xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -15,9 +15,18 @@ import torch._dynamo.config
|
|
|
15
15
|
import torch._inductor.config
|
|
16
16
|
from loguru import logger
|
|
17
17
|
from tqdm import tqdm
|
|
18
|
-
|
|
19
|
-
|
|
18
|
+
from transformers import AutoTokenizer
|
|
19
|
+
|
|
20
|
+
from fish_speech.conversation import (
|
|
21
|
+
CODEBOOK_PAD_TOKEN_ID,
|
|
22
|
+
Conversation,
|
|
23
|
+
Message,
|
|
24
|
+
TextPart,
|
|
25
|
+
VQPart,
|
|
26
|
+
)
|
|
27
|
+
from fish_speech.models.text2semantic.llama import BaseModelArgs
|
|
20
28
|
from fish_speech.text import clean_text, split_text
|
|
29
|
+
from fish_speech.tokenizer import IM_END_TOKEN, FishTokenizer
|
|
21
30
|
|
|
22
31
|
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
23
32
|
torch._inductor.config.coordinate_descent_tuning = True
|
|
@@ -28,6 +37,8 @@ if hasattr(torch._inductor.config, "fx_graph_cache"):
|
|
|
28
37
|
torch._inductor.config.fx_graph_cache = True
|
|
29
38
|
|
|
30
39
|
|
|
40
|
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
41
|
+
|
|
31
42
|
from fish_speech.models.text2semantic.llama import (
|
|
32
43
|
BaseTransformer,
|
|
33
44
|
DualARTransformer,
|
|
@@ -74,6 +85,45 @@ def logits_to_probs(
|
|
|
74
85
|
return probs
|
|
75
86
|
|
|
76
87
|
|
|
88
|
+
def multinomial_sample_one_no_sync_agent(
|
|
89
|
+
probs_sort,
|
|
90
|
+
): # Does multinomial sampling without a cuda synchronization
|
|
91
|
+
q = torch.empty_like(probs_sort).exponential_(1)
|
|
92
|
+
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def logits_to_probs_agent(
|
|
96
|
+
logits,
|
|
97
|
+
previous_tokens: Optional[torch.Tensor] = None,
|
|
98
|
+
temperature: torch.Tensor = 1.0,
|
|
99
|
+
top_p: torch.Tensor = 1.0,
|
|
100
|
+
repetition_penalty: torch.Tensor = 1.0,
|
|
101
|
+
) -> torch.Tensor:
|
|
102
|
+
# Apply repetition penalty
|
|
103
|
+
if previous_tokens is not None:
|
|
104
|
+
previous_tokens = previous_tokens.long()
|
|
105
|
+
score = torch.gather(logits, dim=-1, index=previous_tokens)
|
|
106
|
+
score = torch.where(
|
|
107
|
+
score < 0, score * repetition_penalty, score / repetition_penalty
|
|
108
|
+
)
|
|
109
|
+
logits.scatter_(dim=-1, index=previous_tokens, src=score)
|
|
110
|
+
|
|
111
|
+
# Apply top-p sampling
|
|
112
|
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
113
|
+
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
|
114
|
+
sorted_indices_to_remove = cum_probs > top_p
|
|
115
|
+
sorted_indices_to_remove[..., 0] = False # keep at least one option
|
|
116
|
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
|
117
|
+
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
|
|
118
|
+
)
|
|
119
|
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
|
120
|
+
|
|
121
|
+
logits = logits / max(temperature, 1e-5)
|
|
122
|
+
|
|
123
|
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
124
|
+
return probs
|
|
125
|
+
|
|
126
|
+
|
|
77
127
|
def sample(
|
|
78
128
|
logits,
|
|
79
129
|
previous_tokens: Optional[torch.Tensor] = None,
|
|
@@ -86,38 +136,161 @@ def sample(
|
|
|
86
136
|
return idx_next, probs
|
|
87
137
|
|
|
88
138
|
|
|
89
|
-
def
|
|
139
|
+
def sample_agent(
|
|
140
|
+
logits,
|
|
141
|
+
previous_tokens: Optional[torch.Tensor] = None,
|
|
142
|
+
**sampling_kwargs,
|
|
143
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
144
|
+
probs = logits_to_probs_agent(
|
|
145
|
+
logits=logits[:, -1], previous_tokens=previous_tokens, **sampling_kwargs
|
|
146
|
+
)
|
|
147
|
+
idx_next = multinomial_sample_one_no_sync_agent(probs)
|
|
148
|
+
return idx_next, probs
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def decode_one_token_ar_agent(
|
|
90
152
|
model: DualARTransformer,
|
|
91
153
|
x: torch.Tensor,
|
|
92
154
|
input_pos: torch.Tensor,
|
|
155
|
+
semantic_ids: list,
|
|
93
156
|
previous_tokens: torch.Tensor = None,
|
|
94
157
|
**sampling_kwargs,
|
|
95
158
|
) -> torch.Tensor:
|
|
159
|
+
# print(x, input_pos)
|
|
96
160
|
x = model.forward_generate(x, input_pos)
|
|
161
|
+
logits = x.logits # [:, -1:]
|
|
162
|
+
hidden_states = x.hidden_states # [:, -1:]
|
|
97
163
|
|
|
98
164
|
sampling_kwargs_main = sampling_kwargs.copy()
|
|
99
165
|
sampling_kwargs_main["temperature"] = 0.1
|
|
100
166
|
sampling_kwargs_main["top_p"] = 0.1
|
|
101
167
|
sampling_kwargs_main["repetition_penalty"] = 1.0
|
|
102
168
|
|
|
169
|
+
codebooks = [
|
|
170
|
+
sample_agent(
|
|
171
|
+
logits,
|
|
172
|
+
previous_tokens=None, # Disable repetition penalty for the token codebook
|
|
173
|
+
**sampling_kwargs_main,
|
|
174
|
+
)[0]
|
|
175
|
+
]
|
|
176
|
+
|
|
177
|
+
# Cleanup the cache
|
|
178
|
+
for layer in model.fast_layers:
|
|
179
|
+
layer.attention.kv_cache.k_cache.fill_(0)
|
|
180
|
+
layer.attention.kv_cache.v_cache.fill_(0)
|
|
181
|
+
|
|
182
|
+
for codebook_idx in range(model.config.num_codebooks):
|
|
183
|
+
input_pos = torch.tensor(
|
|
184
|
+
[codebook_idx], device=hidden_states.device, dtype=torch.long
|
|
185
|
+
)
|
|
186
|
+
logits = model.forward_generate_fast(hidden_states, input_pos)
|
|
187
|
+
a = sample_agent(
|
|
188
|
+
logits,
|
|
189
|
+
previous_tokens=(
|
|
190
|
+
previous_tokens[:, codebook_idx + 1]
|
|
191
|
+
if previous_tokens is not None
|
|
192
|
+
else None
|
|
193
|
+
),
|
|
194
|
+
**sampling_kwargs,
|
|
195
|
+
)[0]
|
|
196
|
+
hidden_states = model.fast_embeddings(a)
|
|
197
|
+
codebooks.append(a)
|
|
198
|
+
|
|
199
|
+
codebooks = torch.stack(codebooks, dim=1)
|
|
200
|
+
semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device)
|
|
201
|
+
codebooks[:, 1:, :] = torch.masked_fill(
|
|
202
|
+
codebooks[:, 1:, :],
|
|
203
|
+
~torch.isin(codebooks[:, :1, :], semantic_ids_tensor),
|
|
204
|
+
CODEBOOK_PAD_TOKEN_ID,
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
return codebooks
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
def decode_one_token_naive_agent(
|
|
211
|
+
model: NaiveTransformer,
|
|
212
|
+
x: torch.Tensor,
|
|
213
|
+
input_pos: torch.Tensor,
|
|
214
|
+
semantic_ids: list,
|
|
215
|
+
previous_tokens: torch.Tensor = None,
|
|
216
|
+
**sampling_kwargs,
|
|
217
|
+
) -> torch.Tensor:
|
|
218
|
+
x = model.forward_generate(x, input_pos)
|
|
219
|
+
|
|
103
220
|
codebooks = [
|
|
104
221
|
sample(
|
|
105
|
-
x.
|
|
222
|
+
x.token_logits,
|
|
106
223
|
previous_tokens=None, # Disable repetition penalty for the token codebook
|
|
224
|
+
**sampling_kwargs,
|
|
225
|
+
)[0]
|
|
226
|
+
]
|
|
227
|
+
|
|
228
|
+
for i in range(model.config.num_codebooks):
|
|
229
|
+
codebooks.append(
|
|
230
|
+
sample_agent(
|
|
231
|
+
x.codebook_logits[:, :, i],
|
|
232
|
+
previous_tokens=(
|
|
233
|
+
previous_tokens[:, i + 1] if previous_tokens is not None else None
|
|
234
|
+
),
|
|
235
|
+
**sampling_kwargs,
|
|
236
|
+
)[0]
|
|
237
|
+
)
|
|
238
|
+
|
|
239
|
+
codebooks = torch.stack(codebooks, dim=1)
|
|
240
|
+
semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device)
|
|
241
|
+
codebooks[:, 1:, :] = torch.masked_fill(
|
|
242
|
+
codebooks[:, 1:, :],
|
|
243
|
+
~torch.isin(codebooks[:, :1, :], semantic_ids_tensor),
|
|
244
|
+
CODEBOOK_PAD_TOKEN_ID,
|
|
245
|
+
)
|
|
246
|
+
|
|
247
|
+
return codebooks
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
def decode_one_token_ar(
|
|
251
|
+
model: DualARTransformer,
|
|
252
|
+
x: torch.Tensor,
|
|
253
|
+
input_pos: torch.Tensor,
|
|
254
|
+
semantic_ids: list,
|
|
255
|
+
previous_tokens: torch.Tensor = None,
|
|
256
|
+
**sampling_kwargs,
|
|
257
|
+
) -> torch.Tensor:
|
|
258
|
+
x = model.forward_generate(x, input_pos)
|
|
259
|
+
|
|
260
|
+
sampling_kwargs_main = sampling_kwargs.copy()
|
|
261
|
+
# sampling_kwargs_main["temperature"] = 0.1
|
|
262
|
+
# sampling_kwargs_main["top_p"] = 0.1
|
|
263
|
+
# sampling_kwargs_main["repetition_penalty"] = 1.0
|
|
264
|
+
|
|
265
|
+
codebooks = [
|
|
266
|
+
sample(
|
|
267
|
+
x.logits,
|
|
268
|
+
previous_tokens=(
|
|
269
|
+
previous_tokens[0] if previous_tokens is not None else None
|
|
270
|
+
), # Disable repetition penalty for the token codebook
|
|
107
271
|
**sampling_kwargs_main,
|
|
108
272
|
)[0]
|
|
109
273
|
]
|
|
110
274
|
|
|
111
|
-
|
|
275
|
+
hidden_states = x.hidden_states
|
|
112
276
|
|
|
113
277
|
# Cleanup the cache
|
|
114
278
|
for layer in model.fast_layers:
|
|
115
279
|
layer.attention.kv_cache.k_cache.fill_(0)
|
|
116
280
|
layer.attention.kv_cache.v_cache.fill_(0)
|
|
117
281
|
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
282
|
+
input_pos = torch.tensor([0], device=hidden_states.device, dtype=torch.long)
|
|
283
|
+
model.forward_generate_fast(hidden_states, input_pos)
|
|
284
|
+
a = codebooks[0] - model.tokenizer.semantic_begin_id
|
|
285
|
+
a[a < 0] = 0
|
|
286
|
+
hidden_states = model.fast_embeddings(a)
|
|
287
|
+
codebooks.append(a)
|
|
288
|
+
|
|
289
|
+
for codebook_idx in range(1, model.config.num_codebooks):
|
|
290
|
+
input_pos = torch.tensor(
|
|
291
|
+
[codebook_idx], device=hidden_states.device, dtype=torch.long
|
|
292
|
+
)
|
|
293
|
+
logits = model.forward_generate_fast(hidden_states, input_pos)
|
|
121
294
|
a = sample(
|
|
122
295
|
logits,
|
|
123
296
|
previous_tokens=(
|
|
@@ -127,10 +300,17 @@ def decode_one_token_ar(
|
|
|
127
300
|
),
|
|
128
301
|
**sampling_kwargs,
|
|
129
302
|
)[0]
|
|
130
|
-
|
|
303
|
+
hidden_states = model.fast_embeddings(a)
|
|
131
304
|
codebooks.append(a)
|
|
132
305
|
|
|
133
|
-
|
|
306
|
+
codebooks = torch.stack(codebooks, dim=0)
|
|
307
|
+
# semantic_ids_tensor = torch.tensor(semantic_ids, device=codebooks.device)
|
|
308
|
+
# codebooks[1:, :] = torch.masked_fill(
|
|
309
|
+
# codebooks[1:, :], ~torch.isin(codebooks[:1, :], semantic_ids_tensor), CODEBOOK_PAD_TOKEN_ID
|
|
310
|
+
# )
|
|
311
|
+
|
|
312
|
+
# print(codebooks)
|
|
313
|
+
return codebooks
|
|
134
314
|
|
|
135
315
|
|
|
136
316
|
def decode_one_token_naive(
|
|
@@ -174,7 +354,7 @@ def decode_n_tokens(
|
|
|
174
354
|
cur_token: torch.Tensor,
|
|
175
355
|
input_pos: torch.Tensor,
|
|
176
356
|
num_new_tokens: int,
|
|
177
|
-
|
|
357
|
+
semantic_ids: list,
|
|
178
358
|
decode_one_token=decode_one_token_naive,
|
|
179
359
|
**sampling_kwargs,
|
|
180
360
|
):
|
|
@@ -204,6 +384,7 @@ def decode_n_tokens(
|
|
|
204
384
|
x=cur_token,
|
|
205
385
|
input_pos=input_pos,
|
|
206
386
|
previous_tokens=window,
|
|
387
|
+
semantic_ids=semantic_ids,
|
|
207
388
|
**sampling_kwargs,
|
|
208
389
|
)
|
|
209
390
|
|
|
@@ -213,7 +394,7 @@ def decode_n_tokens(
|
|
|
213
394
|
model.config.num_codebooks + 1, -1
|
|
214
395
|
)
|
|
215
396
|
|
|
216
|
-
if cur_token[0, 0, -1] ==
|
|
397
|
+
if cur_token[0, 0, -1] == model.tokenizer.get_token_id(IM_END_TOKEN):
|
|
217
398
|
break
|
|
218
399
|
|
|
219
400
|
return previous_tokens[:, : i + 1]
|
|
@@ -226,7 +407,6 @@ def generate(
|
|
|
226
407
|
model: NaiveTransformer,
|
|
227
408
|
prompt: torch.Tensor,
|
|
228
409
|
max_new_tokens: int,
|
|
229
|
-
im_end_id: int = 4,
|
|
230
410
|
decode_one_token=decode_one_token_naive,
|
|
231
411
|
**sampling_kwargs,
|
|
232
412
|
) -> torch.Tensor:
|
|
@@ -236,12 +416,28 @@ def generate(
|
|
|
236
416
|
|
|
237
417
|
# create an empty tensor of the expected final shape and fill in the current tokens
|
|
238
418
|
T = prompt.size(1)
|
|
419
|
+
# semantic_id = model.tokenizer.convert_tokens_to_ids("<|semantic|>")
|
|
420
|
+
semantic_ids = [
|
|
421
|
+
model.tokenizer.get_token_id(f"<|semantic:{i}|>") for i in range(1024)
|
|
422
|
+
]
|
|
423
|
+
|
|
424
|
+
if max_new_tokens:
|
|
425
|
+
if T + max_new_tokens > model.config.max_seq_len:
|
|
426
|
+
max_new_tokens = model.config.max_seq_len - T
|
|
427
|
+
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
|
|
428
|
+
|
|
429
|
+
T_new = T + max_new_tokens
|
|
430
|
+
else:
|
|
431
|
+
T_new = model.config.max_seq_len
|
|
432
|
+
max_new_tokens = T_new - T
|
|
239
433
|
|
|
240
434
|
device, dtype = prompt.device, prompt.dtype
|
|
241
435
|
|
|
242
436
|
codebook_dim = 1 + model.config.num_codebooks
|
|
243
437
|
# create an empty tensor of the expected final shape and fill in the current tokens
|
|
244
|
-
empty = torch.empty(
|
|
438
|
+
empty = torch.empty(
|
|
439
|
+
(codebook_dim, model.config.max_seq_len), dtype=dtype, device=device
|
|
440
|
+
)
|
|
245
441
|
empty[:, :T] = prompt
|
|
246
442
|
seq = empty
|
|
247
443
|
input_pos = torch.arange(0, T, device=device)
|
|
@@ -254,7 +450,11 @@ def generate(
|
|
|
254
450
|
)
|
|
255
451
|
|
|
256
452
|
next_token = prefill_decode(
|
|
257
|
-
model,
|
|
453
|
+
model,
|
|
454
|
+
prompt.view(1, codebook_dim, -1),
|
|
455
|
+
input_pos,
|
|
456
|
+
semantic_ids=semantic_ids,
|
|
457
|
+
**sampling_kwargs,
|
|
258
458
|
)
|
|
259
459
|
seq[:, T : T + 1] = next_token
|
|
260
460
|
|
|
@@ -264,8 +464,8 @@ def generate(
|
|
|
264
464
|
next_token.view(1, codebook_dim, -1),
|
|
265
465
|
input_pos,
|
|
266
466
|
max_new_tokens - 1,
|
|
267
|
-
im_end_id=im_end_id,
|
|
268
467
|
decode_one_token=decode_one_token,
|
|
468
|
+
semantic_ids=semantic_ids,
|
|
269
469
|
**sampling_kwargs,
|
|
270
470
|
)
|
|
271
471
|
# x = torch.cat(generated_tokens, dim=1)
|
|
@@ -275,6 +475,142 @@ def generate(
|
|
|
275
475
|
return seq
|
|
276
476
|
|
|
277
477
|
|
|
478
|
+
def decode_n_tokens_agent(
|
|
479
|
+
model: NaiveTransformer,
|
|
480
|
+
cur_token: torch.Tensor,
|
|
481
|
+
input_pos: torch.Tensor,
|
|
482
|
+
num_new_tokens: int,
|
|
483
|
+
semantic_ids: list,
|
|
484
|
+
im_end_id: int = 4,
|
|
485
|
+
decode_one_token=decode_one_token_naive_agent,
|
|
486
|
+
early_stop_threshold: float = 0.6,
|
|
487
|
+
**sampling_kwargs,
|
|
488
|
+
):
|
|
489
|
+
batch_size = cur_token.size(0)
|
|
490
|
+
previous_tokens = torch.zeros(
|
|
491
|
+
(batch_size, model.config.num_codebooks + 1, model.config.max_seq_len),
|
|
492
|
+
dtype=torch.int,
|
|
493
|
+
device=cur_token.device,
|
|
494
|
+
)
|
|
495
|
+
finished = torch.zeros(batch_size, dtype=torch.bool, device=cur_token.device)
|
|
496
|
+
finished = finished | (cur_token[:, 0, -1] == im_end_id)
|
|
497
|
+
start_time = time.time()
|
|
498
|
+
|
|
499
|
+
for i in tqdm(range(num_new_tokens), desc="Decoding: ", total=num_new_tokens):
|
|
500
|
+
# We need to get windowed repeat penalty
|
|
501
|
+
win_size = 16
|
|
502
|
+
if i < win_size:
|
|
503
|
+
window = previous_tokens[:, :, :win_size]
|
|
504
|
+
else:
|
|
505
|
+
window = previous_tokens[:, :, i - win_size : i]
|
|
506
|
+
|
|
507
|
+
with sdpa_kernel(
|
|
508
|
+
SDPBackend.MATH
|
|
509
|
+
): # Actually better for Inductor to codegen attention here
|
|
510
|
+
next_token = decode_one_token(
|
|
511
|
+
model=model,
|
|
512
|
+
x=cur_token,
|
|
513
|
+
input_pos=input_pos,
|
|
514
|
+
previous_tokens=window,
|
|
515
|
+
semantic_ids=semantic_ids,
|
|
516
|
+
**sampling_kwargs,
|
|
517
|
+
)
|
|
518
|
+
|
|
519
|
+
input_pos += 1
|
|
520
|
+
cur_token = next_token.view(batch_size, model.config.num_codebooks + 1, -1)
|
|
521
|
+
previous_tokens[:, :, i : i + 1] = next_token.view(
|
|
522
|
+
batch_size, model.config.num_codebooks + 1, -1
|
|
523
|
+
)
|
|
524
|
+
|
|
525
|
+
yield cur_token.cpu()
|
|
526
|
+
|
|
527
|
+
finished = finished | (cur_token[:, 0, -1] == im_end_id)
|
|
528
|
+
if finished.all() or (
|
|
529
|
+
0 < early_stop_threshold < 1
|
|
530
|
+
and finished.sum() >= round(batch_size * early_stop_threshold)
|
|
531
|
+
):
|
|
532
|
+
break
|
|
533
|
+
|
|
534
|
+
total_time = time.time() - start_time
|
|
535
|
+
generated_tokens = i + 1
|
|
536
|
+
tokens_per_second = (generated_tokens / total_time) * batch_size
|
|
537
|
+
logger.info(
|
|
538
|
+
f"Decoded {generated_tokens} x {batch_size} tokens in {total_time:.2f}s ({tokens_per_second:.2f} tokens/s)"
|
|
539
|
+
)
|
|
540
|
+
|
|
541
|
+
|
|
542
|
+
@torch.no_grad()
|
|
543
|
+
@torch.inference_mode()
|
|
544
|
+
def generate_agent(
|
|
545
|
+
*,
|
|
546
|
+
model: BaseTransformer,
|
|
547
|
+
prompt: torch.Tensor,
|
|
548
|
+
max_new_tokens: int,
|
|
549
|
+
semantic_ids: list,
|
|
550
|
+
im_end_id: int = 4,
|
|
551
|
+
decode_one_token=decode_one_token_naive_agent,
|
|
552
|
+
num_samples: int = 1,
|
|
553
|
+
early_stop_threshold: float = 0.6,
|
|
554
|
+
**sampling_kwargs,
|
|
555
|
+
):
|
|
556
|
+
"""
|
|
557
|
+
Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
|
|
558
|
+
"""
|
|
559
|
+
|
|
560
|
+
# create an empty tensor of the expected final shape and fill in the current tokens
|
|
561
|
+
T = prompt.size(1)
|
|
562
|
+
prompt = prompt[None].repeat(num_samples, 1, 1)
|
|
563
|
+
|
|
564
|
+
if T >= model.config.max_seq_len:
|
|
565
|
+
raise ValueError(
|
|
566
|
+
f"Input sequence length {T} exceeds max_seq_len {model.config.max_seq_len}"
|
|
567
|
+
)
|
|
568
|
+
|
|
569
|
+
if max_new_tokens:
|
|
570
|
+
if T + max_new_tokens > model.config.max_seq_len:
|
|
571
|
+
max_new_tokens = model.config.max_seq_len - T
|
|
572
|
+
logger.info(f"Truncating max_new_tokens to {max_new_tokens}")
|
|
573
|
+
|
|
574
|
+
T_new = T + max_new_tokens
|
|
575
|
+
else:
|
|
576
|
+
T_new = model.config.max_seq_len
|
|
577
|
+
max_new_tokens = T_new - T
|
|
578
|
+
|
|
579
|
+
device, dtype = prompt.device, prompt.dtype
|
|
580
|
+
|
|
581
|
+
codebook_dim = 1 + model.config.num_codebooks
|
|
582
|
+
input_pos = torch.arange(0, T, device=device)
|
|
583
|
+
|
|
584
|
+
# Use non-accelerated version for now, to avoid compilation overhead
|
|
585
|
+
prefill_decode = (
|
|
586
|
+
decode_one_token_naive_agent
|
|
587
|
+
if isinstance(model, NaiveTransformer)
|
|
588
|
+
else decode_one_token_ar_agent
|
|
589
|
+
)
|
|
590
|
+
next_token = prefill_decode(
|
|
591
|
+
model,
|
|
592
|
+
prompt,
|
|
593
|
+
input_pos,
|
|
594
|
+
semantic_ids=semantic_ids,
|
|
595
|
+
**sampling_kwargs,
|
|
596
|
+
).view(num_samples, codebook_dim, -1)
|
|
597
|
+
yield next_token.cpu()
|
|
598
|
+
|
|
599
|
+
input_pos = torch.tensor([T], device=device, dtype=torch.int)
|
|
600
|
+
|
|
601
|
+
yield from decode_n_tokens_agent(
|
|
602
|
+
model,
|
|
603
|
+
next_token,
|
|
604
|
+
input_pos,
|
|
605
|
+
max_new_tokens - 1,
|
|
606
|
+
im_end_id=im_end_id,
|
|
607
|
+
semantic_ids=semantic_ids,
|
|
608
|
+
decode_one_token=decode_one_token,
|
|
609
|
+
early_stop_threshold=early_stop_threshold,
|
|
610
|
+
**sampling_kwargs,
|
|
611
|
+
)
|
|
612
|
+
|
|
613
|
+
|
|
278
614
|
def encode_tokens(
|
|
279
615
|
tokenizer,
|
|
280
616
|
string,
|
|
@@ -283,75 +619,77 @@ def encode_tokens(
|
|
|
283
619
|
num_codebooks=4,
|
|
284
620
|
):
|
|
285
621
|
string = clean_text(string)
|
|
286
|
-
string = f"<|im_start|>user\n{string}<|im_end|><|im_start|>assistant\n"
|
|
287
622
|
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
623
|
+
messages = []
|
|
624
|
+
messages.append(
|
|
625
|
+
Message(
|
|
626
|
+
role="user",
|
|
627
|
+
parts=[TextPart(text=string)],
|
|
628
|
+
cal_loss=False,
|
|
629
|
+
)
|
|
293
630
|
)
|
|
294
|
-
tokens = torch.tensor([new_tokens], dtype=torch.int, device=device)
|
|
295
631
|
|
|
296
|
-
|
|
297
|
-
|
|
298
|
-
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
|
|
632
|
+
if prompt_tokens is not None:
|
|
633
|
+
if prompt_tokens.ndim == 3:
|
|
634
|
+
assert (
|
|
635
|
+
prompt_tokens.shape[0] == 1
|
|
636
|
+
), "3D prompt tokens should have shape (1, num_codebooks, seq_len)"
|
|
637
|
+
prompt_tokens = prompt_tokens[0]
|
|
302
638
|
|
|
303
|
-
|
|
304
|
-
return prompt
|
|
639
|
+
assert prompt_tokens.ndim == 2, "Prompt tokens should be 2D tensor"
|
|
305
640
|
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
311
|
-
prompt_tokens = prompt_tokens[0]
|
|
641
|
+
if prompt_tokens.shape[0] > num_codebooks:
|
|
642
|
+
logger.warning(
|
|
643
|
+
f"Prompt tokens shape {prompt_tokens.shape} is larger than num_codebooks {num_codebooks}, getting first {num_codebooks} codebooks"
|
|
644
|
+
)
|
|
645
|
+
prompt_tokens = prompt_tokens[:num_codebooks]
|
|
312
646
|
|
|
313
|
-
|
|
314
|
-
data = prompt_tokens + 1
|
|
647
|
+
vq_part = VQPart(codes=prompt_tokens.to(device))
|
|
315
648
|
|
|
316
|
-
|
|
317
|
-
|
|
318
|
-
|
|
649
|
+
messages.append(
|
|
650
|
+
Message(
|
|
651
|
+
role="assistant",
|
|
652
|
+
parts=[TextPart(text="<|voice|>"), vq_part],
|
|
653
|
+
cal_loss=False,
|
|
654
|
+
)
|
|
655
|
+
)
|
|
656
|
+
else:
|
|
657
|
+
messages.append(
|
|
658
|
+
Message(
|
|
659
|
+
role="assistant",
|
|
660
|
+
parts=[TextPart(text="<|voice|>")],
|
|
661
|
+
cal_loss=False,
|
|
662
|
+
add_im_end=False,
|
|
663
|
+
)
|
|
319
664
|
)
|
|
320
|
-
data = data[:num_codebooks]
|
|
321
|
-
|
|
322
|
-
# Add pad token for each codebook
|
|
323
|
-
data = torch.cat(
|
|
324
|
-
(data, torch.zeros((data.size(0), 1), dtype=torch.int, device=device)),
|
|
325
|
-
dim=1,
|
|
326
|
-
)
|
|
327
665
|
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
666
|
+
conversation = Conversation(messages=messages)
|
|
667
|
+
# conversation.visualize(tokenizer)
|
|
668
|
+
encoded = conversation.encode_for_inference(
|
|
669
|
+
tokenizer=tokenizer,
|
|
670
|
+
num_codebooks=num_codebooks,
|
|
333
671
|
)
|
|
334
|
-
main_token_ids[0, -1] = end_token_id
|
|
335
|
-
|
|
336
|
-
data = torch.cat((main_token_ids, data), dim=0)
|
|
337
|
-
prompt = torch.cat((prompt, data), dim=1)
|
|
338
672
|
|
|
339
|
-
return
|
|
673
|
+
return encoded.to(device)
|
|
340
674
|
|
|
341
675
|
|
|
342
|
-
def load_model(checkpoint_path, device, precision, compile=False):
|
|
676
|
+
def load_model(checkpoint_path, device, precision, compile=False, is_agent=False):
|
|
343
677
|
model: Union[NaiveTransformer, DualARTransformer] = BaseTransformer.from_pretrained(
|
|
344
|
-
checkpoint_path, load_weights=True
|
|
678
|
+
checkpoint_path, load_weights=True, is_agent=is_agent
|
|
345
679
|
)
|
|
346
680
|
|
|
347
681
|
model = model.to(device=device, dtype=precision)
|
|
348
682
|
logger.info(f"Restored model from checkpoint")
|
|
349
683
|
|
|
350
684
|
if isinstance(model, DualARTransformer):
|
|
351
|
-
decode_one_token =
|
|
685
|
+
decode_one_token = (
|
|
686
|
+
decode_one_token_ar_agent if is_agent else decode_one_token_ar
|
|
687
|
+
)
|
|
352
688
|
logger.info("Using DualARTransformer")
|
|
353
689
|
else:
|
|
354
|
-
decode_one_token =
|
|
690
|
+
decode_one_token = (
|
|
691
|
+
decode_one_token_naive_agent if is_agent else decode_one_token_naive
|
|
692
|
+
)
|
|
355
693
|
logger.info("Using NaiveTransformer")
|
|
356
694
|
|
|
357
695
|
if compile:
|
|
@@ -406,11 +744,26 @@ def generate_long(
|
|
|
406
744
|
|
|
407
745
|
model_size = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
408
746
|
tokenizer = model.tokenizer
|
|
409
|
-
im_end_id = tokenizer.
|
|
747
|
+
im_end_id = tokenizer.get_token_id("<|im_end|>")
|
|
410
748
|
|
|
411
749
|
encoded = []
|
|
412
750
|
texts = split_text(text, chunk_length) if iterative_prompt else [text]
|
|
413
|
-
encoded_prompts = [
|
|
751
|
+
encoded_prompts = [
|
|
752
|
+
Conversation(
|
|
753
|
+
messages=[
|
|
754
|
+
Message(
|
|
755
|
+
role="system",
|
|
756
|
+
parts=[TextPart(text="Speak out the provided text.")],
|
|
757
|
+
cal_loss=False,
|
|
758
|
+
)
|
|
759
|
+
]
|
|
760
|
+
)
|
|
761
|
+
.encode_for_inference(
|
|
762
|
+
tokenizer=tokenizer,
|
|
763
|
+
num_codebooks=model.config.num_codebooks,
|
|
764
|
+
)
|
|
765
|
+
.to(device)
|
|
766
|
+
]
|
|
414
767
|
|
|
415
768
|
if use_prompt:
|
|
416
769
|
for idx, (t, c) in enumerate(zip(prompt_text, prompt_tokens)):
|
|
@@ -489,7 +842,6 @@ def generate_long(
|
|
|
489
842
|
model=model,
|
|
490
843
|
prompt=cat_encoded,
|
|
491
844
|
max_new_tokens=max_new_tokens,
|
|
492
|
-
im_end_id=im_end_id,
|
|
493
845
|
decode_one_token=decode_one_token,
|
|
494
846
|
temperature=temperature,
|
|
495
847
|
top_p=top_p,
|
|
@@ -519,12 +871,11 @@ def generate_long(
|
|
|
519
871
|
)
|
|
520
872
|
|
|
521
873
|
# Put the generated tokens
|
|
522
|
-
# since there is <im_end
|
|
523
|
-
codes = y[1:, prompt_length
|
|
524
|
-
codes = codes - 1
|
|
874
|
+
# since there is <im_end>, we remove last token
|
|
875
|
+
codes = y[1:, prompt_length + 1 :].clone()
|
|
525
876
|
assert (codes >= 0).all(), f"Negative code found"
|
|
526
877
|
|
|
527
|
-
decoded = y[:, prompt_length
|
|
878
|
+
decoded = y[:, prompt_length:].clone()
|
|
528
879
|
# But for global encoding, we should keep the <im_end> token
|
|
529
880
|
|
|
530
881
|
global_encoded.append(decoded)
|
|
@@ -563,7 +914,9 @@ def launch_thread_safe_queue(
|
|
|
563
914
|
)
|
|
564
915
|
with torch.device(device):
|
|
565
916
|
model.setup_caches(
|
|
566
|
-
max_batch_size=1,
|
|
917
|
+
max_batch_size=1,
|
|
918
|
+
max_seq_len=model.config.max_seq_len,
|
|
919
|
+
dtype=next(model.parameters()).dtype,
|
|
567
920
|
)
|
|
568
921
|
init_event.set()
|
|
569
922
|
|
|
@@ -591,6 +944,60 @@ def launch_thread_safe_queue(
|
|
|
591
944
|
return input_queue
|
|
592
945
|
|
|
593
946
|
|
|
947
|
+
def launch_thread_safe_queue_agent(
|
|
948
|
+
checkpoint_path,
|
|
949
|
+
device,
|
|
950
|
+
precision,
|
|
951
|
+
compile: bool = False,
|
|
952
|
+
):
|
|
953
|
+
input_queue = queue.Queue()
|
|
954
|
+
init_event = threading.Event()
|
|
955
|
+
|
|
956
|
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
|
|
957
|
+
config = BaseModelArgs.from_pretrained(checkpoint_path)
|
|
958
|
+
|
|
959
|
+
def worker():
|
|
960
|
+
model, decode_one_token = load_model(
|
|
961
|
+
checkpoint_path, device, precision, compile=compile, is_agent=True
|
|
962
|
+
)
|
|
963
|
+
|
|
964
|
+
with torch.device(device):
|
|
965
|
+
model.setup_caches(
|
|
966
|
+
max_batch_size=1,
|
|
967
|
+
max_seq_len=model.config.max_seq_len,
|
|
968
|
+
dtype=next(model.parameters()).dtype,
|
|
969
|
+
)
|
|
970
|
+
init_event.set()
|
|
971
|
+
|
|
972
|
+
while True:
|
|
973
|
+
item: GenerateRequest | None = input_queue.get()
|
|
974
|
+
if item is None:
|
|
975
|
+
break
|
|
976
|
+
|
|
977
|
+
kwargs = item.request
|
|
978
|
+
response_queue = item.response_queue
|
|
979
|
+
|
|
980
|
+
try:
|
|
981
|
+
for token in generate_agent(
|
|
982
|
+
model=model,
|
|
983
|
+
decode_one_token=decode_one_token,
|
|
984
|
+
**kwargs,
|
|
985
|
+
):
|
|
986
|
+
response_queue.put(token)
|
|
987
|
+
|
|
988
|
+
response_queue.put("stop")
|
|
989
|
+
except Exception as e:
|
|
990
|
+
import traceback
|
|
991
|
+
|
|
992
|
+
logger.exception(f"Error in worker: {traceback.format_exc()}")
|
|
993
|
+
response_queue.put("error")
|
|
994
|
+
|
|
995
|
+
threading.Thread(target=worker, daemon=True).start()
|
|
996
|
+
init_event.wait()
|
|
997
|
+
|
|
998
|
+
return input_queue, tokenizer, config
|
|
999
|
+
|
|
1000
|
+
|
|
594
1001
|
@click.command()
|
|
595
1002
|
@click.option(
|
|
596
1003
|
"--text",
|
|
@@ -650,7 +1057,12 @@ def main(
|
|
|
650
1057
|
model, decode_one_token = load_model(
|
|
651
1058
|
checkpoint_path, device, precision, compile=compile
|
|
652
1059
|
)
|
|
653
|
-
|
|
1060
|
+
with torch.device(device):
|
|
1061
|
+
model.setup_caches(
|
|
1062
|
+
max_batch_size=1,
|
|
1063
|
+
max_seq_len=model.config.max_seq_len,
|
|
1064
|
+
dtype=next(model.parameters()).dtype,
|
|
1065
|
+
)
|
|
654
1066
|
if torch.cuda.is_available():
|
|
655
1067
|
torch.cuda.synchronize()
|
|
656
1068
|
|