xinference 0.16.3__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +24 -2
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +219 -77
- xinference/client/restful/restful_client.py +47 -2
- xinference/constants.py +1 -0
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +124 -34
- xinference/core/supervisor.py +180 -12
- xinference/core/utils.py +73 -4
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/__init__.py +12 -0
- xinference/model/audio/core.py +37 -4
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +70 -110
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +179 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/audio/whisper_mlx.py +208 -0
- xinference/model/embedding/core.py +322 -6
- xinference/model/embedding/model_spec.json +8 -1
- xinference/model/embedding/model_spec_modelscope.json +9 -1
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +50 -15
- xinference/model/llm/__init__.py +6 -2
- xinference/model/llm/llm_family.json +1055 -93
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +1031 -78
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +285 -47
- xinference/model/llm/sglang/core.py +2 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +3 -0
- xinference/model/llm/transformers/glm_edge_v.py +230 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +55 -4
- xinference/model/llm/vllm/core.py +137 -12
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/rerank/core.py +11 -4
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +266 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/en_US.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/es_ES.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ja_JP.json +2 -2
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/ko_KR.json +123 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/zh_CN.json +2 -1
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +137 -29
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/firefly.py +9 -9
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/fsq.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +17 -11
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/utils/__init__.py +2 -1
- xinference/thirdparty/fish_speech/fish_speech/utils/utils.py +22 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/launch_utils.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +2 -2
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +34 -18
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/e2e_webui.py +232 -0
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +298 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +484 -72
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +170 -0
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/vqgan/extract_vq.py +7 -1
- xinference/thirdparty/fish_speech/tools/vqgan/inference.py +2 -3
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +17 -1
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/METADATA +96 -36
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/RECORD +335 -146
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/WHEEL +1 -1
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/fish_speech/configs/lora/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/datasets/protos/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/i18n/locale/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/models/vqgan/modules/__init__.py +0 -0
- xinference/thirdparty/fish_speech/fish_speech/webui/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/api.py +0 -440
- xinference/thirdparty/fish_speech/tools/commons.py +0 -35
- xinference/thirdparty/fish_speech/tools/llama/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -34
- xinference/thirdparty/fish_speech/tools/vqgan/__init__.py +0 -0
- xinference/thirdparty/fish_speech/tools/webui.py +0 -485
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/fish_speech/configs → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-0.16.3.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import io
|
|
15
|
+
import logging
|
|
16
|
+
import os
|
|
17
|
+
import re
|
|
18
|
+
from io import BytesIO
|
|
19
|
+
from typing import TYPE_CHECKING, Optional, Union
|
|
20
|
+
|
|
21
|
+
if TYPE_CHECKING:
|
|
22
|
+
from .core import AudioModelFamilyV1
|
|
23
|
+
|
|
24
|
+
logger = logging.getLogger(__name__)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class F5TTSModel:
|
|
28
|
+
def __init__(
|
|
29
|
+
self,
|
|
30
|
+
model_uid: str,
|
|
31
|
+
model_path: str,
|
|
32
|
+
model_spec: "AudioModelFamilyV1",
|
|
33
|
+
device: Optional[str] = None,
|
|
34
|
+
**kwargs,
|
|
35
|
+
):
|
|
36
|
+
self._model_uid = model_uid
|
|
37
|
+
self._model_path = model_path
|
|
38
|
+
self._model_spec = model_spec
|
|
39
|
+
self._device = device
|
|
40
|
+
self._model = None
|
|
41
|
+
self._vocoder = None
|
|
42
|
+
self._kwargs = kwargs
|
|
43
|
+
|
|
44
|
+
@property
|
|
45
|
+
def model_ability(self):
|
|
46
|
+
return self._model_spec.model_ability
|
|
47
|
+
|
|
48
|
+
def load(self):
|
|
49
|
+
import os
|
|
50
|
+
import sys
|
|
51
|
+
|
|
52
|
+
# The yaml config loaded from model has hard-coded the import paths. please refer to: load_hyperpyyaml
|
|
53
|
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../../thirdparty"))
|
|
54
|
+
|
|
55
|
+
from f5_tts.infer.utils_infer import load_model, load_vocoder
|
|
56
|
+
from f5_tts.model import DiT
|
|
57
|
+
|
|
58
|
+
vocoder_name = self._kwargs.get("vocoder_name", "vocos")
|
|
59
|
+
vocoder_path = self._kwargs.get("vocoder_path")
|
|
60
|
+
|
|
61
|
+
if vocoder_name not in ["vocos", "bigvgan"]:
|
|
62
|
+
raise Exception(f"Unsupported vocoder name: {vocoder_name}")
|
|
63
|
+
|
|
64
|
+
if vocoder_path is not None:
|
|
65
|
+
self._vocoder = load_vocoder(
|
|
66
|
+
vocoder_name=vocoder_name, is_local=True, local_path=vocoder_path
|
|
67
|
+
)
|
|
68
|
+
else:
|
|
69
|
+
self._vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=False)
|
|
70
|
+
|
|
71
|
+
model_cls = DiT
|
|
72
|
+
model_cfg = dict(
|
|
73
|
+
dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
|
|
74
|
+
)
|
|
75
|
+
if vocoder_name == "vocos":
|
|
76
|
+
exp_name = "F5TTS_Base"
|
|
77
|
+
ckpt_step = 1200000
|
|
78
|
+
elif vocoder_name == "bigvgan":
|
|
79
|
+
exp_name = "F5TTS_Base_bigvgan"
|
|
80
|
+
ckpt_step = 1250000
|
|
81
|
+
else:
|
|
82
|
+
assert False
|
|
83
|
+
ckpt_file = os.path.join(
|
|
84
|
+
self._model_path, exp_name, f"model_{ckpt_step}.safetensors"
|
|
85
|
+
)
|
|
86
|
+
logger.info(f"Loading %s...", ckpt_file)
|
|
87
|
+
self._model = load_model(
|
|
88
|
+
model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
def _infer(self, ref_audio, ref_text, text_gen, model_obj, mel_spec_type, speed):
|
|
92
|
+
import numpy as np
|
|
93
|
+
from f5_tts.infer.utils_infer import infer_process, preprocess_ref_audio_text
|
|
94
|
+
|
|
95
|
+
config = {}
|
|
96
|
+
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
|
97
|
+
if "voices" not in config:
|
|
98
|
+
voices = {"main": main_voice}
|
|
99
|
+
else:
|
|
100
|
+
voices = config["voices"]
|
|
101
|
+
voices["main"] = main_voice
|
|
102
|
+
for voice in voices:
|
|
103
|
+
(
|
|
104
|
+
voices[voice]["ref_audio"],
|
|
105
|
+
voices[voice]["ref_text"],
|
|
106
|
+
) = preprocess_ref_audio_text(
|
|
107
|
+
voices[voice]["ref_audio"], voices[voice]["ref_text"]
|
|
108
|
+
)
|
|
109
|
+
logger.info("Voice:", voice)
|
|
110
|
+
logger.info("Ref_audio:", voices[voice]["ref_audio"])
|
|
111
|
+
logger.info("Ref_text:", voices[voice]["ref_text"])
|
|
112
|
+
|
|
113
|
+
final_sample_rate = None
|
|
114
|
+
generated_audio_segments = []
|
|
115
|
+
reg1 = r"(?=\[\w+\])"
|
|
116
|
+
chunks = re.split(reg1, text_gen)
|
|
117
|
+
reg2 = r"\[(\w+)\]"
|
|
118
|
+
for text in chunks:
|
|
119
|
+
if not text.strip():
|
|
120
|
+
continue
|
|
121
|
+
match = re.match(reg2, text)
|
|
122
|
+
if match:
|
|
123
|
+
voice = match[1]
|
|
124
|
+
else:
|
|
125
|
+
logger.info("No voice tag found, using main.")
|
|
126
|
+
voice = "main"
|
|
127
|
+
if voice not in voices:
|
|
128
|
+
logger.info(f"Voice {voice} not found, using main.")
|
|
129
|
+
voice = "main"
|
|
130
|
+
text = re.sub(reg2, "", text)
|
|
131
|
+
gen_text = text.strip()
|
|
132
|
+
ref_audio = voices[voice]["ref_audio"]
|
|
133
|
+
ref_text = voices[voice]["ref_text"]
|
|
134
|
+
logger.info(f"Voice: {voice}")
|
|
135
|
+
audio, final_sample_rate, spectragram = infer_process(
|
|
136
|
+
ref_audio,
|
|
137
|
+
ref_text,
|
|
138
|
+
gen_text,
|
|
139
|
+
model_obj,
|
|
140
|
+
self._vocoder,
|
|
141
|
+
mel_spec_type=mel_spec_type,
|
|
142
|
+
speed=speed,
|
|
143
|
+
)
|
|
144
|
+
generated_audio_segments.append(audio)
|
|
145
|
+
|
|
146
|
+
if generated_audio_segments:
|
|
147
|
+
final_wave = np.concatenate(generated_audio_segments)
|
|
148
|
+
return final_sample_rate, final_wave
|
|
149
|
+
return None, None
|
|
150
|
+
|
|
151
|
+
def speech(
|
|
152
|
+
self,
|
|
153
|
+
input: str,
|
|
154
|
+
voice: str,
|
|
155
|
+
response_format: str = "mp3",
|
|
156
|
+
speed: float = 1.0,
|
|
157
|
+
stream: bool = False,
|
|
158
|
+
**kwargs,
|
|
159
|
+
):
|
|
160
|
+
import f5_tts
|
|
161
|
+
import soundfile
|
|
162
|
+
import tomli
|
|
163
|
+
|
|
164
|
+
if stream:
|
|
165
|
+
raise Exception("F5-TTS does not support stream generation.")
|
|
166
|
+
|
|
167
|
+
prompt_speech: Optional[bytes] = kwargs.pop("prompt_speech", None)
|
|
168
|
+
prompt_text: Optional[str] = kwargs.pop("prompt_text", None)
|
|
169
|
+
|
|
170
|
+
ref_audio: Union[str, io.BytesIO]
|
|
171
|
+
if prompt_speech is None:
|
|
172
|
+
base = os.path.dirname(f5_tts.__file__)
|
|
173
|
+
config = os.path.join(base, "infer/examples/basic/basic.toml")
|
|
174
|
+
with open(config, "rb") as f:
|
|
175
|
+
config_dict = tomli.load(f)
|
|
176
|
+
ref_audio = os.path.join(base, config_dict["ref_audio"])
|
|
177
|
+
prompt_text = config_dict["ref_text"]
|
|
178
|
+
else:
|
|
179
|
+
ref_audio = io.BytesIO(prompt_speech)
|
|
180
|
+
if prompt_text is None:
|
|
181
|
+
raise ValueError("`prompt_text` cannot be empty")
|
|
182
|
+
|
|
183
|
+
assert self._model is not None
|
|
184
|
+
vocoder_name = self._kwargs.get("vocoder_name", "vocos")
|
|
185
|
+
sample_rate, wav = self._infer(
|
|
186
|
+
ref_audio=ref_audio,
|
|
187
|
+
ref_text=prompt_text,
|
|
188
|
+
text_gen=input,
|
|
189
|
+
model_obj=self._model,
|
|
190
|
+
mel_spec_type=vocoder_name,
|
|
191
|
+
speed=speed,
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Save the generated audio
|
|
195
|
+
with BytesIO() as out:
|
|
196
|
+
with soundfile.SoundFile(
|
|
197
|
+
out, "w", sample_rate, 1, format=response_format.upper()
|
|
198
|
+
) as f:
|
|
199
|
+
f.write(wav)
|
|
200
|
+
return out.getvalue()
|
|
@@ -0,0 +1,260 @@
|
|
|
1
|
+
# Copyright 2022-2023 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import datetime
|
|
16
|
+
import io
|
|
17
|
+
import logging
|
|
18
|
+
import os
|
|
19
|
+
from io import BytesIO
|
|
20
|
+
from pathlib import Path
|
|
21
|
+
from typing import TYPE_CHECKING, Literal, Optional, Union
|
|
22
|
+
|
|
23
|
+
import numpy as np
|
|
24
|
+
from tqdm import tqdm
|
|
25
|
+
|
|
26
|
+
if TYPE_CHECKING:
|
|
27
|
+
from .core import AudioModelFamilyV1
|
|
28
|
+
|
|
29
|
+
logger = logging.getLogger(__name__)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class F5TTSMLXModel:
|
|
33
|
+
def __init__(
|
|
34
|
+
self,
|
|
35
|
+
model_uid: str,
|
|
36
|
+
model_path: str,
|
|
37
|
+
model_spec: "AudioModelFamilyV1",
|
|
38
|
+
device: Optional[str] = None,
|
|
39
|
+
**kwargs,
|
|
40
|
+
):
|
|
41
|
+
self._model_uid = model_uid
|
|
42
|
+
self._model_path = model_path
|
|
43
|
+
self._model_spec = model_spec
|
|
44
|
+
self._device = device
|
|
45
|
+
self._model = None
|
|
46
|
+
self._kwargs = kwargs
|
|
47
|
+
self._model = None
|
|
48
|
+
|
|
49
|
+
@property
|
|
50
|
+
def model_ability(self):
|
|
51
|
+
return self._model_spec.model_ability
|
|
52
|
+
|
|
53
|
+
def load(self):
|
|
54
|
+
try:
|
|
55
|
+
import mlx.core as mx
|
|
56
|
+
from f5_tts_mlx.cfm import F5TTS
|
|
57
|
+
from f5_tts_mlx.dit import DiT
|
|
58
|
+
from f5_tts_mlx.duration import DurationPredictor, DurationTransformer
|
|
59
|
+
from vocos_mlx import Vocos
|
|
60
|
+
except ImportError:
|
|
61
|
+
error_message = "Failed to import module 'f5_tts_mlx'"
|
|
62
|
+
installation_guide = [
|
|
63
|
+
"Please make sure 'f5_tts_mlx' is installed.\n",
|
|
64
|
+
]
|
|
65
|
+
|
|
66
|
+
raise ImportError(f"{error_message}\n\n{''.join(installation_guide)}")
|
|
67
|
+
|
|
68
|
+
path = Path(self._model_path)
|
|
69
|
+
# vocab
|
|
70
|
+
|
|
71
|
+
vocab_path = path / "vocab.txt"
|
|
72
|
+
vocab = {v: i for i, v in enumerate(Path(vocab_path).read_text().split("\n"))}
|
|
73
|
+
if len(vocab) == 0:
|
|
74
|
+
raise ValueError(f"Could not load vocab from {vocab_path}")
|
|
75
|
+
|
|
76
|
+
# duration predictor
|
|
77
|
+
|
|
78
|
+
duration_model_path = path / "duration_v2.safetensors"
|
|
79
|
+
duration_predictor = None
|
|
80
|
+
|
|
81
|
+
if duration_model_path.exists():
|
|
82
|
+
duration_predictor = DurationPredictor(
|
|
83
|
+
transformer=DurationTransformer(
|
|
84
|
+
dim=512,
|
|
85
|
+
depth=8,
|
|
86
|
+
heads=8,
|
|
87
|
+
text_dim=512,
|
|
88
|
+
ff_mult=2,
|
|
89
|
+
conv_layers=2,
|
|
90
|
+
text_num_embeds=len(vocab) - 1,
|
|
91
|
+
),
|
|
92
|
+
vocab_char_map=vocab,
|
|
93
|
+
)
|
|
94
|
+
weights = mx.load(duration_model_path.as_posix(), format="safetensors")
|
|
95
|
+
duration_predictor.load_weights(list(weights.items()))
|
|
96
|
+
|
|
97
|
+
# vocoder
|
|
98
|
+
|
|
99
|
+
vocos = Vocos.from_pretrained("lucasnewman/vocos-mel-24khz")
|
|
100
|
+
|
|
101
|
+
# model
|
|
102
|
+
|
|
103
|
+
model_path = path / "model.safetensors"
|
|
104
|
+
|
|
105
|
+
f5tts = F5TTS(
|
|
106
|
+
transformer=DiT(
|
|
107
|
+
dim=1024,
|
|
108
|
+
depth=22,
|
|
109
|
+
heads=16,
|
|
110
|
+
ff_mult=2,
|
|
111
|
+
text_dim=512,
|
|
112
|
+
conv_layers=4,
|
|
113
|
+
text_num_embeds=len(vocab) - 1,
|
|
114
|
+
),
|
|
115
|
+
vocab_char_map=vocab,
|
|
116
|
+
vocoder=vocos.decode,
|
|
117
|
+
duration_predictor=duration_predictor,
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
weights = mx.load(model_path.as_posix(), format="safetensors")
|
|
121
|
+
f5tts.load_weights(list(weights.items()))
|
|
122
|
+
mx.eval(f5tts.parameters())
|
|
123
|
+
|
|
124
|
+
self._model = f5tts
|
|
125
|
+
|
|
126
|
+
def speech(
|
|
127
|
+
self,
|
|
128
|
+
input: str,
|
|
129
|
+
voice: str,
|
|
130
|
+
response_format: str = "mp3",
|
|
131
|
+
speed: float = 1.0,
|
|
132
|
+
stream: bool = False,
|
|
133
|
+
**kwargs,
|
|
134
|
+
):
|
|
135
|
+
import mlx.core as mx
|
|
136
|
+
import soundfile as sf
|
|
137
|
+
import tomli
|
|
138
|
+
from f5_tts_mlx.generate import (
|
|
139
|
+
FRAMES_PER_SEC,
|
|
140
|
+
SAMPLE_RATE,
|
|
141
|
+
TARGET_RMS,
|
|
142
|
+
convert_char_to_pinyin,
|
|
143
|
+
split_sentences,
|
|
144
|
+
)
|
|
145
|
+
|
|
146
|
+
from .utils import ensure_sample_rate
|
|
147
|
+
|
|
148
|
+
if stream:
|
|
149
|
+
raise Exception("F5-TTS does not support stream generation.")
|
|
150
|
+
|
|
151
|
+
prompt_speech: Optional[bytes] = kwargs.pop("prompt_speech", None)
|
|
152
|
+
prompt_text: Optional[str] = kwargs.pop("prompt_text", None)
|
|
153
|
+
duration: Optional[float] = kwargs.pop("duration", None)
|
|
154
|
+
steps: Optional[int] = kwargs.pop("steps", 8)
|
|
155
|
+
cfg_strength: Optional[float] = kwargs.pop("cfg_strength", 2.0)
|
|
156
|
+
method: Literal["euler", "midpoint"] = kwargs.pop("method", "rk4")
|
|
157
|
+
sway_sampling_coef: float = kwargs.pop("sway_sampling_coef", -1.0)
|
|
158
|
+
seed: Optional[int] = kwargs.pop("seed", None)
|
|
159
|
+
|
|
160
|
+
prompt_speech_path: Union[str, io.BytesIO]
|
|
161
|
+
if prompt_speech is None:
|
|
162
|
+
base = os.path.join(os.path.dirname(__file__), "../../thirdparty/f5_tts")
|
|
163
|
+
config = os.path.join(base, "infer/examples/basic/basic.toml")
|
|
164
|
+
with open(config, "rb") as f:
|
|
165
|
+
config_dict = tomli.load(f)
|
|
166
|
+
prompt_speech_path = os.path.join(base, config_dict["ref_audio"])
|
|
167
|
+
prompt_text = config_dict["ref_text"]
|
|
168
|
+
else:
|
|
169
|
+
prompt_speech_path = io.BytesIO(prompt_speech)
|
|
170
|
+
|
|
171
|
+
if prompt_text is None:
|
|
172
|
+
raise ValueError("`prompt_text` cannot be empty")
|
|
173
|
+
|
|
174
|
+
audio, sr = sf.read(prompt_speech_path)
|
|
175
|
+
audio = ensure_sample_rate(audio, sr, SAMPLE_RATE)
|
|
176
|
+
|
|
177
|
+
audio = mx.array(audio)
|
|
178
|
+
ref_audio_duration = audio.shape[0] / SAMPLE_RATE
|
|
179
|
+
logger.debug(
|
|
180
|
+
f"Got reference audio with duration: {ref_audio_duration:.2f} seconds"
|
|
181
|
+
)
|
|
182
|
+
|
|
183
|
+
rms = mx.sqrt(mx.mean(mx.square(audio)))
|
|
184
|
+
if rms < TARGET_RMS:
|
|
185
|
+
audio = audio * TARGET_RMS / rms
|
|
186
|
+
|
|
187
|
+
sentences = split_sentences(input)
|
|
188
|
+
is_single_generation = len(sentences) <= 1 or duration is not None
|
|
189
|
+
|
|
190
|
+
if is_single_generation:
|
|
191
|
+
generation_text = convert_char_to_pinyin([prompt_text + " " + input]) # type: ignore
|
|
192
|
+
|
|
193
|
+
if duration is not None:
|
|
194
|
+
duration = int(duration * FRAMES_PER_SEC)
|
|
195
|
+
|
|
196
|
+
start_date = datetime.datetime.now()
|
|
197
|
+
|
|
198
|
+
wave, _ = self._model.sample( # type: ignore
|
|
199
|
+
mx.expand_dims(audio, axis=0),
|
|
200
|
+
text=generation_text,
|
|
201
|
+
duration=duration,
|
|
202
|
+
steps=steps,
|
|
203
|
+
method=method,
|
|
204
|
+
speed=speed,
|
|
205
|
+
cfg_strength=cfg_strength,
|
|
206
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
207
|
+
seed=seed,
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
wave = wave[audio.shape[0] :]
|
|
211
|
+
mx.eval(wave)
|
|
212
|
+
|
|
213
|
+
generated_duration = wave.shape[0] / SAMPLE_RATE
|
|
214
|
+
print(
|
|
215
|
+
f"Generated {generated_duration:.2f}s of audio in {datetime.datetime.now() - start_date}."
|
|
216
|
+
)
|
|
217
|
+
|
|
218
|
+
else:
|
|
219
|
+
start_date = datetime.datetime.now()
|
|
220
|
+
|
|
221
|
+
output = []
|
|
222
|
+
|
|
223
|
+
for sentence_text in tqdm(split_sentences(input)):
|
|
224
|
+
text = convert_char_to_pinyin([prompt_text + " " + sentence_text]) # type: ignore
|
|
225
|
+
|
|
226
|
+
if duration is not None:
|
|
227
|
+
duration = int(duration * FRAMES_PER_SEC)
|
|
228
|
+
|
|
229
|
+
wave, _ = self._model.sample( # type: ignore
|
|
230
|
+
mx.expand_dims(audio, axis=0),
|
|
231
|
+
text=text,
|
|
232
|
+
duration=duration,
|
|
233
|
+
steps=steps,
|
|
234
|
+
method=method,
|
|
235
|
+
speed=speed,
|
|
236
|
+
cfg_strength=cfg_strength,
|
|
237
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
238
|
+
seed=seed,
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
# trim the reference audio
|
|
242
|
+
wave = wave[audio.shape[0] :]
|
|
243
|
+
mx.eval(wave)
|
|
244
|
+
|
|
245
|
+
output.append(wave)
|
|
246
|
+
|
|
247
|
+
wave = mx.concatenate(output, axis=0)
|
|
248
|
+
|
|
249
|
+
generated_duration = wave.shape[0] / SAMPLE_RATE
|
|
250
|
+
logger.debug(
|
|
251
|
+
f"Generated {generated_duration:.2f}s of audio in {datetime.datetime.now() - start_date}."
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
# Save the generated audio
|
|
255
|
+
with BytesIO() as out:
|
|
256
|
+
with sf.SoundFile(
|
|
257
|
+
out, "w", SAMPLE_RATE, 1, format=response_format.upper()
|
|
258
|
+
) as f:
|
|
259
|
+
f.write(np.array(wave))
|
|
260
|
+
return out.getvalue()
|
|
@@ -11,10 +11,8 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
import gc
|
|
15
14
|
import logging
|
|
16
15
|
import os.path
|
|
17
|
-
import queue
|
|
18
16
|
import sys
|
|
19
17
|
from io import BytesIO
|
|
20
18
|
from typing import TYPE_CHECKING, Optional
|
|
@@ -60,6 +58,7 @@ class FishSpeechModel:
|
|
|
60
58
|
self._device = device
|
|
61
59
|
self._llama_queue = None
|
|
62
60
|
self._model = None
|
|
61
|
+
self._engine = None
|
|
63
62
|
self._kwargs = kwargs
|
|
64
63
|
|
|
65
64
|
@property
|
|
@@ -72,6 +71,7 @@ class FishSpeechModel:
|
|
|
72
71
|
0, os.path.join(os.path.dirname(__file__), "../../thirdparty/fish_speech")
|
|
73
72
|
)
|
|
74
73
|
|
|
74
|
+
from tools.inference_engine import TTSInferenceEngine
|
|
75
75
|
from tools.llama.generate import launch_thread_safe_queue
|
|
76
76
|
from tools.vqgan.inference import load_model as load_decoder_model
|
|
77
77
|
|
|
@@ -81,12 +81,19 @@ class FishSpeechModel:
|
|
|
81
81
|
if not is_device_available(self._device):
|
|
82
82
|
raise ValueError(f"Device {self._device} is not available!")
|
|
83
83
|
|
|
84
|
-
|
|
84
|
+
# https://github.com/pytorch/pytorch/issues/129207
|
|
85
|
+
if self._device == "mps":
|
|
86
|
+
logger.warning("The Conv1d has bugs on MPS backend, fallback to CPU.")
|
|
87
|
+
self._device = "cpu"
|
|
88
|
+
|
|
89
|
+
enable_compile = self._kwargs.get("compile", False)
|
|
90
|
+
precision = self._kwargs.get("precision", torch.bfloat16)
|
|
91
|
+
logger.info("Loading Llama model, compile=%s...", enable_compile)
|
|
85
92
|
self._llama_queue = launch_thread_safe_queue(
|
|
86
93
|
checkpoint_path=self._model_path,
|
|
87
94
|
device=self._device,
|
|
88
|
-
precision=
|
|
89
|
-
compile=
|
|
95
|
+
precision=precision,
|
|
96
|
+
compile=enable_compile,
|
|
90
97
|
)
|
|
91
98
|
logger.info("Llama model loaded, loading VQ-GAN model...")
|
|
92
99
|
|
|
@@ -100,98 +107,10 @@ class FishSpeechModel:
|
|
|
100
107
|
device=self._device,
|
|
101
108
|
)
|
|
102
109
|
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
self,
|
|
106
|
-
text,
|
|
107
|
-
enable_reference_audio,
|
|
108
|
-
reference_audio,
|
|
109
|
-
reference_text,
|
|
110
|
-
max_new_tokens,
|
|
111
|
-
chunk_length,
|
|
112
|
-
top_p,
|
|
113
|
-
repetition_penalty,
|
|
114
|
-
temperature,
|
|
115
|
-
streaming=False,
|
|
116
|
-
):
|
|
117
|
-
from fish_speech.utils import autocast_exclude_mps
|
|
118
|
-
from tools.api import decode_vq_tokens, encode_reference
|
|
119
|
-
from tools.llama.generate import (
|
|
120
|
-
GenerateRequest,
|
|
121
|
-
GenerateResponse,
|
|
122
|
-
WrappedGenerateResponse,
|
|
123
|
-
)
|
|
124
|
-
|
|
125
|
-
# Parse reference audio aka prompt
|
|
126
|
-
prompt_tokens = encode_reference(
|
|
127
|
-
decoder_model=self._model,
|
|
128
|
-
reference_audio=reference_audio,
|
|
129
|
-
enable_reference_audio=enable_reference_audio,
|
|
130
|
-
)
|
|
131
|
-
|
|
132
|
-
# LLAMA Inference
|
|
133
|
-
request = dict(
|
|
134
|
-
device=self._model.device,
|
|
135
|
-
max_new_tokens=max_new_tokens,
|
|
136
|
-
text=text,
|
|
137
|
-
top_p=top_p,
|
|
138
|
-
repetition_penalty=repetition_penalty,
|
|
139
|
-
temperature=temperature,
|
|
140
|
-
compile=False,
|
|
141
|
-
iterative_prompt=chunk_length > 0,
|
|
142
|
-
chunk_length=chunk_length,
|
|
143
|
-
max_length=2048,
|
|
144
|
-
prompt_tokens=prompt_tokens if enable_reference_audio else None,
|
|
145
|
-
prompt_text=reference_text if enable_reference_audio else None,
|
|
110
|
+
self._engine = TTSInferenceEngine(
|
|
111
|
+
self._llama_queue, self._model, precision, enable_compile
|
|
146
112
|
)
|
|
147
113
|
|
|
148
|
-
response_queue = queue.Queue()
|
|
149
|
-
self._llama_queue.put(
|
|
150
|
-
GenerateRequest(
|
|
151
|
-
request=request,
|
|
152
|
-
response_queue=response_queue,
|
|
153
|
-
)
|
|
154
|
-
)
|
|
155
|
-
|
|
156
|
-
if streaming:
|
|
157
|
-
yield wav_chunk_header(), None, None
|
|
158
|
-
|
|
159
|
-
segments = []
|
|
160
|
-
|
|
161
|
-
while True:
|
|
162
|
-
result: WrappedGenerateResponse = response_queue.get() # type: ignore
|
|
163
|
-
if result.status == "error":
|
|
164
|
-
raise Exception(str(result.response))
|
|
165
|
-
|
|
166
|
-
result: GenerateResponse = result.response # type: ignore
|
|
167
|
-
if result.action == "next":
|
|
168
|
-
break
|
|
169
|
-
|
|
170
|
-
with autocast_exclude_mps(
|
|
171
|
-
device_type=self._model.device.type, dtype=torch.bfloat16
|
|
172
|
-
):
|
|
173
|
-
fake_audios = decode_vq_tokens(
|
|
174
|
-
decoder_model=self._model,
|
|
175
|
-
codes=result.codes,
|
|
176
|
-
)
|
|
177
|
-
|
|
178
|
-
fake_audios = fake_audios.float().cpu().numpy()
|
|
179
|
-
segments.append(fake_audios)
|
|
180
|
-
|
|
181
|
-
if streaming:
|
|
182
|
-
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None
|
|
183
|
-
|
|
184
|
-
if len(segments) == 0:
|
|
185
|
-
raise Exception("No audio generated, please check the input text.")
|
|
186
|
-
|
|
187
|
-
# No matter streaming or not, we need to return the final audio
|
|
188
|
-
audio = np.concatenate(segments, axis=0)
|
|
189
|
-
yield None, (self._model.spec_transform.sample_rate, audio), None
|
|
190
|
-
|
|
191
|
-
if torch.cuda.is_available():
|
|
192
|
-
torch.cuda.empty_cache()
|
|
193
|
-
gc.collect()
|
|
194
|
-
|
|
195
114
|
def speech(
|
|
196
115
|
self,
|
|
197
116
|
input: str,
|
|
@@ -204,29 +123,70 @@ class FishSpeechModel:
|
|
|
204
123
|
logger.warning("Fish speech does not support setting voice: %s.", voice)
|
|
205
124
|
if speed != 1.0:
|
|
206
125
|
logger.warning("Fish speech does not support setting speed: %s.", speed)
|
|
207
|
-
if stream is True:
|
|
208
|
-
logger.warning("stream mode is not implemented.")
|
|
209
126
|
import torchaudio
|
|
127
|
+
from tools.schema import ServeReferenceAudio, ServeTTSRequest
|
|
128
|
+
|
|
129
|
+
prompt_speech = kwargs.get("prompt_speech")
|
|
130
|
+
prompt_text = kwargs.get("prompt_text", kwargs.get("reference_text", ""))
|
|
131
|
+
if prompt_speech is not None:
|
|
132
|
+
r = ServeReferenceAudio(audio=prompt_speech, text=prompt_text)
|
|
133
|
+
references = [r]
|
|
134
|
+
else:
|
|
135
|
+
references = []
|
|
210
136
|
|
|
211
|
-
|
|
212
|
-
|
|
137
|
+
assert self._engine is not None
|
|
138
|
+
result = self._engine.inference(
|
|
139
|
+
ServeTTSRequest(
|
|
213
140
|
text=input,
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
141
|
+
references=references,
|
|
142
|
+
reference_id=kwargs.get("reference_id"),
|
|
143
|
+
seed=kwargs.get("seed"),
|
|
217
144
|
max_new_tokens=kwargs.get("max_new_tokens", 1024),
|
|
218
145
|
chunk_length=kwargs.get("chunk_length", 200),
|
|
219
146
|
top_p=kwargs.get("top_p", 0.7),
|
|
220
147
|
repetition_penalty=kwargs.get("repetition_penalty", 1.2),
|
|
221
148
|
temperature=kwargs.get("temperature", 0.7),
|
|
149
|
+
streaming=stream,
|
|
150
|
+
format=response_format,
|
|
222
151
|
)
|
|
223
152
|
)
|
|
224
|
-
sample_rate, audio = result[0][1]
|
|
225
|
-
audio = np.array([audio])
|
|
226
153
|
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
154
|
+
if stream:
|
|
155
|
+
|
|
156
|
+
def _stream_generator():
|
|
157
|
+
with BytesIO() as out:
|
|
158
|
+
writer = torchaudio.io.StreamWriter(out, format=response_format)
|
|
159
|
+
writer.add_audio_stream(
|
|
160
|
+
sample_rate=self._model.spec_transform.sample_rate,
|
|
161
|
+
num_channels=1,
|
|
162
|
+
)
|
|
163
|
+
i = 0
|
|
164
|
+
last_pos = 0
|
|
165
|
+
with writer.open():
|
|
166
|
+
for chunk in result:
|
|
167
|
+
if chunk.code == "final":
|
|
168
|
+
continue
|
|
169
|
+
chunk = chunk.audio[1]
|
|
170
|
+
if chunk is not None:
|
|
171
|
+
chunk = chunk.reshape((chunk.shape[0], 1))
|
|
172
|
+
trans_chunk = torch.from_numpy(chunk)
|
|
173
|
+
writer.write_audio_chunk(i, trans_chunk)
|
|
174
|
+
new_last_pos = out.tell()
|
|
175
|
+
if new_last_pos != last_pos:
|
|
176
|
+
out.seek(last_pos)
|
|
177
|
+
encoded_bytes = out.read()
|
|
178
|
+
yield encoded_bytes
|
|
179
|
+
last_pos = new_last_pos
|
|
180
|
+
|
|
181
|
+
return _stream_generator()
|
|
182
|
+
else:
|
|
183
|
+
result = list(result)
|
|
184
|
+
sample_rate, audio = result[0].audio
|
|
185
|
+
audio = np.array([audio])
|
|
186
|
+
|
|
187
|
+
# Save the generated audio
|
|
188
|
+
with BytesIO() as out:
|
|
189
|
+
torchaudio.save(
|
|
190
|
+
out, torch.from_numpy(audio), sample_rate, format=response_format
|
|
191
|
+
)
|
|
192
|
+
return out.getvalue()
|