xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
data/example/wavs/000.wav|EN-default|EN|Well, there are always new trends and styles emerging in the fashion world, but I think some of the biggest trends at the moment include sustainability and ethical fashion, streetwear and athleisure, and oversized and deconstructed silhouettes.
|
|
2
|
+
data/example/wavs/001.wav|EN-default|EN|Many designers and brands are focusing on creating more environmentally-friendly and socially responsible clothing, while others are incorporating elements of sportswear and casual wear into their collections.
|
|
3
|
+
data/example/wavs/002.wav|EN-default|EN|And there's a growing interest in looser, more relaxed shapes and unconventional materials and finishes.
|
|
4
|
+
data/example/wavs/003.wav|EN-default|EN|That's really insightful.
|
|
5
|
+
data/example/wavs/004.wav|EN-default|EN|What do you think are some of the benefits of following fashion trends?
|
|
6
|
+
data/example/wavs/005.wav|EN-default|EN|Well, I think one of the main benefits of following fashion trends is that it can be a way to express your creativity, personality, and individuality.
|
|
7
|
+
data/example/wavs/006.wav|EN-default|EN|Fashion can be a powerful tool for self-expression and can help you feel more confident and comfortable in your own skin.
|
|
8
|
+
data/example/wavs/007.wav|EN-default|EN|Additionally, staying up-to-date with fashion trends can help you develop your own sense of style and learn how to put together outfits that make you look and feel great.
|
|
9
|
+
data/example/wavs/008.wav|EN-default|EN|That's a great point.
|
|
10
|
+
data/example/wavs/009.wav|EN-default|EN|Do you think it's important to stay on top of the latest fashion trends, or is it more important to focus on timeless style?
|
|
11
|
+
data/example/wavs/010.wav|EN-default|EN|I think it's really up to each individual to decide what approach to fashion works best for them.
|
|
12
|
+
data/example/wavs/011.wav|EN-default|EN|Some people prefer to stick with classic, timeless styles that never go out of fashion, while others enjoy experimenting with new and innovative trends.
|
|
13
|
+
data/example/wavs/012.wav|EN-default|EN|Ultimately, fashion is about personal expression and there's no right or wrong way to approach it.
|
|
14
|
+
data/example/wavs/013.wav|EN-default|EN|The most important thing is to wear what makes you feel good and confident.
|
|
15
|
+
data/example/wavs/014.wav|EN-default|EN|I completely agree.
|
|
16
|
+
data/example/wavs/015.wav|EN-default|EN|Some popular ones that come to mind are oversized blazers, statement sleeves, printed maxi dresses, and chunky sneakers.
|
|
17
|
+
data/example/wavs/016.wav|EN-default|EN|It's been really interesting chatting with you about fashion.
|
|
18
|
+
data/example/wavs/017.wav|EN-default|EN|That's a good point.
|
|
19
|
+
data/example/wavs/018.wav|EN-default|EN|What do you think are some current fashion trends that are popular right now?
|
|
20
|
+
data/example/wavs/019.wav|EN-default|EN|There are so many trends happening right now, it's hard to keep track of them all!
|
|
@@ -0,0 +1,413 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import random
|
|
3
|
+
import torch
|
|
4
|
+
import torch.utils.data
|
|
5
|
+
from tqdm import tqdm
|
|
6
|
+
from loguru import logger
|
|
7
|
+
import commons
|
|
8
|
+
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
|
9
|
+
from utils import load_filepaths_and_text
|
|
10
|
+
from utils import load_wav_to_torch_librosa as load_wav_to_torch
|
|
11
|
+
from text import cleaned_text_to_sequence, get_bert
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
"""Multi speaker version"""
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
18
|
+
"""
|
|
19
|
+
1) loads audio, speaker_id, text pairs
|
|
20
|
+
2) normalizes text and converts them to sequences of integers
|
|
21
|
+
3) computes spectrograms from audio files.
|
|
22
|
+
"""
|
|
23
|
+
|
|
24
|
+
def __init__(self, audiopaths_sid_text, hparams):
|
|
25
|
+
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
|
26
|
+
self.max_wav_value = hparams.max_wav_value
|
|
27
|
+
self.sampling_rate = hparams.sampling_rate
|
|
28
|
+
self.filter_length = hparams.filter_length
|
|
29
|
+
self.hop_length = hparams.hop_length
|
|
30
|
+
self.win_length = hparams.win_length
|
|
31
|
+
self.sampling_rate = hparams.sampling_rate
|
|
32
|
+
self.spk_map = hparams.spk2id
|
|
33
|
+
self.hparams = hparams
|
|
34
|
+
self.disable_bert = getattr(hparams, "disable_bert", False)
|
|
35
|
+
|
|
36
|
+
self.use_mel_spec_posterior = getattr(
|
|
37
|
+
hparams, "use_mel_posterior_encoder", False
|
|
38
|
+
)
|
|
39
|
+
if self.use_mel_spec_posterior:
|
|
40
|
+
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
|
41
|
+
|
|
42
|
+
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
|
43
|
+
|
|
44
|
+
self.add_blank = hparams.add_blank
|
|
45
|
+
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
46
|
+
self.max_text_len = getattr(hparams, "max_text_len", 300)
|
|
47
|
+
|
|
48
|
+
random.seed(1234)
|
|
49
|
+
random.shuffle(self.audiopaths_sid_text)
|
|
50
|
+
self._filter()
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def _filter(self):
|
|
54
|
+
"""
|
|
55
|
+
Filter text & store spec lengths
|
|
56
|
+
"""
|
|
57
|
+
# Store spectrogram lengths for Bucketing
|
|
58
|
+
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
|
59
|
+
# spec_length = wav_length // hop_length
|
|
60
|
+
|
|
61
|
+
audiopaths_sid_text_new = []
|
|
62
|
+
lengths = []
|
|
63
|
+
skipped = 0
|
|
64
|
+
logger.info("Init dataset...")
|
|
65
|
+
for item in tqdm(
|
|
66
|
+
self.audiopaths_sid_text
|
|
67
|
+
):
|
|
68
|
+
try:
|
|
69
|
+
_id, spk, language, text, phones, tone, word2ph = item
|
|
70
|
+
except:
|
|
71
|
+
print(item)
|
|
72
|
+
raise
|
|
73
|
+
audiopath = f"{_id}"
|
|
74
|
+
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
|
75
|
+
phones = phones.split(" ")
|
|
76
|
+
tone = [int(i) for i in tone.split(" ")]
|
|
77
|
+
word2ph = [int(i) for i in word2ph.split(" ")]
|
|
78
|
+
audiopaths_sid_text_new.append(
|
|
79
|
+
[audiopath, spk, language, text, phones, tone, word2ph]
|
|
80
|
+
)
|
|
81
|
+
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
|
82
|
+
else:
|
|
83
|
+
skipped += 1
|
|
84
|
+
logger.info(f'min: {min(lengths)}; max: {max(lengths)}' )
|
|
85
|
+
logger.info(
|
|
86
|
+
"skipped: "
|
|
87
|
+
+ str(skipped)
|
|
88
|
+
+ ", total: "
|
|
89
|
+
+ str(len(self.audiopaths_sid_text))
|
|
90
|
+
)
|
|
91
|
+
self.audiopaths_sid_text = audiopaths_sid_text_new
|
|
92
|
+
self.lengths = lengths
|
|
93
|
+
|
|
94
|
+
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
|
95
|
+
# separate filename, speaker_id and text
|
|
96
|
+
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
|
97
|
+
|
|
98
|
+
bert, ja_bert, phones, tone, language = self.get_text(
|
|
99
|
+
text, word2ph, phones, tone, language, audiopath
|
|
100
|
+
)
|
|
101
|
+
|
|
102
|
+
spec, wav = self.get_audio(audiopath)
|
|
103
|
+
sid = int(getattr(self.spk_map, sid, '0'))
|
|
104
|
+
sid = torch.LongTensor([sid])
|
|
105
|
+
return (phones, spec, wav, sid, tone, language, bert, ja_bert)
|
|
106
|
+
|
|
107
|
+
def get_audio(self, filename):
|
|
108
|
+
audio_norm, sampling_rate = load_wav_to_torch(filename, self.sampling_rate)
|
|
109
|
+
if sampling_rate != self.sampling_rate:
|
|
110
|
+
raise ValueError(
|
|
111
|
+
"{} {} SR doesn't match target {} SR".format(
|
|
112
|
+
filename, sampling_rate, self.sampling_rate
|
|
113
|
+
)
|
|
114
|
+
)
|
|
115
|
+
# NOTE: normalize has been achieved by torchaudio
|
|
116
|
+
# audio_norm = audio / self.max_wav_value
|
|
117
|
+
audio_norm = audio_norm.unsqueeze(0)
|
|
118
|
+
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
119
|
+
if self.use_mel_spec_posterior:
|
|
120
|
+
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
|
121
|
+
try:
|
|
122
|
+
spec = torch.load(spec_filename)
|
|
123
|
+
assert False
|
|
124
|
+
except:
|
|
125
|
+
if self.use_mel_spec_posterior:
|
|
126
|
+
spec = mel_spectrogram_torch(
|
|
127
|
+
audio_norm,
|
|
128
|
+
self.filter_length,
|
|
129
|
+
self.n_mel_channels,
|
|
130
|
+
self.sampling_rate,
|
|
131
|
+
self.hop_length,
|
|
132
|
+
self.win_length,
|
|
133
|
+
self.hparams.mel_fmin,
|
|
134
|
+
self.hparams.mel_fmax,
|
|
135
|
+
center=False,
|
|
136
|
+
)
|
|
137
|
+
else:
|
|
138
|
+
spec = spectrogram_torch(
|
|
139
|
+
audio_norm,
|
|
140
|
+
self.filter_length,
|
|
141
|
+
self.sampling_rate,
|
|
142
|
+
self.hop_length,
|
|
143
|
+
self.win_length,
|
|
144
|
+
center=False,
|
|
145
|
+
)
|
|
146
|
+
spec = torch.squeeze(spec, 0)
|
|
147
|
+
torch.save(spec, spec_filename)
|
|
148
|
+
return spec, audio_norm
|
|
149
|
+
|
|
150
|
+
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
|
151
|
+
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
|
152
|
+
if self.add_blank:
|
|
153
|
+
phone = commons.intersperse(phone, 0)
|
|
154
|
+
tone = commons.intersperse(tone, 0)
|
|
155
|
+
language = commons.intersperse(language, 0)
|
|
156
|
+
for i in range(len(word2ph)):
|
|
157
|
+
word2ph[i] = word2ph[i] * 2
|
|
158
|
+
word2ph[0] += 1
|
|
159
|
+
bert_path = wav_path.replace(".wav", ".bert.pt")
|
|
160
|
+
try:
|
|
161
|
+
bert = torch.load(bert_path)
|
|
162
|
+
assert bert.shape[-1] == len(phone)
|
|
163
|
+
except Exception as e:
|
|
164
|
+
print(e, wav_path, bert_path, bert.shape, len(phone))
|
|
165
|
+
bert = get_bert(text, word2ph, language_str)
|
|
166
|
+
torch.save(bert, bert_path)
|
|
167
|
+
assert bert.shape[-1] == len(phone), phone
|
|
168
|
+
|
|
169
|
+
if self.disable_bert:
|
|
170
|
+
bert = torch.zeros(1024, len(phone))
|
|
171
|
+
ja_bert = torch.zeros(768, len(phone))
|
|
172
|
+
else:
|
|
173
|
+
if language_str in ["ZH"]:
|
|
174
|
+
bert = bert
|
|
175
|
+
ja_bert = torch.zeros(768, len(phone))
|
|
176
|
+
elif language_str in ["JP", "EN", "ZH_MIX_EN", "KR", 'SP', 'ES', 'FR', 'DE', 'RU']:
|
|
177
|
+
ja_bert = bert
|
|
178
|
+
bert = torch.zeros(1024, len(phone))
|
|
179
|
+
else:
|
|
180
|
+
raise
|
|
181
|
+
bert = torch.zeros(1024, len(phone))
|
|
182
|
+
ja_bert = torch.zeros(768, len(phone))
|
|
183
|
+
assert bert.shape[-1] == len(phone)
|
|
184
|
+
phone = torch.LongTensor(phone)
|
|
185
|
+
tone = torch.LongTensor(tone)
|
|
186
|
+
language = torch.LongTensor(language)
|
|
187
|
+
return bert, ja_bert, phone, tone, language
|
|
188
|
+
|
|
189
|
+
def get_sid(self, sid):
|
|
190
|
+
sid = torch.LongTensor([int(sid)])
|
|
191
|
+
return sid
|
|
192
|
+
|
|
193
|
+
def __getitem__(self, index):
|
|
194
|
+
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
|
195
|
+
|
|
196
|
+
def __len__(self):
|
|
197
|
+
return len(self.audiopaths_sid_text)
|
|
198
|
+
|
|
199
|
+
|
|
200
|
+
class TextAudioSpeakerCollate:
|
|
201
|
+
"""Zero-pads model inputs and targets"""
|
|
202
|
+
|
|
203
|
+
def __init__(self, return_ids=False):
|
|
204
|
+
self.return_ids = return_ids
|
|
205
|
+
|
|
206
|
+
def __call__(self, batch):
|
|
207
|
+
"""Collate's training batch from normalized text, audio and speaker identities
|
|
208
|
+
PARAMS
|
|
209
|
+
------
|
|
210
|
+
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
|
211
|
+
"""
|
|
212
|
+
# Right zero-pad all one-hot text sequences to max input length
|
|
213
|
+
_, ids_sorted_decreasing = torch.sort(
|
|
214
|
+
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
|
215
|
+
)
|
|
216
|
+
|
|
217
|
+
max_text_len = max([len(x[0]) for x in batch])
|
|
218
|
+
max_spec_len = max([x[1].size(1) for x in batch])
|
|
219
|
+
max_wav_len = max([x[2].size(1) for x in batch])
|
|
220
|
+
|
|
221
|
+
text_lengths = torch.LongTensor(len(batch))
|
|
222
|
+
spec_lengths = torch.LongTensor(len(batch))
|
|
223
|
+
wav_lengths = torch.LongTensor(len(batch))
|
|
224
|
+
sid = torch.LongTensor(len(batch))
|
|
225
|
+
|
|
226
|
+
text_padded = torch.LongTensor(len(batch), max_text_len)
|
|
227
|
+
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
|
228
|
+
language_padded = torch.LongTensor(len(batch), max_text_len)
|
|
229
|
+
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
|
230
|
+
ja_bert_padded = torch.FloatTensor(len(batch), 768, max_text_len)
|
|
231
|
+
|
|
232
|
+
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
|
233
|
+
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
234
|
+
text_padded.zero_()
|
|
235
|
+
tone_padded.zero_()
|
|
236
|
+
language_padded.zero_()
|
|
237
|
+
spec_padded.zero_()
|
|
238
|
+
wav_padded.zero_()
|
|
239
|
+
bert_padded.zero_()
|
|
240
|
+
ja_bert_padded.zero_()
|
|
241
|
+
for i in range(len(ids_sorted_decreasing)):
|
|
242
|
+
row = batch[ids_sorted_decreasing[i]]
|
|
243
|
+
|
|
244
|
+
text = row[0]
|
|
245
|
+
text_padded[i, : text.size(0)] = text
|
|
246
|
+
text_lengths[i] = text.size(0)
|
|
247
|
+
|
|
248
|
+
spec = row[1]
|
|
249
|
+
spec_padded[i, :, : spec.size(1)] = spec
|
|
250
|
+
spec_lengths[i] = spec.size(1)
|
|
251
|
+
|
|
252
|
+
wav = row[2]
|
|
253
|
+
wav_padded[i, :, : wav.size(1)] = wav
|
|
254
|
+
wav_lengths[i] = wav.size(1)
|
|
255
|
+
|
|
256
|
+
sid[i] = row[3]
|
|
257
|
+
|
|
258
|
+
tone = row[4]
|
|
259
|
+
tone_padded[i, : tone.size(0)] = tone
|
|
260
|
+
|
|
261
|
+
language = row[5]
|
|
262
|
+
language_padded[i, : language.size(0)] = language
|
|
263
|
+
|
|
264
|
+
bert = row[6]
|
|
265
|
+
bert_padded[i, :, : bert.size(1)] = bert
|
|
266
|
+
|
|
267
|
+
ja_bert = row[7]
|
|
268
|
+
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
|
269
|
+
|
|
270
|
+
return (
|
|
271
|
+
text_padded,
|
|
272
|
+
text_lengths,
|
|
273
|
+
spec_padded,
|
|
274
|
+
spec_lengths,
|
|
275
|
+
wav_padded,
|
|
276
|
+
wav_lengths,
|
|
277
|
+
sid,
|
|
278
|
+
tone_padded,
|
|
279
|
+
language_padded,
|
|
280
|
+
bert_padded,
|
|
281
|
+
ja_bert_padded,
|
|
282
|
+
)
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
286
|
+
"""
|
|
287
|
+
Maintain similar input lengths in a batch.
|
|
288
|
+
Length groups are specified by boundaries.
|
|
289
|
+
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
|
290
|
+
|
|
291
|
+
It removes samples which are not included in the boundaries.
|
|
292
|
+
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
|
293
|
+
"""
|
|
294
|
+
|
|
295
|
+
def __init__(
|
|
296
|
+
self,
|
|
297
|
+
dataset,
|
|
298
|
+
batch_size,
|
|
299
|
+
boundaries,
|
|
300
|
+
num_replicas=None,
|
|
301
|
+
rank=None,
|
|
302
|
+
shuffle=True,
|
|
303
|
+
):
|
|
304
|
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
|
305
|
+
self.lengths = dataset.lengths
|
|
306
|
+
self.batch_size = batch_size
|
|
307
|
+
self.boundaries = boundaries
|
|
308
|
+
|
|
309
|
+
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
310
|
+
self.total_size = sum(self.num_samples_per_bucket)
|
|
311
|
+
self.num_samples = self.total_size // self.num_replicas
|
|
312
|
+
print('buckets:', self.num_samples_per_bucket)
|
|
313
|
+
|
|
314
|
+
def _create_buckets(self):
|
|
315
|
+
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
316
|
+
for i in range(len(self.lengths)):
|
|
317
|
+
length = self.lengths[i]
|
|
318
|
+
idx_bucket = self._bisect(length)
|
|
319
|
+
if idx_bucket != -1:
|
|
320
|
+
buckets[idx_bucket].append(i)
|
|
321
|
+
|
|
322
|
+
try:
|
|
323
|
+
for i in range(len(buckets) - 1, 0, -1):
|
|
324
|
+
if len(buckets[i]) == 0:
|
|
325
|
+
buckets.pop(i)
|
|
326
|
+
self.boundaries.pop(i + 1)
|
|
327
|
+
assert all(len(bucket) > 0 for bucket in buckets)
|
|
328
|
+
# When one bucket is not traversed
|
|
329
|
+
except Exception as e:
|
|
330
|
+
print("Bucket warning ", e)
|
|
331
|
+
for i in range(len(buckets) - 1, -1, -1):
|
|
332
|
+
if len(buckets[i]) == 0:
|
|
333
|
+
buckets.pop(i)
|
|
334
|
+
self.boundaries.pop(i + 1)
|
|
335
|
+
|
|
336
|
+
num_samples_per_bucket = []
|
|
337
|
+
for i in range(len(buckets)):
|
|
338
|
+
len_bucket = len(buckets[i])
|
|
339
|
+
total_batch_size = self.num_replicas * self.batch_size
|
|
340
|
+
rem = (
|
|
341
|
+
total_batch_size - (len_bucket % total_batch_size)
|
|
342
|
+
) % total_batch_size
|
|
343
|
+
num_samples_per_bucket.append(len_bucket + rem)
|
|
344
|
+
return buckets, num_samples_per_bucket
|
|
345
|
+
|
|
346
|
+
def __iter__(self):
|
|
347
|
+
# deterministically shuffle based on epoch
|
|
348
|
+
g = torch.Generator()
|
|
349
|
+
g.manual_seed(self.epoch)
|
|
350
|
+
|
|
351
|
+
indices = []
|
|
352
|
+
if self.shuffle:
|
|
353
|
+
for bucket in self.buckets:
|
|
354
|
+
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
|
355
|
+
else:
|
|
356
|
+
for bucket in self.buckets:
|
|
357
|
+
indices.append(list(range(len(bucket))))
|
|
358
|
+
|
|
359
|
+
batches = []
|
|
360
|
+
for i in range(len(self.buckets)):
|
|
361
|
+
bucket = self.buckets[i]
|
|
362
|
+
len_bucket = len(bucket)
|
|
363
|
+
if len_bucket == 0:
|
|
364
|
+
continue
|
|
365
|
+
ids_bucket = indices[i]
|
|
366
|
+
num_samples_bucket = self.num_samples_per_bucket[i]
|
|
367
|
+
|
|
368
|
+
# add extra samples to make it evenly divisible
|
|
369
|
+
rem = num_samples_bucket - len_bucket
|
|
370
|
+
ids_bucket = (
|
|
371
|
+
ids_bucket
|
|
372
|
+
+ ids_bucket * (rem // len_bucket)
|
|
373
|
+
+ ids_bucket[: (rem % len_bucket)]
|
|
374
|
+
)
|
|
375
|
+
|
|
376
|
+
# subsample
|
|
377
|
+
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
|
378
|
+
|
|
379
|
+
# batching
|
|
380
|
+
for j in range(len(ids_bucket) // self.batch_size):
|
|
381
|
+
batch = [
|
|
382
|
+
bucket[idx]
|
|
383
|
+
for idx in ids_bucket[
|
|
384
|
+
j * self.batch_size : (j + 1) * self.batch_size
|
|
385
|
+
]
|
|
386
|
+
]
|
|
387
|
+
batches.append(batch)
|
|
388
|
+
|
|
389
|
+
if self.shuffle:
|
|
390
|
+
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
|
391
|
+
batches = [batches[i] for i in batch_ids]
|
|
392
|
+
self.batches = batches
|
|
393
|
+
|
|
394
|
+
assert len(self.batches) * self.batch_size == self.num_samples
|
|
395
|
+
return iter(self.batches)
|
|
396
|
+
|
|
397
|
+
def _bisect(self, x, lo=0, hi=None):
|
|
398
|
+
if hi is None:
|
|
399
|
+
hi = len(self.boundaries) - 1
|
|
400
|
+
|
|
401
|
+
if hi > lo:
|
|
402
|
+
mid = (hi + lo) // 2
|
|
403
|
+
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
|
404
|
+
return mid
|
|
405
|
+
elif x <= self.boundaries[mid]:
|
|
406
|
+
return self._bisect(x, lo, mid)
|
|
407
|
+
else:
|
|
408
|
+
return self._bisect(x, mid + 1, hi)
|
|
409
|
+
else:
|
|
410
|
+
return -1
|
|
411
|
+
|
|
412
|
+
def __len__(self):
|
|
413
|
+
return self.num_samples // self.batch_size
|
|
@@ -0,0 +1,67 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
import os
|
|
3
|
+
from . import utils
|
|
4
|
+
from cached_path import cached_path
|
|
5
|
+
from huggingface_hub import hf_hub_download
|
|
6
|
+
|
|
7
|
+
DOWNLOAD_CKPT_URLS = {
|
|
8
|
+
'EN': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/EN/checkpoint.pth',
|
|
9
|
+
'EN_V2': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/EN_V2/checkpoint.pth',
|
|
10
|
+
'FR': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/FR/checkpoint.pth',
|
|
11
|
+
'JP': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/JP/checkpoint.pth',
|
|
12
|
+
'ES': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/ES/checkpoint.pth',
|
|
13
|
+
'ZH': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/ZH/checkpoint.pth',
|
|
14
|
+
'KR': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/KR/checkpoint.pth',
|
|
15
|
+
}
|
|
16
|
+
|
|
17
|
+
DOWNLOAD_CONFIG_URLS = {
|
|
18
|
+
'EN': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/EN/config.json',
|
|
19
|
+
'EN_V2': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/EN_V2/config.json',
|
|
20
|
+
'FR': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/FR/config.json',
|
|
21
|
+
'JP': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/JP/config.json',
|
|
22
|
+
'ES': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/ES/config.json',
|
|
23
|
+
'ZH': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/ZH/config.json',
|
|
24
|
+
'KR': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/KR/config.json',
|
|
25
|
+
}
|
|
26
|
+
|
|
27
|
+
PRETRAINED_MODELS = {
|
|
28
|
+
'G.pth': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/pretrained/G.pth',
|
|
29
|
+
'D.pth': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/pretrained/D.pth',
|
|
30
|
+
'DUR.pth': 'https://myshell-public-repo-host.s3.amazonaws.com/openvoice/basespeakers/pretrained/DUR.pth',
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
LANG_TO_HF_REPO_ID = {
|
|
34
|
+
'EN': 'myshell-ai/MeloTTS-English',
|
|
35
|
+
'EN_V2': 'myshell-ai/MeloTTS-English-v2',
|
|
36
|
+
'EN_NEWEST': 'myshell-ai/MeloTTS-English-v3',
|
|
37
|
+
'FR': 'myshell-ai/MeloTTS-French',
|
|
38
|
+
'JP': 'myshell-ai/MeloTTS-Japanese',
|
|
39
|
+
'ES': 'myshell-ai/MeloTTS-Spanish',
|
|
40
|
+
'ZH': 'myshell-ai/MeloTTS-Chinese',
|
|
41
|
+
'KR': 'myshell-ai/MeloTTS-Korean',
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
def load_or_download_config(locale, use_hf=True, config_path=None):
|
|
45
|
+
if config_path is None:
|
|
46
|
+
language = locale.split('-')[0].upper()
|
|
47
|
+
if use_hf:
|
|
48
|
+
assert language in LANG_TO_HF_REPO_ID
|
|
49
|
+
config_path = hf_hub_download(repo_id=LANG_TO_HF_REPO_ID[language], filename="config.json")
|
|
50
|
+
else:
|
|
51
|
+
assert language in DOWNLOAD_CONFIG_URLS
|
|
52
|
+
config_path = cached_path(DOWNLOAD_CONFIG_URLS[language])
|
|
53
|
+
return utils.get_hparams_from_file(config_path)
|
|
54
|
+
|
|
55
|
+
def load_or_download_model(locale, device, use_hf=True, ckpt_path=None):
|
|
56
|
+
if ckpt_path is None:
|
|
57
|
+
language = locale.split('-')[0].upper()
|
|
58
|
+
if use_hf:
|
|
59
|
+
assert language in LANG_TO_HF_REPO_ID
|
|
60
|
+
ckpt_path = hf_hub_download(repo_id=LANG_TO_HF_REPO_ID[language], filename="checkpoint.pth")
|
|
61
|
+
else:
|
|
62
|
+
assert language in DOWNLOAD_CKPT_URLS
|
|
63
|
+
ckpt_path = cached_path(DOWNLOAD_CKPT_URLS[language])
|
|
64
|
+
return torch.load(ckpt_path, map_location=device)
|
|
65
|
+
|
|
66
|
+
def load_pretrain_model():
|
|
67
|
+
return [cached_path(url) for url in PRETRAINED_MODELS.values()]
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import click
|
|
3
|
+
from melo.api import TTS
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@click.command()
|
|
8
|
+
@click.option('--ckpt_path', '-m', type=str, default=None, help="Path to the checkpoint file")
|
|
9
|
+
@click.option('--text', '-t', type=str, default=None, help="Text to speak")
|
|
10
|
+
@click.option('--language', '-l', type=str, default="EN", help="Language of the model")
|
|
11
|
+
@click.option('--output_dir', '-o', type=str, default="outputs", help="Path to the output")
|
|
12
|
+
def main(ckpt_path, text, language, output_dir):
|
|
13
|
+
if ckpt_path is None:
|
|
14
|
+
raise ValueError("The model_path must be specified")
|
|
15
|
+
|
|
16
|
+
config_path = os.path.join(os.path.dirname(ckpt_path), 'config.json')
|
|
17
|
+
model = TTS(language=language, config_path=config_path, ckpt_path=ckpt_path)
|
|
18
|
+
|
|
19
|
+
for spk_name, spk_id in model.hps.data.spk2id.items():
|
|
20
|
+
save_path = f'{output_dir}/{spk_name}/output.wav'
|
|
21
|
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
22
|
+
model.tts_to_file(text, spk_id, save_path)
|
|
23
|
+
|
|
24
|
+
if __name__ == "__main__":
|
|
25
|
+
main()
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
|
|
2
|
+
|
|
3
|
+
if __name__ == '__main__':
|
|
4
|
+
|
|
5
|
+
from melo.api import TTS
|
|
6
|
+
device = 'auto'
|
|
7
|
+
models = {
|
|
8
|
+
'EN': TTS(language='EN', device=device),
|
|
9
|
+
'ES': TTS(language='ES', device=device),
|
|
10
|
+
'FR': TTS(language='FR', device=device),
|
|
11
|
+
'ZH': TTS(language='ZH', device=device),
|
|
12
|
+
'JP': TTS(language='JP', device=device),
|
|
13
|
+
'KR': TTS(language='KR', device=device),
|
|
14
|
+
}
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def feature_loss(fmap_r, fmap_g):
|
|
5
|
+
loss = 0
|
|
6
|
+
for dr, dg in zip(fmap_r, fmap_g):
|
|
7
|
+
for rl, gl in zip(dr, dg):
|
|
8
|
+
rl = rl.float().detach()
|
|
9
|
+
gl = gl.float()
|
|
10
|
+
loss += torch.mean(torch.abs(rl - gl))
|
|
11
|
+
|
|
12
|
+
return loss * 2
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
|
16
|
+
loss = 0
|
|
17
|
+
r_losses = []
|
|
18
|
+
g_losses = []
|
|
19
|
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
20
|
+
dr = dr.float()
|
|
21
|
+
dg = dg.float()
|
|
22
|
+
r_loss = torch.mean((1 - dr) ** 2)
|
|
23
|
+
g_loss = torch.mean(dg**2)
|
|
24
|
+
loss += r_loss + g_loss
|
|
25
|
+
r_losses.append(r_loss.item())
|
|
26
|
+
g_losses.append(g_loss.item())
|
|
27
|
+
|
|
28
|
+
return loss, r_losses, g_losses
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def generator_loss(disc_outputs):
|
|
32
|
+
loss = 0
|
|
33
|
+
gen_losses = []
|
|
34
|
+
for dg in disc_outputs:
|
|
35
|
+
dg = dg.float()
|
|
36
|
+
l = torch.mean((1 - dg) ** 2)
|
|
37
|
+
gen_losses.append(l)
|
|
38
|
+
loss += l
|
|
39
|
+
|
|
40
|
+
return loss, gen_losses
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
|
44
|
+
"""
|
|
45
|
+
z_p, logs_q: [b, h, t_t]
|
|
46
|
+
m_p, logs_p: [b, h, t_t]
|
|
47
|
+
"""
|
|
48
|
+
z_p = z_p.float()
|
|
49
|
+
logs_q = logs_q.float()
|
|
50
|
+
m_p = m_p.float()
|
|
51
|
+
logs_p = logs_p.float()
|
|
52
|
+
z_mask = z_mask.float()
|
|
53
|
+
|
|
54
|
+
kl = logs_p - logs_q - 0.5
|
|
55
|
+
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
|
56
|
+
kl = torch.sum(kl * z_mask)
|
|
57
|
+
l = kl / torch.sum(z_mask)
|
|
58
|
+
return l
|
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
import click
|
|
2
|
+
import warnings
|
|
3
|
+
import os
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
@click.command
|
|
7
|
+
@click.argument('text')
|
|
8
|
+
@click.argument('output_path')
|
|
9
|
+
@click.option("--file", '-f', is_flag=True, show_default=True, default=False, help="Text is a file")
|
|
10
|
+
@click.option('--language', '-l', default='EN', help='Language, defaults to English', type=click.Choice(['EN', 'ES', 'FR', 'ZH', 'JP', 'KR'], case_sensitive=False))
|
|
11
|
+
@click.option('--speaker', '-spk', default='EN-Default', help='Speaker ID, only for English, leave empty for default, ignored if not English. If English, defaults to "EN-Default"', type=click.Choice(['EN-Default', 'EN-US', 'EN-BR', 'EN_INDIA', 'EN-AU']))
|
|
12
|
+
@click.option('--speed', '-s', default=1.0, help='Speed, defaults to 1.0', type=float)
|
|
13
|
+
@click.option('--device', '-d', default='auto', help='Device, defaults to auto')
|
|
14
|
+
def main(text, file, output_path, language, speaker, speed, device):
|
|
15
|
+
if file:
|
|
16
|
+
if not os.path.exists(text):
|
|
17
|
+
raise FileNotFoundError(f'Trying to load text from file due to --file/-f flag, but file not found. Remove the --file/-f flag to pass a string.')
|
|
18
|
+
else:
|
|
19
|
+
with open(text) as f:
|
|
20
|
+
text = f.read().strip()
|
|
21
|
+
if text == '':
|
|
22
|
+
raise ValueError('You entered empty text or the file you passed was empty.')
|
|
23
|
+
language = language.upper()
|
|
24
|
+
if language == '': language = 'EN'
|
|
25
|
+
if speaker == '': speaker = None
|
|
26
|
+
if (not language == 'EN') and speaker:
|
|
27
|
+
warnings.warn('You specified a speaker but the language is English.')
|
|
28
|
+
from melo.api import TTS
|
|
29
|
+
model = TTS(language=language, device=device)
|
|
30
|
+
speaker_ids = model.hps.data.spk2id
|
|
31
|
+
if language == 'EN':
|
|
32
|
+
if not speaker: speaker = 'EN-Default'
|
|
33
|
+
spkr = speaker_ids[speaker]
|
|
34
|
+
else:
|
|
35
|
+
spkr = speaker_ids[list(speaker_ids.keys())[0]]
|
|
36
|
+
model.tts_to_file(text, spkr, output_path, speed=speed)
|