xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
|
|
4
|
+
sys.path.append(os.getcwd())
|
|
5
|
+
|
|
6
|
+
import json
|
|
7
|
+
from importlib.resources import files
|
|
8
|
+
from pathlib import Path
|
|
9
|
+
from tqdm import tqdm
|
|
10
|
+
import soundfile as sf
|
|
11
|
+
from datasets.arrow_writer import ArrowWriter
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def main():
|
|
15
|
+
result = []
|
|
16
|
+
duration_list = []
|
|
17
|
+
text_vocab_set = set()
|
|
18
|
+
|
|
19
|
+
with open(meta_info, "r") as f:
|
|
20
|
+
lines = f.readlines()
|
|
21
|
+
for line in tqdm(lines):
|
|
22
|
+
uttr, text, norm_text = line.split("|")
|
|
23
|
+
norm_text = norm_text.strip()
|
|
24
|
+
wav_path = Path(dataset_dir) / "wavs" / f"{uttr}.wav"
|
|
25
|
+
duration = sf.info(wav_path).duration
|
|
26
|
+
if duration < 0.4 or duration > 30:
|
|
27
|
+
continue
|
|
28
|
+
result.append({"audio_path": str(wav_path), "text": norm_text, "duration": duration})
|
|
29
|
+
duration_list.append(duration)
|
|
30
|
+
text_vocab_set.update(list(norm_text))
|
|
31
|
+
|
|
32
|
+
# save preprocessed dataset to disk
|
|
33
|
+
if not os.path.exists(f"{save_dir}"):
|
|
34
|
+
os.makedirs(f"{save_dir}")
|
|
35
|
+
print(f"\nSaving to {save_dir} ...")
|
|
36
|
+
|
|
37
|
+
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
|
|
38
|
+
for line in tqdm(result, desc="Writing to raw.arrow ..."):
|
|
39
|
+
writer.write(line)
|
|
40
|
+
|
|
41
|
+
# dup a json separately saving duration in case for DynamicBatchSampler ease
|
|
42
|
+
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
|
43
|
+
json.dump({"duration": duration_list}, f, ensure_ascii=False)
|
|
44
|
+
|
|
45
|
+
# vocab map, i.e. tokenizer
|
|
46
|
+
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
|
|
47
|
+
with open(f"{save_dir}/vocab.txt", "w") as f:
|
|
48
|
+
for vocab in sorted(text_vocab_set):
|
|
49
|
+
f.write(vocab + "\n")
|
|
50
|
+
|
|
51
|
+
print(f"\nFor {dataset_name}, sample count: {len(result)}")
|
|
52
|
+
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
|
|
53
|
+
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
if __name__ == "__main__":
|
|
57
|
+
tokenizer = "char" # "pinyin" | "char"
|
|
58
|
+
|
|
59
|
+
dataset_dir = "<SOME_PATH>/LJSpeech-1.1"
|
|
60
|
+
dataset_name = f"LJSpeech_{tokenizer}"
|
|
61
|
+
meta_info = os.path.join(dataset_dir, "metadata.csv")
|
|
62
|
+
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
|
63
|
+
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
|
64
|
+
|
|
65
|
+
main()
|
|
@@ -0,0 +1,125 @@
|
|
|
1
|
+
# generate audio text map for WenetSpeech4TTS
|
|
2
|
+
# evaluate for vocab size
|
|
3
|
+
|
|
4
|
+
import os
|
|
5
|
+
import sys
|
|
6
|
+
|
|
7
|
+
sys.path.append(os.getcwd())
|
|
8
|
+
|
|
9
|
+
import json
|
|
10
|
+
from concurrent.futures import ProcessPoolExecutor
|
|
11
|
+
from importlib.resources import files
|
|
12
|
+
from tqdm import tqdm
|
|
13
|
+
|
|
14
|
+
import torchaudio
|
|
15
|
+
from datasets import Dataset
|
|
16
|
+
|
|
17
|
+
from f5_tts.model.utils import convert_char_to_pinyin
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def deal_with_sub_path_files(dataset_path, sub_path):
|
|
21
|
+
print(f"Dealing with: {sub_path}")
|
|
22
|
+
|
|
23
|
+
text_dir = os.path.join(dataset_path, sub_path, "txts")
|
|
24
|
+
audio_dir = os.path.join(dataset_path, sub_path, "wavs")
|
|
25
|
+
text_files = os.listdir(text_dir)
|
|
26
|
+
|
|
27
|
+
audio_paths, texts, durations = [], [], []
|
|
28
|
+
for text_file in tqdm(text_files):
|
|
29
|
+
with open(os.path.join(text_dir, text_file), "r", encoding="utf-8") as file:
|
|
30
|
+
first_line = file.readline().split("\t")
|
|
31
|
+
audio_nm = first_line[0]
|
|
32
|
+
audio_path = os.path.join(audio_dir, audio_nm + ".wav")
|
|
33
|
+
text = first_line[1].strip()
|
|
34
|
+
|
|
35
|
+
audio_paths.append(audio_path)
|
|
36
|
+
|
|
37
|
+
if tokenizer == "pinyin":
|
|
38
|
+
texts.extend(convert_char_to_pinyin([text], polyphone=polyphone))
|
|
39
|
+
elif tokenizer == "char":
|
|
40
|
+
texts.append(text)
|
|
41
|
+
|
|
42
|
+
audio, sample_rate = torchaudio.load(audio_path)
|
|
43
|
+
durations.append(audio.shape[-1] / sample_rate)
|
|
44
|
+
|
|
45
|
+
return audio_paths, texts, durations
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def main():
|
|
49
|
+
assert tokenizer in ["pinyin", "char"]
|
|
50
|
+
|
|
51
|
+
audio_path_list, text_list, duration_list = [], [], []
|
|
52
|
+
|
|
53
|
+
executor = ProcessPoolExecutor(max_workers=max_workers)
|
|
54
|
+
futures = []
|
|
55
|
+
for dataset_path in dataset_paths:
|
|
56
|
+
sub_items = os.listdir(dataset_path)
|
|
57
|
+
sub_paths = [item for item in sub_items if os.path.isdir(os.path.join(dataset_path, item))]
|
|
58
|
+
for sub_path in sub_paths:
|
|
59
|
+
futures.append(executor.submit(deal_with_sub_path_files, dataset_path, sub_path))
|
|
60
|
+
for future in tqdm(futures, total=len(futures)):
|
|
61
|
+
audio_paths, texts, durations = future.result()
|
|
62
|
+
audio_path_list.extend(audio_paths)
|
|
63
|
+
text_list.extend(texts)
|
|
64
|
+
duration_list.extend(durations)
|
|
65
|
+
executor.shutdown()
|
|
66
|
+
|
|
67
|
+
if not os.path.exists("data"):
|
|
68
|
+
os.makedirs("data")
|
|
69
|
+
|
|
70
|
+
print(f"\nSaving to {save_dir} ...")
|
|
71
|
+
dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list})
|
|
72
|
+
dataset.save_to_disk(f"{save_dir}/raw", max_shard_size="2GB") # arrow format
|
|
73
|
+
|
|
74
|
+
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
|
|
75
|
+
json.dump(
|
|
76
|
+
{"duration": duration_list}, f, ensure_ascii=False
|
|
77
|
+
) # dup a json separately saving duration in case for DynamicBatchSampler ease
|
|
78
|
+
|
|
79
|
+
print("\nEvaluating vocab size (all characters and symbols / all phonemes) ...")
|
|
80
|
+
text_vocab_set = set()
|
|
81
|
+
for text in tqdm(text_list):
|
|
82
|
+
text_vocab_set.update(list(text))
|
|
83
|
+
|
|
84
|
+
# add alphabets and symbols (optional, if plan to ft on de/fr etc.)
|
|
85
|
+
if tokenizer == "pinyin":
|
|
86
|
+
text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)])
|
|
87
|
+
|
|
88
|
+
with open(f"{save_dir}/vocab.txt", "w") as f:
|
|
89
|
+
for vocab in sorted(text_vocab_set):
|
|
90
|
+
f.write(vocab + "\n")
|
|
91
|
+
print(f"\nFor {dataset_name}, sample count: {len(text_list)}")
|
|
92
|
+
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}\n")
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
if __name__ == "__main__":
|
|
96
|
+
max_workers = 32
|
|
97
|
+
|
|
98
|
+
tokenizer = "pinyin" # "pinyin" | "char"
|
|
99
|
+
polyphone = True
|
|
100
|
+
dataset_choice = 1 # 1: Premium, 2: Standard, 3: Basic
|
|
101
|
+
|
|
102
|
+
dataset_name = (
|
|
103
|
+
["WenetSpeech4TTS_Premium", "WenetSpeech4TTS_Standard", "WenetSpeech4TTS_Basic"][dataset_choice - 1]
|
|
104
|
+
+ "_"
|
|
105
|
+
+ tokenizer
|
|
106
|
+
)
|
|
107
|
+
dataset_paths = [
|
|
108
|
+
"<SOME_PATH>/WenetSpeech4TTS/Basic",
|
|
109
|
+
"<SOME_PATH>/WenetSpeech4TTS/Standard",
|
|
110
|
+
"<SOME_PATH>/WenetSpeech4TTS/Premium",
|
|
111
|
+
][-dataset_choice:]
|
|
112
|
+
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
|
113
|
+
print(f"\nChoose Dataset: {dataset_name}, will save to {save_dir}\n")
|
|
114
|
+
|
|
115
|
+
main()
|
|
116
|
+
|
|
117
|
+
# Results (if adding alphabets with accents and symbols):
|
|
118
|
+
# WenetSpeech4TTS Basic Standard Premium
|
|
119
|
+
# samples count 3932473 1941220 407494
|
|
120
|
+
# pinyin vocab size 1349 1348 1344 (no polyphone)
|
|
121
|
+
# - - 1459 (polyphone)
|
|
122
|
+
# char vocab size 5264 5219 5042
|
|
123
|
+
|
|
124
|
+
# vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme)
|
|
125
|
+
# please be careful if using pretrained model, make sure the vocab.txt is same
|
|
@@ -0,0 +1,174 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
import os
|
|
3
|
+
import shutil
|
|
4
|
+
|
|
5
|
+
from cached_path import cached_path
|
|
6
|
+
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
|
7
|
+
from f5_tts.model.utils import get_tokenizer
|
|
8
|
+
from f5_tts.model.dataset import load_dataset
|
|
9
|
+
from importlib.resources import files
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
# -------------------------- Dataset Settings --------------------------- #
|
|
13
|
+
target_sample_rate = 24000
|
|
14
|
+
n_mel_channels = 100
|
|
15
|
+
hop_length = 256
|
|
16
|
+
win_length = 1024
|
|
17
|
+
n_fft = 1024
|
|
18
|
+
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
# -------------------------- Argument Parsing --------------------------- #
|
|
22
|
+
def parse_args():
|
|
23
|
+
# batch_size_per_gpu = 1000 settting for gpu 8GB
|
|
24
|
+
# batch_size_per_gpu = 1600 settting for gpu 12GB
|
|
25
|
+
# batch_size_per_gpu = 2000 settting for gpu 16GB
|
|
26
|
+
# batch_size_per_gpu = 3200 settting for gpu 24GB
|
|
27
|
+
|
|
28
|
+
# num_warmup_updates = 300 for 5000 sample about 10 hours
|
|
29
|
+
|
|
30
|
+
# change save_per_updates , last_per_steps change this value what you need ,
|
|
31
|
+
|
|
32
|
+
parser = argparse.ArgumentParser(description="Train CFM Model")
|
|
33
|
+
|
|
34
|
+
parser.add_argument(
|
|
35
|
+
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
|
36
|
+
)
|
|
37
|
+
parser.add_argument("--dataset_name", type=str, default="Emilia_ZH_EN", help="Name of the dataset to use")
|
|
38
|
+
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training")
|
|
39
|
+
parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU")
|
|
40
|
+
parser.add_argument(
|
|
41
|
+
"--batch_size_type", type=str, default="frame", choices=["frame", "sample"], help="Batch size type"
|
|
42
|
+
)
|
|
43
|
+
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch")
|
|
44
|
+
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
|
45
|
+
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
|
46
|
+
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
|
|
47
|
+
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup steps")
|
|
48
|
+
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X steps")
|
|
49
|
+
parser.add_argument("--last_per_steps", type=int, default=50000, help="Save last checkpoint every X steps")
|
|
50
|
+
parser.add_argument("--finetune", type=bool, default=True, help="Use Finetune")
|
|
51
|
+
parser.add_argument("--pretrain", type=str, default=None, help="the path to the checkpoint")
|
|
52
|
+
parser.add_argument(
|
|
53
|
+
"--tokenizer", type=str, default="pinyin", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
|
54
|
+
)
|
|
55
|
+
parser.add_argument(
|
|
56
|
+
"--tokenizer_path",
|
|
57
|
+
type=str,
|
|
58
|
+
default=None,
|
|
59
|
+
help="Path to custom tokenizer vocab file (only used if tokenizer = 'custom')",
|
|
60
|
+
)
|
|
61
|
+
parser.add_argument(
|
|
62
|
+
"--log_samples",
|
|
63
|
+
type=bool,
|
|
64
|
+
default=False,
|
|
65
|
+
help="Log inferenced samples per ckpt save steps",
|
|
66
|
+
)
|
|
67
|
+
parser.add_argument("--logger", type=str, default=None, choices=["wandb", "tensorboard"], help="logger")
|
|
68
|
+
parser.add_argument(
|
|
69
|
+
"--bnb_optimizer",
|
|
70
|
+
type=bool,
|
|
71
|
+
default=False,
|
|
72
|
+
help="Use 8-bit Adam optimizer from bitsandbytes",
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
return parser.parse_args()
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
# -------------------------- Training Settings -------------------------- #
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def main():
|
|
82
|
+
args = parse_args()
|
|
83
|
+
|
|
84
|
+
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
|
85
|
+
|
|
86
|
+
# Model parameters based on experiment name
|
|
87
|
+
if args.exp_name == "F5TTS_Base":
|
|
88
|
+
wandb_resume_id = None
|
|
89
|
+
model_cls = DiT
|
|
90
|
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
91
|
+
if args.finetune:
|
|
92
|
+
if args.pretrain is None:
|
|
93
|
+
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
|
94
|
+
else:
|
|
95
|
+
ckpt_path = args.pretrain
|
|
96
|
+
elif args.exp_name == "E2TTS_Base":
|
|
97
|
+
wandb_resume_id = None
|
|
98
|
+
model_cls = UNetT
|
|
99
|
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
100
|
+
if args.finetune:
|
|
101
|
+
if args.pretrain is None:
|
|
102
|
+
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
|
103
|
+
else:
|
|
104
|
+
ckpt_path = args.pretrain
|
|
105
|
+
|
|
106
|
+
if args.finetune:
|
|
107
|
+
if not os.path.isdir(checkpoint_path):
|
|
108
|
+
os.makedirs(checkpoint_path, exist_ok=True)
|
|
109
|
+
|
|
110
|
+
file_checkpoint = os.path.join(checkpoint_path, os.path.basename(ckpt_path))
|
|
111
|
+
if not os.path.isfile(file_checkpoint):
|
|
112
|
+
shutil.copy2(ckpt_path, file_checkpoint)
|
|
113
|
+
print("copy checkpoint for finetune")
|
|
114
|
+
|
|
115
|
+
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
|
116
|
+
tokenizer = args.tokenizer
|
|
117
|
+
if tokenizer == "custom":
|
|
118
|
+
if not args.tokenizer_path:
|
|
119
|
+
raise ValueError("Custom tokenizer selected, but no tokenizer_path provided.")
|
|
120
|
+
tokenizer_path = args.tokenizer_path
|
|
121
|
+
else:
|
|
122
|
+
tokenizer_path = args.dataset_name
|
|
123
|
+
|
|
124
|
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
|
125
|
+
|
|
126
|
+
print("\nvocab : ", vocab_size)
|
|
127
|
+
print("\nvocoder : ", mel_spec_type)
|
|
128
|
+
|
|
129
|
+
mel_spec_kwargs = dict(
|
|
130
|
+
n_fft=n_fft,
|
|
131
|
+
hop_length=hop_length,
|
|
132
|
+
win_length=win_length,
|
|
133
|
+
n_mel_channels=n_mel_channels,
|
|
134
|
+
target_sample_rate=target_sample_rate,
|
|
135
|
+
mel_spec_type=mel_spec_type,
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
model = CFM(
|
|
139
|
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
|
140
|
+
mel_spec_kwargs=mel_spec_kwargs,
|
|
141
|
+
vocab_char_map=vocab_char_map,
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
trainer = Trainer(
|
|
145
|
+
model,
|
|
146
|
+
args.epochs,
|
|
147
|
+
args.learning_rate,
|
|
148
|
+
num_warmup_updates=args.num_warmup_updates,
|
|
149
|
+
save_per_updates=args.save_per_updates,
|
|
150
|
+
checkpoint_path=checkpoint_path,
|
|
151
|
+
batch_size=args.batch_size_per_gpu,
|
|
152
|
+
batch_size_type=args.batch_size_type,
|
|
153
|
+
max_samples=args.max_samples,
|
|
154
|
+
grad_accumulation_steps=args.grad_accumulation_steps,
|
|
155
|
+
max_grad_norm=args.max_grad_norm,
|
|
156
|
+
logger=args.logger,
|
|
157
|
+
wandb_project=args.dataset_name,
|
|
158
|
+
wandb_run_name=args.exp_name,
|
|
159
|
+
wandb_resume_id=wandb_resume_id,
|
|
160
|
+
log_samples=args.log_samples,
|
|
161
|
+
last_per_steps=args.last_per_steps,
|
|
162
|
+
bnb_optimizer=args.bnb_optimizer,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
166
|
+
|
|
167
|
+
trainer.train(
|
|
168
|
+
train_dataset,
|
|
169
|
+
resumable_with_seed=666, # seed for shuffling dataset
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
if __name__ == "__main__":
|
|
174
|
+
main()
|