, y, y_hat):
|
|
669
|
+
y_d_rs = []
|
|
670
|
+
y_d_gs = []
|
|
671
|
+
fmap_rs = []
|
|
672
|
+
fmap_gs = []
|
|
673
|
+
for i, d in enumerate(self.discriminators):
|
|
674
|
+
y_d_r, fmap_r = d(y)
|
|
675
|
+
y_d_g, fmap_g = d(y_hat)
|
|
676
|
+
y_d_rs.append(y_d_r)
|
|
677
|
+
y_d_gs.append(y_d_g)
|
|
678
|
+
fmap_rs.append(fmap_r)
|
|
679
|
+
fmap_gs.append(fmap_g)
|
|
680
|
+
|
|
681
|
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
682
|
+
|
|
683
|
+
|
|
684
|
+
class ReferenceEncoder(nn.Module):
|
|
685
|
+
"""
|
|
686
|
+
inputs --- [N, Ty/r, n_mels*r] mels
|
|
687
|
+
outputs --- [N, ref_enc_gru_size]
|
|
688
|
+
"""
|
|
689
|
+
|
|
690
|
+
def __init__(self, spec_channels, gin_channels=0, layernorm=False):
|
|
691
|
+
super().__init__()
|
|
692
|
+
self.spec_channels = spec_channels
|
|
693
|
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
|
694
|
+
K = len(ref_enc_filters)
|
|
695
|
+
filters = [1] + ref_enc_filters
|
|
696
|
+
convs = [
|
|
697
|
+
weight_norm(
|
|
698
|
+
nn.Conv2d(
|
|
699
|
+
in_channels=filters[i],
|
|
700
|
+
out_channels=filters[i + 1],
|
|
701
|
+
kernel_size=(3, 3),
|
|
702
|
+
stride=(2, 2),
|
|
703
|
+
padding=(1, 1),
|
|
704
|
+
)
|
|
705
|
+
)
|
|
706
|
+
for i in range(K)
|
|
707
|
+
]
|
|
708
|
+
self.convs = nn.ModuleList(convs)
|
|
709
|
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
|
710
|
+
|
|
711
|
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
|
712
|
+
self.gru = nn.GRU(
|
|
713
|
+
input_size=ref_enc_filters[-1] * out_channels,
|
|
714
|
+
hidden_size=256 // 2,
|
|
715
|
+
batch_first=True,
|
|
716
|
+
)
|
|
717
|
+
self.proj = nn.Linear(128, gin_channels)
|
|
718
|
+
if layernorm:
|
|
719
|
+
self.layernorm = nn.LayerNorm(self.spec_channels)
|
|
720
|
+
print('[Ref Enc]: using layer norm')
|
|
721
|
+
else:
|
|
722
|
+
self.layernorm = None
|
|
723
|
+
|
|
724
|
+
def forward(self, inputs, mask=None):
|
|
725
|
+
N = inputs.size(0)
|
|
726
|
+
|
|
727
|
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
|
728
|
+
if self.layernorm is not None:
|
|
729
|
+
out = self.layernorm(out)
|
|
730
|
+
|
|
731
|
+
for conv in self.convs:
|
|
732
|
+
out = conv(out)
|
|
733
|
+
# out = wn(out)
|
|
734
|
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
|
735
|
+
|
|
736
|
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
|
737
|
+
T = out.size(1)
|
|
738
|
+
N = out.size(0)
|
|
739
|
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
|
740
|
+
|
|
741
|
+
self.gru.flatten_parameters()
|
|
742
|
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
|
743
|
+
|
|
744
|
+
return self.proj(out.squeeze(0))
|
|
745
|
+
|
|
746
|
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
|
747
|
+
for i in range(n_convs):
|
|
748
|
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
|
749
|
+
return L
|
|
750
|
+
|
|
751
|
+
|
|
752
|
+
class SynthesizerTrn(nn.Module):
|
|
753
|
+
"""
|
|
754
|
+
Synthesizer for Training
|
|
755
|
+
"""
|
|
756
|
+
|
|
757
|
+
def __init__(
|
|
758
|
+
self,
|
|
759
|
+
n_vocab,
|
|
760
|
+
spec_channels,
|
|
761
|
+
segment_size,
|
|
762
|
+
inter_channels,
|
|
763
|
+
hidden_channels,
|
|
764
|
+
filter_channels,
|
|
765
|
+
n_heads,
|
|
766
|
+
n_layers,
|
|
767
|
+
kernel_size,
|
|
768
|
+
p_dropout,
|
|
769
|
+
resblock,
|
|
770
|
+
resblock_kernel_sizes,
|
|
771
|
+
resblock_dilation_sizes,
|
|
772
|
+
upsample_rates,
|
|
773
|
+
upsample_initial_channel,
|
|
774
|
+
upsample_kernel_sizes,
|
|
775
|
+
n_speakers=256,
|
|
776
|
+
gin_channels=256,
|
|
777
|
+
use_sdp=True,
|
|
778
|
+
n_flow_layer=4,
|
|
779
|
+
n_layers_trans_flow=6,
|
|
780
|
+
flow_share_parameter=False,
|
|
781
|
+
use_transformer_flow=True,
|
|
782
|
+
use_vc=False,
|
|
783
|
+
num_languages=None,
|
|
784
|
+
num_tones=None,
|
|
785
|
+
norm_refenc=False,
|
|
786
|
+
**kwargs
|
|
787
|
+
):
|
|
788
|
+
super().__init__()
|
|
789
|
+
self.n_vocab = n_vocab
|
|
790
|
+
self.spec_channels = spec_channels
|
|
791
|
+
self.inter_channels = inter_channels
|
|
792
|
+
self.hidden_channels = hidden_channels
|
|
793
|
+
self.filter_channels = filter_channels
|
|
794
|
+
self.n_heads = n_heads
|
|
795
|
+
self.n_layers = n_layers
|
|
796
|
+
self.kernel_size = kernel_size
|
|
797
|
+
self.p_dropout = p_dropout
|
|
798
|
+
self.resblock = resblock
|
|
799
|
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
800
|
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
801
|
+
self.upsample_rates = upsample_rates
|
|
802
|
+
self.upsample_initial_channel = upsample_initial_channel
|
|
803
|
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
804
|
+
self.segment_size = segment_size
|
|
805
|
+
self.n_speakers = n_speakers
|
|
806
|
+
self.gin_channels = gin_channels
|
|
807
|
+
self.n_layers_trans_flow = n_layers_trans_flow
|
|
808
|
+
self.use_spk_conditioned_encoder = kwargs.get(
|
|
809
|
+
"use_spk_conditioned_encoder", True
|
|
810
|
+
)
|
|
811
|
+
self.use_sdp = use_sdp
|
|
812
|
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
|
813
|
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
|
814
|
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
|
815
|
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
|
816
|
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
|
817
|
+
self.enc_gin_channels = gin_channels
|
|
818
|
+
else:
|
|
819
|
+
self.enc_gin_channels = 0
|
|
820
|
+
self.enc_p = TextEncoder(
|
|
821
|
+
n_vocab,
|
|
822
|
+
inter_channels,
|
|
823
|
+
hidden_channels,
|
|
824
|
+
filter_channels,
|
|
825
|
+
n_heads,
|
|
826
|
+
n_layers,
|
|
827
|
+
kernel_size,
|
|
828
|
+
p_dropout,
|
|
829
|
+
gin_channels=self.enc_gin_channels,
|
|
830
|
+
num_languages=num_languages,
|
|
831
|
+
num_tones=num_tones,
|
|
832
|
+
)
|
|
833
|
+
self.dec = Generator(
|
|
834
|
+
inter_channels,
|
|
835
|
+
resblock,
|
|
836
|
+
resblock_kernel_sizes,
|
|
837
|
+
resblock_dilation_sizes,
|
|
838
|
+
upsample_rates,
|
|
839
|
+
upsample_initial_channel,
|
|
840
|
+
upsample_kernel_sizes,
|
|
841
|
+
gin_channels=gin_channels,
|
|
842
|
+
)
|
|
843
|
+
self.enc_q = PosteriorEncoder(
|
|
844
|
+
spec_channels,
|
|
845
|
+
inter_channels,
|
|
846
|
+
hidden_channels,
|
|
847
|
+
5,
|
|
848
|
+
1,
|
|
849
|
+
16,
|
|
850
|
+
gin_channels=gin_channels,
|
|
851
|
+
)
|
|
852
|
+
if use_transformer_flow:
|
|
853
|
+
self.flow = TransformerCouplingBlock(
|
|
854
|
+
inter_channels,
|
|
855
|
+
hidden_channels,
|
|
856
|
+
filter_channels,
|
|
857
|
+
n_heads,
|
|
858
|
+
n_layers_trans_flow,
|
|
859
|
+
5,
|
|
860
|
+
p_dropout,
|
|
861
|
+
n_flow_layer,
|
|
862
|
+
gin_channels=gin_channels,
|
|
863
|
+
share_parameter=flow_share_parameter,
|
|
864
|
+
)
|
|
865
|
+
else:
|
|
866
|
+
self.flow = ResidualCouplingBlock(
|
|
867
|
+
inter_channels,
|
|
868
|
+
hidden_channels,
|
|
869
|
+
5,
|
|
870
|
+
1,
|
|
871
|
+
n_flow_layer,
|
|
872
|
+
gin_channels=gin_channels,
|
|
873
|
+
)
|
|
874
|
+
self.sdp = StochasticDurationPredictor(
|
|
875
|
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
|
876
|
+
)
|
|
877
|
+
self.dp = DurationPredictor(
|
|
878
|
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
|
879
|
+
)
|
|
880
|
+
|
|
881
|
+
if n_speakers > 0:
|
|
882
|
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
|
883
|
+
else:
|
|
884
|
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels, layernorm=norm_refenc)
|
|
885
|
+
self.use_vc = use_vc
|
|
886
|
+
|
|
887
|
+
|
|
888
|
+
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
|
889
|
+
if self.n_speakers > 0:
|
|
890
|
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
891
|
+
else:
|
|
892
|
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
|
893
|
+
if self.use_vc:
|
|
894
|
+
g_p = None
|
|
895
|
+
else:
|
|
896
|
+
g_p = g
|
|
897
|
+
x, m_p, logs_p, x_mask = self.enc_p(
|
|
898
|
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
|
899
|
+
)
|
|
900
|
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
|
901
|
+
z_p = self.flow(z, y_mask, g=g)
|
|
902
|
+
|
|
903
|
+
with torch.no_grad():
|
|
904
|
+
# negative cross-entropy
|
|
905
|
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
|
906
|
+
neg_cent1 = torch.sum(
|
|
907
|
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
|
908
|
+
) # [b, 1, t_s]
|
|
909
|
+
neg_cent2 = torch.matmul(
|
|
910
|
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
|
911
|
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
|
912
|
+
neg_cent3 = torch.matmul(
|
|
913
|
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
|
914
|
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
|
915
|
+
neg_cent4 = torch.sum(
|
|
916
|
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
|
917
|
+
) # [b, 1, t_s]
|
|
918
|
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
|
919
|
+
if self.use_noise_scaled_mas:
|
|
920
|
+
epsilon = (
|
|
921
|
+
torch.std(neg_cent)
|
|
922
|
+
* torch.randn_like(neg_cent)
|
|
923
|
+
* self.current_mas_noise_scale
|
|
924
|
+
)
|
|
925
|
+
neg_cent = neg_cent + epsilon
|
|
926
|
+
|
|
927
|
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
928
|
+
attn = (
|
|
929
|
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
|
930
|
+
.unsqueeze(1)
|
|
931
|
+
.detach()
|
|
932
|
+
)
|
|
933
|
+
|
|
934
|
+
w = attn.sum(2)
|
|
935
|
+
|
|
936
|
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
|
937
|
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
|
938
|
+
|
|
939
|
+
logw_ = torch.log(w + 1e-6) * x_mask
|
|
940
|
+
logw = self.dp(x, x_mask, g=g)
|
|
941
|
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
|
942
|
+
x_mask
|
|
943
|
+
) # for averaging
|
|
944
|
+
|
|
945
|
+
l_length = l_length_dp + l_length_sdp
|
|
946
|
+
|
|
947
|
+
# expand prior
|
|
948
|
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
|
949
|
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
|
950
|
+
|
|
951
|
+
z_slice, ids_slice = commons.rand_slice_segments(
|
|
952
|
+
z, y_lengths, self.segment_size
|
|
953
|
+
)
|
|
954
|
+
o = self.dec(z_slice, g=g)
|
|
955
|
+
return (
|
|
956
|
+
o,
|
|
957
|
+
l_length,
|
|
958
|
+
attn,
|
|
959
|
+
ids_slice,
|
|
960
|
+
x_mask,
|
|
961
|
+
y_mask,
|
|
962
|
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
963
|
+
(x, logw, logw_),
|
|
964
|
+
)
|
|
965
|
+
|
|
966
|
+
def infer(
|
|
967
|
+
self,
|
|
968
|
+
x,
|
|
969
|
+
x_lengths,
|
|
970
|
+
sid,
|
|
971
|
+
tone,
|
|
972
|
+
language,
|
|
973
|
+
bert,
|
|
974
|
+
ja_bert,
|
|
975
|
+
noise_scale=0.667,
|
|
976
|
+
length_scale=1,
|
|
977
|
+
noise_scale_w=0.8,
|
|
978
|
+
max_len=None,
|
|
979
|
+
sdp_ratio=0,
|
|
980
|
+
y=None,
|
|
981
|
+
g=None,
|
|
982
|
+
):
|
|
983
|
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
|
984
|
+
# g = self.gst(y)
|
|
985
|
+
if g is None:
|
|
986
|
+
if self.n_speakers > 0:
|
|
987
|
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
|
988
|
+
else:
|
|
989
|
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
|
990
|
+
if self.use_vc:
|
|
991
|
+
g_p = None
|
|
992
|
+
else:
|
|
993
|
+
g_p = g
|
|
994
|
+
x, m_p, logs_p, x_mask = self.enc_p(
|
|
995
|
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
|
996
|
+
)
|
|
997
|
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
|
998
|
+
sdp_ratio
|
|
999
|
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
|
1000
|
+
w = torch.exp(logw) * x_mask * length_scale
|
|
1001
|
+
|
|
1002
|
+
w_ceil = torch.ceil(w)
|
|
1003
|
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
|
1004
|
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
|
1005
|
+
x_mask.dtype
|
|
1006
|
+
)
|
|
1007
|
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
1008
|
+
attn = commons.generate_path(w_ceil, attn_mask)
|
|
1009
|
+
|
|
1010
|
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
|
1011
|
+
1, 2
|
|
1012
|
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
|
1013
|
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
|
1014
|
+
1, 2
|
|
1015
|
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
|
1016
|
+
|
|
1017
|
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
|
1018
|
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
|
1019
|
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
|
1020
|
+
# print('max/min of o:', o.max(), o.min())
|
|
1021
|
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
|
1022
|
+
|
|
1023
|
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
|
1024
|
+
g_src = sid_src
|
|
1025
|
+
g_tgt = sid_tgt
|
|
1026
|
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
|
1027
|
+
z_p = self.flow(z, y_mask, g=g_src)
|
|
1028
|
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
|
1029
|
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
|
1030
|
+
return o_hat, y_mask, (z, z_p, z_hat)
|