xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,366 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import gc
|
|
4
|
+
import os
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
import torchaudio
|
|
8
|
+
import wandb
|
|
9
|
+
from accelerate import Accelerator
|
|
10
|
+
from accelerate.utils import DistributedDataParallelKwargs
|
|
11
|
+
from ema_pytorch import EMA
|
|
12
|
+
from torch.optim import AdamW
|
|
13
|
+
from torch.optim.lr_scheduler import LinearLR, SequentialLR
|
|
14
|
+
from torch.utils.data import DataLoader, Dataset, SequentialSampler
|
|
15
|
+
from tqdm import tqdm
|
|
16
|
+
|
|
17
|
+
from f5_tts.model import CFM
|
|
18
|
+
from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
|
|
19
|
+
from f5_tts.model.utils import default, exists
|
|
20
|
+
|
|
21
|
+
# trainer
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class Trainer:
|
|
25
|
+
def __init__(
|
|
26
|
+
self,
|
|
27
|
+
model: CFM,
|
|
28
|
+
epochs,
|
|
29
|
+
learning_rate,
|
|
30
|
+
num_warmup_updates=20000,
|
|
31
|
+
save_per_updates=1000,
|
|
32
|
+
checkpoint_path=None,
|
|
33
|
+
batch_size=32,
|
|
34
|
+
batch_size_type: str = "sample",
|
|
35
|
+
max_samples=32,
|
|
36
|
+
grad_accumulation_steps=1,
|
|
37
|
+
max_grad_norm=1.0,
|
|
38
|
+
noise_scheduler: str | None = None,
|
|
39
|
+
duration_predictor: torch.nn.Module | None = None,
|
|
40
|
+
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
|
41
|
+
wandb_project="test_e2-tts",
|
|
42
|
+
wandb_run_name="test_run",
|
|
43
|
+
wandb_resume_id: str = None,
|
|
44
|
+
log_samples: bool = False,
|
|
45
|
+
last_per_steps=None,
|
|
46
|
+
accelerate_kwargs: dict = dict(),
|
|
47
|
+
ema_kwargs: dict = dict(),
|
|
48
|
+
bnb_optimizer: bool = False,
|
|
49
|
+
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
|
50
|
+
is_local_vocoder: bool = False, # use local path vocoder
|
|
51
|
+
local_vocoder_path: str = "", # local vocoder path
|
|
52
|
+
):
|
|
53
|
+
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
|
54
|
+
|
|
55
|
+
if logger == "wandb" and not wandb.api.api_key:
|
|
56
|
+
logger = None
|
|
57
|
+
print(f"Using logger: {logger}")
|
|
58
|
+
self.log_samples = log_samples
|
|
59
|
+
|
|
60
|
+
self.accelerator = Accelerator(
|
|
61
|
+
log_with=logger if logger == "wandb" else None,
|
|
62
|
+
kwargs_handlers=[ddp_kwargs],
|
|
63
|
+
gradient_accumulation_steps=grad_accumulation_steps,
|
|
64
|
+
**accelerate_kwargs,
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
self.logger = logger
|
|
68
|
+
if self.logger == "wandb":
|
|
69
|
+
if exists(wandb_resume_id):
|
|
70
|
+
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name, "id": wandb_resume_id}}
|
|
71
|
+
else:
|
|
72
|
+
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
|
73
|
+
|
|
74
|
+
self.accelerator.init_trackers(
|
|
75
|
+
project_name=wandb_project,
|
|
76
|
+
init_kwargs=init_kwargs,
|
|
77
|
+
config={
|
|
78
|
+
"epochs": epochs,
|
|
79
|
+
"learning_rate": learning_rate,
|
|
80
|
+
"num_warmup_updates": num_warmup_updates,
|
|
81
|
+
"batch_size": batch_size,
|
|
82
|
+
"batch_size_type": batch_size_type,
|
|
83
|
+
"max_samples": max_samples,
|
|
84
|
+
"grad_accumulation_steps": grad_accumulation_steps,
|
|
85
|
+
"max_grad_norm": max_grad_norm,
|
|
86
|
+
"gpus": self.accelerator.num_processes,
|
|
87
|
+
"noise_scheduler": noise_scheduler,
|
|
88
|
+
},
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
elif self.logger == "tensorboard":
|
|
92
|
+
from torch.utils.tensorboard import SummaryWriter
|
|
93
|
+
|
|
94
|
+
self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")
|
|
95
|
+
|
|
96
|
+
self.model = model
|
|
97
|
+
|
|
98
|
+
if self.is_main:
|
|
99
|
+
self.ema_model = EMA(model, include_online_model=False, **ema_kwargs)
|
|
100
|
+
self.ema_model.to(self.accelerator.device)
|
|
101
|
+
|
|
102
|
+
self.epochs = epochs
|
|
103
|
+
self.num_warmup_updates = num_warmup_updates
|
|
104
|
+
self.save_per_updates = save_per_updates
|
|
105
|
+
self.last_per_steps = default(last_per_steps, save_per_updates * grad_accumulation_steps)
|
|
106
|
+
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
|
|
107
|
+
|
|
108
|
+
self.batch_size = batch_size
|
|
109
|
+
self.batch_size_type = batch_size_type
|
|
110
|
+
self.max_samples = max_samples
|
|
111
|
+
self.grad_accumulation_steps = grad_accumulation_steps
|
|
112
|
+
self.max_grad_norm = max_grad_norm
|
|
113
|
+
|
|
114
|
+
# mel vocoder config
|
|
115
|
+
self.vocoder_name = mel_spec_type
|
|
116
|
+
self.is_local_vocoder = is_local_vocoder
|
|
117
|
+
self.local_vocoder_path = local_vocoder_path
|
|
118
|
+
|
|
119
|
+
self.noise_scheduler = noise_scheduler
|
|
120
|
+
|
|
121
|
+
self.duration_predictor = duration_predictor
|
|
122
|
+
|
|
123
|
+
if bnb_optimizer:
|
|
124
|
+
import bitsandbytes as bnb
|
|
125
|
+
|
|
126
|
+
self.optimizer = bnb.optim.AdamW8bit(model.parameters(), lr=learning_rate)
|
|
127
|
+
else:
|
|
128
|
+
self.optimizer = AdamW(model.parameters(), lr=learning_rate)
|
|
129
|
+
self.model, self.optimizer = self.accelerator.prepare(self.model, self.optimizer)
|
|
130
|
+
|
|
131
|
+
@property
|
|
132
|
+
def is_main(self):
|
|
133
|
+
return self.accelerator.is_main_process
|
|
134
|
+
|
|
135
|
+
def save_checkpoint(self, step, last=False):
|
|
136
|
+
self.accelerator.wait_for_everyone()
|
|
137
|
+
if self.is_main:
|
|
138
|
+
checkpoint = dict(
|
|
139
|
+
model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
|
|
140
|
+
optimizer_state_dict=self.accelerator.unwrap_model(self.optimizer).state_dict(),
|
|
141
|
+
ema_model_state_dict=self.ema_model.state_dict(),
|
|
142
|
+
scheduler_state_dict=self.scheduler.state_dict(),
|
|
143
|
+
step=step,
|
|
144
|
+
)
|
|
145
|
+
if not os.path.exists(self.checkpoint_path):
|
|
146
|
+
os.makedirs(self.checkpoint_path)
|
|
147
|
+
if last:
|
|
148
|
+
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_last.pt")
|
|
149
|
+
print(f"Saved last checkpoint at step {step}")
|
|
150
|
+
else:
|
|
151
|
+
self.accelerator.save(checkpoint, f"{self.checkpoint_path}/model_{step}.pt")
|
|
152
|
+
|
|
153
|
+
def load_checkpoint(self):
|
|
154
|
+
if (
|
|
155
|
+
not exists(self.checkpoint_path)
|
|
156
|
+
or not os.path.exists(self.checkpoint_path)
|
|
157
|
+
or not any(filename.endswith(".pt") for filename in os.listdir(self.checkpoint_path))
|
|
158
|
+
):
|
|
159
|
+
return 0
|
|
160
|
+
|
|
161
|
+
self.accelerator.wait_for_everyone()
|
|
162
|
+
if "model_last.pt" in os.listdir(self.checkpoint_path):
|
|
163
|
+
latest_checkpoint = "model_last.pt"
|
|
164
|
+
else:
|
|
165
|
+
latest_checkpoint = sorted(
|
|
166
|
+
[f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
|
|
167
|
+
key=lambda x: int("".join(filter(str.isdigit, x))),
|
|
168
|
+
)[-1]
|
|
169
|
+
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
|
170
|
+
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
|
|
171
|
+
|
|
172
|
+
# patch for backward compatibility, 305e3ea
|
|
173
|
+
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
|
|
174
|
+
if key in checkpoint["ema_model_state_dict"]:
|
|
175
|
+
del checkpoint["ema_model_state_dict"][key]
|
|
176
|
+
|
|
177
|
+
if self.is_main:
|
|
178
|
+
self.ema_model.load_state_dict(checkpoint["ema_model_state_dict"])
|
|
179
|
+
|
|
180
|
+
if "step" in checkpoint:
|
|
181
|
+
# patch for backward compatibility, 305e3ea
|
|
182
|
+
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
|
|
183
|
+
if key in checkpoint["model_state_dict"]:
|
|
184
|
+
del checkpoint["model_state_dict"][key]
|
|
185
|
+
|
|
186
|
+
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
|
|
187
|
+
self.accelerator.unwrap_model(self.optimizer).load_state_dict(checkpoint["optimizer_state_dict"])
|
|
188
|
+
if self.scheduler:
|
|
189
|
+
self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
|
|
190
|
+
step = checkpoint["step"]
|
|
191
|
+
else:
|
|
192
|
+
checkpoint["model_state_dict"] = {
|
|
193
|
+
k.replace("ema_model.", ""): v
|
|
194
|
+
for k, v in checkpoint["ema_model_state_dict"].items()
|
|
195
|
+
if k not in ["initted", "step"]
|
|
196
|
+
}
|
|
197
|
+
self.accelerator.unwrap_model(self.model).load_state_dict(checkpoint["model_state_dict"])
|
|
198
|
+
step = 0
|
|
199
|
+
|
|
200
|
+
del checkpoint
|
|
201
|
+
gc.collect()
|
|
202
|
+
return step
|
|
203
|
+
|
|
204
|
+
def train(self, train_dataset: Dataset, num_workers=16, resumable_with_seed: int = None):
|
|
205
|
+
if self.log_samples:
|
|
206
|
+
from f5_tts.infer.utils_infer import cfg_strength, load_vocoder, nfe_step, sway_sampling_coef
|
|
207
|
+
|
|
208
|
+
vocoder = load_vocoder(
|
|
209
|
+
vocoder_name=self.vocoder_name, is_local=self.is_local_vocoder, local_path=self.local_vocoder_path
|
|
210
|
+
)
|
|
211
|
+
target_sample_rate = self.accelerator.unwrap_model(self.model).mel_spec.target_sample_rate
|
|
212
|
+
log_samples_path = f"{self.checkpoint_path}/samples"
|
|
213
|
+
os.makedirs(log_samples_path, exist_ok=True)
|
|
214
|
+
|
|
215
|
+
if exists(resumable_with_seed):
|
|
216
|
+
generator = torch.Generator()
|
|
217
|
+
generator.manual_seed(resumable_with_seed)
|
|
218
|
+
else:
|
|
219
|
+
generator = None
|
|
220
|
+
|
|
221
|
+
if self.batch_size_type == "sample":
|
|
222
|
+
train_dataloader = DataLoader(
|
|
223
|
+
train_dataset,
|
|
224
|
+
collate_fn=collate_fn,
|
|
225
|
+
num_workers=num_workers,
|
|
226
|
+
pin_memory=True,
|
|
227
|
+
persistent_workers=True,
|
|
228
|
+
batch_size=self.batch_size,
|
|
229
|
+
shuffle=True,
|
|
230
|
+
generator=generator,
|
|
231
|
+
)
|
|
232
|
+
elif self.batch_size_type == "frame":
|
|
233
|
+
self.accelerator.even_batches = False
|
|
234
|
+
sampler = SequentialSampler(train_dataset)
|
|
235
|
+
batch_sampler = DynamicBatchSampler(
|
|
236
|
+
sampler, self.batch_size, max_samples=self.max_samples, random_seed=resumable_with_seed, drop_last=False
|
|
237
|
+
)
|
|
238
|
+
train_dataloader = DataLoader(
|
|
239
|
+
train_dataset,
|
|
240
|
+
collate_fn=collate_fn,
|
|
241
|
+
num_workers=num_workers,
|
|
242
|
+
pin_memory=True,
|
|
243
|
+
persistent_workers=True,
|
|
244
|
+
batch_sampler=batch_sampler,
|
|
245
|
+
)
|
|
246
|
+
else:
|
|
247
|
+
raise ValueError(f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}")
|
|
248
|
+
|
|
249
|
+
# accelerator.prepare() dispatches batches to devices;
|
|
250
|
+
# which means the length of dataloader calculated before, should consider the number of devices
|
|
251
|
+
warmup_steps = (
|
|
252
|
+
self.num_warmup_updates * self.accelerator.num_processes
|
|
253
|
+
) # consider a fixed warmup steps while using accelerate multi-gpu ddp
|
|
254
|
+
# otherwise by default with split_batches=False, warmup steps change with num_processes
|
|
255
|
+
total_steps = len(train_dataloader) * self.epochs / self.grad_accumulation_steps
|
|
256
|
+
decay_steps = total_steps - warmup_steps
|
|
257
|
+
warmup_scheduler = LinearLR(self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps)
|
|
258
|
+
decay_scheduler = LinearLR(self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps)
|
|
259
|
+
self.scheduler = SequentialLR(
|
|
260
|
+
self.optimizer, schedulers=[warmup_scheduler, decay_scheduler], milestones=[warmup_steps]
|
|
261
|
+
)
|
|
262
|
+
train_dataloader, self.scheduler = self.accelerator.prepare(
|
|
263
|
+
train_dataloader, self.scheduler
|
|
264
|
+
) # actual steps = 1 gpu steps / gpus
|
|
265
|
+
start_step = self.load_checkpoint()
|
|
266
|
+
global_step = start_step
|
|
267
|
+
|
|
268
|
+
if exists(resumable_with_seed):
|
|
269
|
+
orig_epoch_step = len(train_dataloader)
|
|
270
|
+
skipped_epoch = int(start_step // orig_epoch_step)
|
|
271
|
+
skipped_batch = start_step % orig_epoch_step
|
|
272
|
+
skipped_dataloader = self.accelerator.skip_first_batches(train_dataloader, num_batches=skipped_batch)
|
|
273
|
+
else:
|
|
274
|
+
skipped_epoch = 0
|
|
275
|
+
|
|
276
|
+
for epoch in range(skipped_epoch, self.epochs):
|
|
277
|
+
self.model.train()
|
|
278
|
+
if exists(resumable_with_seed) and epoch == skipped_epoch:
|
|
279
|
+
progress_bar = tqdm(
|
|
280
|
+
skipped_dataloader,
|
|
281
|
+
desc=f"Epoch {epoch+1}/{self.epochs}",
|
|
282
|
+
unit="step",
|
|
283
|
+
disable=not self.accelerator.is_local_main_process,
|
|
284
|
+
initial=skipped_batch,
|
|
285
|
+
total=orig_epoch_step,
|
|
286
|
+
)
|
|
287
|
+
else:
|
|
288
|
+
progress_bar = tqdm(
|
|
289
|
+
train_dataloader,
|
|
290
|
+
desc=f"Epoch {epoch+1}/{self.epochs}",
|
|
291
|
+
unit="step",
|
|
292
|
+
disable=not self.accelerator.is_local_main_process,
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
for batch in progress_bar:
|
|
296
|
+
with self.accelerator.accumulate(self.model):
|
|
297
|
+
text_inputs = batch["text"]
|
|
298
|
+
mel_spec = batch["mel"].permute(0, 2, 1)
|
|
299
|
+
mel_lengths = batch["mel_lengths"]
|
|
300
|
+
|
|
301
|
+
# TODO. add duration predictor training
|
|
302
|
+
if self.duration_predictor is not None and self.accelerator.is_local_main_process:
|
|
303
|
+
dur_loss = self.duration_predictor(mel_spec, lens=batch.get("durations"))
|
|
304
|
+
self.accelerator.log({"duration loss": dur_loss.item()}, step=global_step)
|
|
305
|
+
|
|
306
|
+
loss, cond, pred = self.model(
|
|
307
|
+
mel_spec, text=text_inputs, lens=mel_lengths, noise_scheduler=self.noise_scheduler
|
|
308
|
+
)
|
|
309
|
+
self.accelerator.backward(loss)
|
|
310
|
+
|
|
311
|
+
if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
|
|
312
|
+
self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
|
|
313
|
+
|
|
314
|
+
self.optimizer.step()
|
|
315
|
+
self.scheduler.step()
|
|
316
|
+
self.optimizer.zero_grad()
|
|
317
|
+
|
|
318
|
+
if self.is_main:
|
|
319
|
+
self.ema_model.update()
|
|
320
|
+
|
|
321
|
+
global_step += 1
|
|
322
|
+
|
|
323
|
+
if self.accelerator.is_local_main_process:
|
|
324
|
+
self.accelerator.log({"loss": loss.item(), "lr": self.scheduler.get_last_lr()[0]}, step=global_step)
|
|
325
|
+
if self.logger == "tensorboard":
|
|
326
|
+
self.writer.add_scalar("loss", loss.item(), global_step)
|
|
327
|
+
self.writer.add_scalar("lr", self.scheduler.get_last_lr()[0], global_step)
|
|
328
|
+
|
|
329
|
+
progress_bar.set_postfix(step=str(global_step), loss=loss.item())
|
|
330
|
+
|
|
331
|
+
if global_step % (self.save_per_updates * self.grad_accumulation_steps) == 0:
|
|
332
|
+
self.save_checkpoint(global_step)
|
|
333
|
+
|
|
334
|
+
if self.log_samples and self.accelerator.is_local_main_process:
|
|
335
|
+
ref_audio_len = mel_lengths[0]
|
|
336
|
+
infer_text = [
|
|
337
|
+
text_inputs[0] + ([" "] if isinstance(text_inputs[0], list) else " ") + text_inputs[0]
|
|
338
|
+
]
|
|
339
|
+
with torch.inference_mode():
|
|
340
|
+
generated, _ = self.accelerator.unwrap_model(self.model).sample(
|
|
341
|
+
cond=mel_spec[0][:ref_audio_len].unsqueeze(0),
|
|
342
|
+
text=infer_text,
|
|
343
|
+
duration=ref_audio_len * 2,
|
|
344
|
+
steps=nfe_step,
|
|
345
|
+
cfg_strength=cfg_strength,
|
|
346
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
347
|
+
)
|
|
348
|
+
generated = generated.to(torch.float32)
|
|
349
|
+
gen_mel_spec = generated[:, ref_audio_len:, :].permute(0, 2, 1).to(self.accelerator.device)
|
|
350
|
+
ref_mel_spec = batch["mel"][0].unsqueeze(0)
|
|
351
|
+
if self.vocoder_name == "vocos":
|
|
352
|
+
gen_audio = vocoder.decode(gen_mel_spec).cpu()
|
|
353
|
+
ref_audio = vocoder.decode(ref_mel_spec).cpu()
|
|
354
|
+
elif self.vocoder_name == "bigvgan":
|
|
355
|
+
gen_audio = vocoder(gen_mel_spec).squeeze(0).cpu()
|
|
356
|
+
ref_audio = vocoder(ref_mel_spec).squeeze(0).cpu()
|
|
357
|
+
|
|
358
|
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_gen.wav", gen_audio, target_sample_rate)
|
|
359
|
+
torchaudio.save(f"{log_samples_path}/step_{global_step}_ref.wav", ref_audio, target_sample_rate)
|
|
360
|
+
|
|
361
|
+
if global_step % self.last_per_steps == 0:
|
|
362
|
+
self.save_checkpoint(global_step, last=True)
|
|
363
|
+
|
|
364
|
+
self.save_checkpoint(global_step, last=True)
|
|
365
|
+
|
|
366
|
+
self.accelerator.end_training()
|
|
@@ -0,0 +1,185 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
import random
|
|
5
|
+
from collections import defaultdict
|
|
6
|
+
from importlib.resources import files
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
10
|
+
|
|
11
|
+
import jieba
|
|
12
|
+
from pypinyin import lazy_pinyin, Style
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
# seed everything
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
def seed_everything(seed=0):
|
|
19
|
+
random.seed(seed)
|
|
20
|
+
os.environ["PYTHONHASHSEED"] = str(seed)
|
|
21
|
+
torch.manual_seed(seed)
|
|
22
|
+
torch.cuda.manual_seed(seed)
|
|
23
|
+
torch.cuda.manual_seed_all(seed)
|
|
24
|
+
torch.backends.cudnn.deterministic = True
|
|
25
|
+
torch.backends.cudnn.benchmark = False
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
# helpers
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def exists(v):
|
|
32
|
+
return v is not None
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def default(v, d):
|
|
36
|
+
return v if exists(v) else d
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
# tensor helpers
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def lens_to_mask(t: int["b"], length: int | None = None) -> bool["b n"]: # noqa: F722 F821
|
|
43
|
+
if not exists(length):
|
|
44
|
+
length = t.amax()
|
|
45
|
+
|
|
46
|
+
seq = torch.arange(length, device=t.device)
|
|
47
|
+
return seq[None, :] < t[:, None]
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def mask_from_start_end_indices(seq_len: int["b"], start: int["b"], end: int["b"]): # noqa: F722 F821
|
|
51
|
+
max_seq_len = seq_len.max().item()
|
|
52
|
+
seq = torch.arange(max_seq_len, device=start.device).long()
|
|
53
|
+
start_mask = seq[None, :] >= start[:, None]
|
|
54
|
+
end_mask = seq[None, :] < end[:, None]
|
|
55
|
+
return start_mask & end_mask
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def mask_from_frac_lengths(seq_len: int["b"], frac_lengths: float["b"]): # noqa: F722 F821
|
|
59
|
+
lengths = (frac_lengths * seq_len).long()
|
|
60
|
+
max_start = seq_len - lengths
|
|
61
|
+
|
|
62
|
+
rand = torch.rand_like(frac_lengths)
|
|
63
|
+
start = (max_start * rand).long().clamp(min=0)
|
|
64
|
+
end = start + lengths
|
|
65
|
+
|
|
66
|
+
return mask_from_start_end_indices(seq_len, start, end)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def maybe_masked_mean(t: float["b n d"], mask: bool["b n"] = None) -> float["b d"]: # noqa: F722
|
|
70
|
+
if not exists(mask):
|
|
71
|
+
return t.mean(dim=1)
|
|
72
|
+
|
|
73
|
+
t = torch.where(mask[:, :, None], t, torch.tensor(0.0, device=t.device))
|
|
74
|
+
num = t.sum(dim=1)
|
|
75
|
+
den = mask.float().sum(dim=1)
|
|
76
|
+
|
|
77
|
+
return num / den.clamp(min=1.0)
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
# simple utf-8 tokenizer, since paper went character based
|
|
81
|
+
def list_str_to_tensor(text: list[str], padding_value=-1) -> int["b nt"]: # noqa: F722
|
|
82
|
+
list_tensors = [torch.tensor([*bytes(t, "UTF-8")]) for t in text] # ByT5 style
|
|
83
|
+
text = pad_sequence(list_tensors, padding_value=padding_value, batch_first=True)
|
|
84
|
+
return text
|
|
85
|
+
|
|
86
|
+
|
|
87
|
+
# char tokenizer, based on custom dataset's extracted .txt file
|
|
88
|
+
def list_str_to_idx(
|
|
89
|
+
text: list[str] | list[list[str]],
|
|
90
|
+
vocab_char_map: dict[str, int], # {char: idx}
|
|
91
|
+
padding_value=-1,
|
|
92
|
+
) -> int["b nt"]: # noqa: F722
|
|
93
|
+
list_idx_tensors = [torch.tensor([vocab_char_map.get(c, 0) for c in t]) for t in text] # pinyin or char style
|
|
94
|
+
text = pad_sequence(list_idx_tensors, padding_value=padding_value, batch_first=True)
|
|
95
|
+
return text
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
# Get tokenizer
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
102
|
+
"""
|
|
103
|
+
tokenizer - "pinyin" do g2p for only chinese characters, need .txt vocab_file
|
|
104
|
+
- "char" for char-wise tokenizer, need .txt vocab_file
|
|
105
|
+
- "byte" for utf-8 tokenizer
|
|
106
|
+
- "custom" if you're directly passing in a path to the vocab.txt you want to use
|
|
107
|
+
vocab_size - if use "pinyin", all available pinyin types, common alphabets (also those with accent) and symbols
|
|
108
|
+
- if use "char", derived from unfiltered character & symbol counts of custom dataset
|
|
109
|
+
- if use "byte", set to 256 (unicode byte range)
|
|
110
|
+
"""
|
|
111
|
+
if tokenizer in ["pinyin", "char"]:
|
|
112
|
+
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
|
113
|
+
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
|
114
|
+
vocab_char_map = {}
|
|
115
|
+
for i, char in enumerate(f):
|
|
116
|
+
vocab_char_map[char[:-1]] = i
|
|
117
|
+
vocab_size = len(vocab_char_map)
|
|
118
|
+
assert vocab_char_map[" "] == 0, "make sure space is of idx 0 in vocab.txt, cuz 0 is used for unknown char"
|
|
119
|
+
|
|
120
|
+
elif tokenizer == "byte":
|
|
121
|
+
vocab_char_map = None
|
|
122
|
+
vocab_size = 256
|
|
123
|
+
|
|
124
|
+
elif tokenizer == "custom":
|
|
125
|
+
with open(dataset_name, "r", encoding="utf-8") as f:
|
|
126
|
+
vocab_char_map = {}
|
|
127
|
+
for i, char in enumerate(f):
|
|
128
|
+
vocab_char_map[char[:-1]] = i
|
|
129
|
+
vocab_size = len(vocab_char_map)
|
|
130
|
+
|
|
131
|
+
return vocab_char_map, vocab_size
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
# convert char to pinyin
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
def convert_char_to_pinyin(text_list, polyphone=True):
|
|
138
|
+
final_text_list = []
|
|
139
|
+
god_knows_why_en_testset_contains_zh_quote = str.maketrans(
|
|
140
|
+
{"“": '"', "”": '"', "‘": "'", "’": "'"}
|
|
141
|
+
) # in case librispeech (orig no-pc) test-clean
|
|
142
|
+
custom_trans = str.maketrans({";": ","}) # add custom trans here, to address oov
|
|
143
|
+
for text in text_list:
|
|
144
|
+
char_list = []
|
|
145
|
+
text = text.translate(god_knows_why_en_testset_contains_zh_quote)
|
|
146
|
+
text = text.translate(custom_trans)
|
|
147
|
+
for seg in jieba.cut(text):
|
|
148
|
+
seg_byte_len = len(bytes(seg, "UTF-8"))
|
|
149
|
+
if seg_byte_len == len(seg): # if pure alphabets and symbols
|
|
150
|
+
if char_list and seg_byte_len > 1 and char_list[-1] not in " :'\"":
|
|
151
|
+
char_list.append(" ")
|
|
152
|
+
char_list.extend(seg)
|
|
153
|
+
elif polyphone and seg_byte_len == 3 * len(seg): # if pure chinese characters
|
|
154
|
+
seg = lazy_pinyin(seg, style=Style.TONE3, tone_sandhi=True)
|
|
155
|
+
for c in seg:
|
|
156
|
+
if c not in "。,、;:?!《》【】—…":
|
|
157
|
+
char_list.append(" ")
|
|
158
|
+
char_list.append(c)
|
|
159
|
+
else: # if mixed chinese characters, alphabets and symbols
|
|
160
|
+
for c in seg:
|
|
161
|
+
if ord(c) < 256:
|
|
162
|
+
char_list.extend(c)
|
|
163
|
+
else:
|
|
164
|
+
if c not in "。,、;:?!《》【】—…":
|
|
165
|
+
char_list.append(" ")
|
|
166
|
+
char_list.extend(lazy_pinyin(c, style=Style.TONE3, tone_sandhi=True))
|
|
167
|
+
else: # if is zh punc
|
|
168
|
+
char_list.append(c)
|
|
169
|
+
final_text_list.append(char_list)
|
|
170
|
+
|
|
171
|
+
return final_text_list
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
# filter func for dirty data with many repetitions
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
def repetition_found(text, length=2, tolerance=10):
|
|
178
|
+
pattern_count = defaultdict(int)
|
|
179
|
+
for i in range(len(text) - length + 1):
|
|
180
|
+
pattern = text[i : i + length]
|
|
181
|
+
pattern_count[pattern] += 1
|
|
182
|
+
for pattern, count in pattern_count.items():
|
|
183
|
+
if count > tolerance:
|
|
184
|
+
return True
|
|
185
|
+
return False
|
|
@@ -0,0 +1,33 @@
|
|
|
1
|
+
"""ADAPTIVE BATCH SIZE"""
|
|
2
|
+
|
|
3
|
+
print("Adaptive batch size: using grouping batch sampler, frames_per_gpu fixed fed in")
|
|
4
|
+
print(" -> least padding, gather wavs with accumulated frames in a batch\n")
|
|
5
|
+
|
|
6
|
+
# data
|
|
7
|
+
total_hours = 95282
|
|
8
|
+
mel_hop_length = 256
|
|
9
|
+
mel_sampling_rate = 24000
|
|
10
|
+
|
|
11
|
+
# target
|
|
12
|
+
wanted_max_updates = 1000000
|
|
13
|
+
|
|
14
|
+
# train params
|
|
15
|
+
gpus = 8
|
|
16
|
+
frames_per_gpu = 38400 # 8 * 38400 = 307200
|
|
17
|
+
grad_accum = 1
|
|
18
|
+
|
|
19
|
+
# intermediate
|
|
20
|
+
mini_batch_frames = frames_per_gpu * grad_accum * gpus
|
|
21
|
+
mini_batch_hours = mini_batch_frames * mel_hop_length / mel_sampling_rate / 3600
|
|
22
|
+
updates_per_epoch = total_hours / mini_batch_hours
|
|
23
|
+
steps_per_epoch = updates_per_epoch * grad_accum
|
|
24
|
+
|
|
25
|
+
# result
|
|
26
|
+
epochs = wanted_max_updates / updates_per_epoch
|
|
27
|
+
print(f"epochs should be set to: {epochs:.0f} ({epochs/grad_accum:.1f} x gd_acum {grad_accum})")
|
|
28
|
+
print(f"progress_bar should show approx. 0/{updates_per_epoch:.0f} updates")
|
|
29
|
+
print(f" or approx. 0/{steps_per_epoch:.0f} steps")
|
|
30
|
+
|
|
31
|
+
# others
|
|
32
|
+
print(f"total {total_hours:.0f} hours")
|
|
33
|
+
print(f"mini-batch of {mini_batch_frames:.0f} frames, {mini_batch_hours:.2f} hours per mini-batch")
|
|
@@ -0,0 +1,39 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
sys.path.append(os.getcwd())
|
|
5
|
+
|
|
6
|
+
from f5_tts.model import CFM, DiT
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
import thop
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
""" ~155M """
|
|
13
|
+
# transformer = UNetT(dim = 768, depth = 20, heads = 12, ff_mult = 4)
|
|
14
|
+
# transformer = UNetT(dim = 768, depth = 20, heads = 12, ff_mult = 4, text_dim = 512, conv_layers = 4)
|
|
15
|
+
# transformer = DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2)
|
|
16
|
+
# transformer = DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
|
17
|
+
# transformer = DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2, text_dim = 512, conv_layers = 4, long_skip_connection = True)
|
|
18
|
+
# transformer = MMDiT(dim = 512, depth = 16, heads = 16, ff_mult = 2)
|
|
19
|
+
|
|
20
|
+
""" ~335M """
|
|
21
|
+
# FLOPs: 622.1 G, Params: 333.2 M
|
|
22
|
+
# transformer = UNetT(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
|
23
|
+
# FLOPs: 363.4 G, Params: 335.8 M
|
|
24
|
+
transformer = DiT(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
model = CFM(transformer=transformer)
|
|
28
|
+
target_sample_rate = 24000
|
|
29
|
+
n_mel_channels = 100
|
|
30
|
+
hop_length = 256
|
|
31
|
+
duration = 20
|
|
32
|
+
frame_length = int(duration * target_sample_rate / hop_length)
|
|
33
|
+
text_length = 150
|
|
34
|
+
|
|
35
|
+
flops, params = thop.profile(
|
|
36
|
+
model, inputs=(torch.randn(1, frame_length, n_mel_channels), torch.zeros(1, text_length, dtype=torch.long))
|
|
37
|
+
)
|
|
38
|
+
print(f"FLOPs: {flops / 1e9} G")
|
|
39
|
+
print(f"Params: {params / 1e6} M")
|