warp-lang 1.0.2__py3-none-manylinux2014_x86_64.whl → 1.2.0__py3-none-manylinux2014_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (356) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +88 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3693 -3354
  8. warp/codegen.py +2925 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +49 -45
  11. warp/context.py +5409 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +381 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -277
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
  34. warp/examples/benchmarks/benchmark_launches.py +293 -295
  35. warp/examples/browse.py +29 -29
  36. warp/examples/core/example_dem.py +232 -219
  37. warp/examples/core/example_fluid.py +291 -267
  38. warp/examples/core/example_graph_capture.py +142 -126
  39. warp/examples/core/example_marching_cubes.py +186 -174
  40. warp/examples/core/example_mesh.py +172 -155
  41. warp/examples/core/example_mesh_intersect.py +203 -193
  42. warp/examples/core/example_nvdb.py +174 -170
  43. warp/examples/core/example_raycast.py +103 -90
  44. warp/examples/core/example_raymarch.py +197 -178
  45. warp/examples/core/example_render_opengl.py +183 -141
  46. warp/examples/core/example_sph.py +403 -387
  47. warp/examples/core/example_torch.py +219 -181
  48. warp/examples/core/example_wave.py +261 -248
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +432 -389
  51. warp/examples/fem/example_burgers.py +262 -0
  52. warp/examples/fem/example_convection_diffusion.py +180 -168
  53. warp/examples/fem/example_convection_diffusion_dg.py +217 -209
  54. warp/examples/fem/example_deformed_geometry.py +175 -159
  55. warp/examples/fem/example_diffusion.py +199 -173
  56. warp/examples/fem/example_diffusion_3d.py +178 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +219 -214
  58. warp/examples/fem/example_mixed_elasticity.py +242 -222
  59. warp/examples/fem/example_navier_stokes.py +257 -243
  60. warp/examples/fem/example_stokes.py +218 -192
  61. warp/examples/fem/example_stokes_transfer.py +263 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +258 -246
  65. warp/examples/optim/example_cloth_throw.py +220 -209
  66. warp/examples/optim/example_diffray.py +564 -536
  67. warp/examples/optim/example_drone.py +862 -835
  68. warp/examples/optim/example_inverse_kinematics.py +174 -168
  69. warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
  70. warp/examples/optim/example_spring_cage.py +237 -231
  71. warp/examples/optim/example_trajectory.py +221 -199
  72. warp/examples/optim/example_walker.py +304 -293
  73. warp/examples/sim/example_cartpole.py +137 -129
  74. warp/examples/sim/example_cloth.py +194 -186
  75. warp/examples/sim/example_granular.py +122 -111
  76. warp/examples/sim/example_granular_collision_sdf.py +195 -186
  77. warp/examples/sim/example_jacobian_ik.py +234 -214
  78. warp/examples/sim/example_particle_chain.py +116 -105
  79. warp/examples/sim/example_quadruped.py +191 -180
  80. warp/examples/sim/example_rigid_chain.py +195 -187
  81. warp/examples/sim/example_rigid_contact.py +187 -177
  82. warp/examples/sim/example_rigid_force.py +125 -125
  83. warp/examples/sim/example_rigid_gyroscopic.py +107 -95
  84. warp/examples/sim/example_rigid_soft_contact.py +132 -122
  85. warp/examples/sim/example_soft_body.py +188 -177
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +61 -27
  88. warp/fem/cache.py +403 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +16 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +748 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +437 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/nanogrid.py +455 -0
  106. warp/fem/geometry/partition.py +374 -376
  107. warp/fem/geometry/quadmesh_2d.py +532 -532
  108. warp/fem/geometry/tetmesh.py +840 -840
  109. warp/fem/geometry/trimesh_2d.py +577 -577
  110. warp/fem/integrate.py +1684 -1615
  111. warp/fem/operator.py +190 -191
  112. warp/fem/polynomial.py +214 -213
  113. warp/fem/quadrature/__init__.py +2 -2
  114. warp/fem/quadrature/pic_quadrature.py +243 -245
  115. warp/fem/quadrature/quadrature.py +295 -294
  116. warp/fem/space/__init__.py +179 -292
  117. warp/fem/space/basis_space.py +522 -489
  118. warp/fem/space/collocated_function_space.py +100 -105
  119. warp/fem/space/dof_mapper.py +236 -236
  120. warp/fem/space/function_space.py +148 -145
  121. warp/fem/space/grid_2d_function_space.py +148 -267
  122. warp/fem/space/grid_3d_function_space.py +167 -306
  123. warp/fem/space/hexmesh_function_space.py +253 -352
  124. warp/fem/space/nanogrid_function_space.py +202 -0
  125. warp/fem/space/partition.py +350 -350
  126. warp/fem/space/quadmesh_2d_function_space.py +261 -369
  127. warp/fem/space/restriction.py +161 -160
  128. warp/fem/space/shape/__init__.py +90 -15
  129. warp/fem/space/shape/cube_shape_function.py +728 -738
  130. warp/fem/space/shape/shape_function.py +102 -103
  131. warp/fem/space/shape/square_shape_function.py +611 -611
  132. warp/fem/space/shape/tet_shape_function.py +565 -567
  133. warp/fem/space/shape/triangle_shape_function.py +429 -429
  134. warp/fem/space/tetmesh_function_space.py +224 -292
  135. warp/fem/space/topology.py +297 -295
  136. warp/fem/space/trimesh_2d_function_space.py +153 -221
  137. warp/fem/types.py +77 -77
  138. warp/fem/utils.py +495 -495
  139. warp/jax.py +166 -141
  140. warp/jax_experimental.py +341 -339
  141. warp/native/array.h +1081 -1025
  142. warp/native/builtin.h +1603 -1560
  143. warp/native/bvh.cpp +402 -398
  144. warp/native/bvh.cu +533 -525
  145. warp/native/bvh.h +430 -429
  146. warp/native/clang/clang.cpp +496 -464
  147. warp/native/crt.cpp +42 -32
  148. warp/native/crt.h +352 -335
  149. warp/native/cuda_crt.h +1049 -1049
  150. warp/native/cuda_util.cpp +549 -540
  151. warp/native/cuda_util.h +288 -203
  152. warp/native/cutlass_gemm.cpp +34 -34
  153. warp/native/cutlass_gemm.cu +372 -372
  154. warp/native/error.cpp +66 -66
  155. warp/native/error.h +27 -27
  156. warp/native/exports.h +187 -0
  157. warp/native/fabric.h +228 -228
  158. warp/native/hashgrid.cpp +301 -278
  159. warp/native/hashgrid.cu +78 -77
  160. warp/native/hashgrid.h +227 -227
  161. warp/native/initializer_array.h +32 -32
  162. warp/native/intersect.h +1204 -1204
  163. warp/native/intersect_adj.h +365 -365
  164. warp/native/intersect_tri.h +322 -322
  165. warp/native/marching.cpp +2 -2
  166. warp/native/marching.cu +497 -497
  167. warp/native/marching.h +2 -2
  168. warp/native/mat.h +1545 -1498
  169. warp/native/matnn.h +333 -333
  170. warp/native/mesh.cpp +203 -203
  171. warp/native/mesh.cu +292 -293
  172. warp/native/mesh.h +1887 -1887
  173. warp/native/nanovdb/GridHandle.h +366 -0
  174. warp/native/nanovdb/HostBuffer.h +590 -0
  175. warp/native/nanovdb/NanoVDB.h +6624 -4782
  176. warp/native/nanovdb/PNanoVDB.h +3390 -2553
  177. warp/native/noise.h +850 -850
  178. warp/native/quat.h +1112 -1085
  179. warp/native/rand.h +303 -299
  180. warp/native/range.h +108 -108
  181. warp/native/reduce.cpp +156 -156
  182. warp/native/reduce.cu +348 -348
  183. warp/native/runlength_encode.cpp +61 -61
  184. warp/native/runlength_encode.cu +46 -46
  185. warp/native/scan.cpp +30 -30
  186. warp/native/scan.cu +36 -36
  187. warp/native/scan.h +7 -7
  188. warp/native/solid_angle.h +442 -442
  189. warp/native/sort.cpp +94 -94
  190. warp/native/sort.cu +97 -97
  191. warp/native/sort.h +14 -14
  192. warp/native/sparse.cpp +337 -337
  193. warp/native/sparse.cu +544 -544
  194. warp/native/spatial.h +630 -630
  195. warp/native/svd.h +562 -562
  196. warp/native/temp_buffer.h +30 -30
  197. warp/native/vec.h +1177 -1133
  198. warp/native/volume.cpp +529 -297
  199. warp/native/volume.cu +58 -32
  200. warp/native/volume.h +960 -538
  201. warp/native/volume_builder.cu +446 -425
  202. warp/native/volume_builder.h +34 -19
  203. warp/native/volume_impl.h +61 -0
  204. warp/native/warp.cpp +1057 -1052
  205. warp/native/warp.cu +2949 -2828
  206. warp/native/warp.h +321 -305
  207. warp/optim/__init__.py +9 -9
  208. warp/optim/adam.py +120 -120
  209. warp/optim/linear.py +1104 -939
  210. warp/optim/sgd.py +104 -92
  211. warp/render/__init__.py +10 -10
  212. warp/render/render_opengl.py +3356 -3204
  213. warp/render/render_usd.py +768 -749
  214. warp/render/utils.py +152 -150
  215. warp/sim/__init__.py +52 -59
  216. warp/sim/articulation.py +685 -685
  217. warp/sim/collide.py +1594 -1590
  218. warp/sim/import_mjcf.py +489 -481
  219. warp/sim/import_snu.py +220 -221
  220. warp/sim/import_urdf.py +536 -516
  221. warp/sim/import_usd.py +887 -881
  222. warp/sim/inertia.py +316 -317
  223. warp/sim/integrator.py +234 -233
  224. warp/sim/integrator_euler.py +1956 -1956
  225. warp/sim/integrator_featherstone.py +1917 -1991
  226. warp/sim/integrator_xpbd.py +3288 -3312
  227. warp/sim/model.py +4473 -4314
  228. warp/sim/particles.py +113 -112
  229. warp/sim/render.py +417 -403
  230. warp/sim/utils.py +413 -410
  231. warp/sparse.py +1289 -1227
  232. warp/stubs.py +2192 -2469
  233. warp/tape.py +1162 -225
  234. warp/tests/__init__.py +1 -1
  235. warp/tests/__main__.py +4 -4
  236. warp/tests/assets/test_index_grid.nvdb +0 -0
  237. warp/tests/assets/torus.usda +105 -105
  238. warp/tests/aux_test_class_kernel.py +26 -26
  239. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  240. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  241. warp/tests/aux_test_dependent.py +20 -22
  242. warp/tests/aux_test_grad_customs.py +21 -23
  243. warp/tests/aux_test_reference.py +9 -11
  244. warp/tests/aux_test_reference_reference.py +8 -10
  245. warp/tests/aux_test_square.py +15 -17
  246. warp/tests/aux_test_unresolved_func.py +14 -14
  247. warp/tests/aux_test_unresolved_symbol.py +14 -14
  248. warp/tests/disabled_kinematics.py +237 -239
  249. warp/tests/run_coverage_serial.py +31 -31
  250. warp/tests/test_adam.py +155 -157
  251. warp/tests/test_arithmetic.py +1088 -1124
  252. warp/tests/test_array.py +2415 -2326
  253. warp/tests/test_array_reduce.py +148 -150
  254. warp/tests/test_async.py +666 -656
  255. warp/tests/test_atomic.py +139 -141
  256. warp/tests/test_bool.py +212 -149
  257. warp/tests/test_builtins_resolution.py +1290 -1292
  258. warp/tests/test_bvh.py +162 -171
  259. warp/tests/test_closest_point_edge_edge.py +227 -228
  260. warp/tests/test_codegen.py +562 -553
  261. warp/tests/test_compile_consts.py +217 -101
  262. warp/tests/test_conditional.py +244 -246
  263. warp/tests/test_copy.py +230 -215
  264. warp/tests/test_ctypes.py +630 -632
  265. warp/tests/test_dense.py +65 -67
  266. warp/tests/test_devices.py +89 -98
  267. warp/tests/test_dlpack.py +528 -529
  268. warp/tests/test_examples.py +403 -378
  269. warp/tests/test_fabricarray.py +952 -955
  270. warp/tests/test_fast_math.py +60 -54
  271. warp/tests/test_fem.py +1298 -1278
  272. warp/tests/test_fp16.py +128 -130
  273. warp/tests/test_func.py +336 -337
  274. warp/tests/test_generics.py +596 -571
  275. warp/tests/test_grad.py +885 -640
  276. warp/tests/test_grad_customs.py +331 -336
  277. warp/tests/test_hash_grid.py +208 -164
  278. warp/tests/test_import.py +37 -39
  279. warp/tests/test_indexedarray.py +1132 -1134
  280. warp/tests/test_intersect.py +65 -67
  281. warp/tests/test_jax.py +305 -307
  282. warp/tests/test_large.py +169 -164
  283. warp/tests/test_launch.py +352 -354
  284. warp/tests/test_lerp.py +217 -261
  285. warp/tests/test_linear_solvers.py +189 -171
  286. warp/tests/test_lvalue.py +419 -493
  287. warp/tests/test_marching_cubes.py +63 -65
  288. warp/tests/test_mat.py +1799 -1827
  289. warp/tests/test_mat_lite.py +113 -115
  290. warp/tests/test_mat_scalar_ops.py +2905 -2889
  291. warp/tests/test_math.py +124 -193
  292. warp/tests/test_matmul.py +498 -499
  293. warp/tests/test_matmul_lite.py +408 -410
  294. warp/tests/test_mempool.py +186 -190
  295. warp/tests/test_mesh.py +281 -324
  296. warp/tests/test_mesh_query_aabb.py +226 -241
  297. warp/tests/test_mesh_query_point.py +690 -702
  298. warp/tests/test_mesh_query_ray.py +290 -303
  299. warp/tests/test_mlp.py +274 -276
  300. warp/tests/test_model.py +108 -110
  301. warp/tests/test_module_hashing.py +111 -0
  302. warp/tests/test_modules_lite.py +36 -39
  303. warp/tests/test_multigpu.py +161 -163
  304. warp/tests/test_noise.py +244 -248
  305. warp/tests/test_operators.py +248 -250
  306. warp/tests/test_options.py +121 -125
  307. warp/tests/test_peer.py +131 -137
  308. warp/tests/test_pinned.py +76 -78
  309. warp/tests/test_print.py +52 -54
  310. warp/tests/test_quat.py +2084 -2086
  311. warp/tests/test_rand.py +324 -288
  312. warp/tests/test_reload.py +207 -217
  313. warp/tests/test_rounding.py +177 -179
  314. warp/tests/test_runlength_encode.py +188 -190
  315. warp/tests/test_sim_grad.py +241 -0
  316. warp/tests/test_sim_kinematics.py +89 -97
  317. warp/tests/test_smoothstep.py +166 -168
  318. warp/tests/test_snippet.py +303 -266
  319. warp/tests/test_sparse.py +466 -460
  320. warp/tests/test_spatial.py +2146 -2148
  321. warp/tests/test_special_values.py +362 -0
  322. warp/tests/test_streams.py +484 -473
  323. warp/tests/test_struct.py +708 -675
  324. warp/tests/test_tape.py +171 -148
  325. warp/tests/test_torch.py +741 -743
  326. warp/tests/test_transient_module.py +85 -87
  327. warp/tests/test_types.py +554 -659
  328. warp/tests/test_utils.py +488 -499
  329. warp/tests/test_vec.py +1262 -1268
  330. warp/tests/test_vec_lite.py +71 -73
  331. warp/tests/test_vec_scalar_ops.py +2097 -2099
  332. warp/tests/test_verify_fp.py +92 -94
  333. warp/tests/test_volume.py +961 -736
  334. warp/tests/test_volume_write.py +338 -265
  335. warp/tests/unittest_serial.py +38 -37
  336. warp/tests/unittest_suites.py +367 -359
  337. warp/tests/unittest_utils.py +434 -578
  338. warp/tests/unused_test_misc.py +69 -71
  339. warp/tests/walkthrough_debug.py +85 -85
  340. warp/thirdparty/appdirs.py +598 -598
  341. warp/thirdparty/dlpack.py +143 -143
  342. warp/thirdparty/unittest_parallel.py +563 -561
  343. warp/torch.py +321 -295
  344. warp/types.py +4941 -4450
  345. warp/utils.py +1008 -821
  346. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
  347. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
  348. warp_lang-1.2.0.dist-info/RECORD +359 -0
  349. warp/examples/assets/cube.usda +0 -42
  350. warp/examples/assets/sphere.usda +0 -56
  351. warp/examples/assets/torus.usda +0 -105
  352. warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
  353. warp/native/nanovdb/PNanoVDBWrite.h +0 -295
  354. warp_lang-1.0.2.dist-info/RECORD +0 -352
  355. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
  356. {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
@@ -1,611 +1,611 @@
1
- import math
2
-
3
- import warp as wp
4
- import numpy as np
5
-
6
- from warp.fem.polynomial import Polynomial, quadrature_1d, lagrange_scales, is_closed
7
- from warp.fem.types import Coords
8
- from warp.fem import cache
9
-
10
- from .triangle_shape_function import Triangle2DPolynomialShapeFunctions
11
-
12
-
13
- class SquareBipolynomialShapeFunctions:
14
- def __init__(self, degree: int, family: Polynomial):
15
- self.family = family
16
-
17
- self.ORDER = wp.constant(degree)
18
- self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1))
19
- self.NODES_PER_SIDE = wp.constant(degree + 1)
20
-
21
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
22
- lagrange_scale = lagrange_scales(lobatto_coords)
23
-
24
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
25
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
26
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
27
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
28
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
29
-
30
- @property
31
- def name(self) -> str:
32
- return f"Square_Q{self.ORDER}_{self.family}"
33
-
34
- def make_node_coords_in_element(self):
35
- ORDER = self.ORDER
36
- LOBATTO_COORDS = self.LOBATTO_COORDS
37
-
38
- @cache.dynamic_func(suffix=self.name)
39
- def node_coords_in_element(
40
- node_index_in_elt: int,
41
- ):
42
- node_i = node_index_in_elt // (ORDER + 1)
43
- node_j = node_index_in_elt - (ORDER + 1) * node_i
44
- return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
45
-
46
- return node_coords_in_element
47
-
48
- def make_node_quadrature_weight(self):
49
- ORDER = self.ORDER
50
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
51
-
52
- def node_quadrature_weight(
53
- node_index_in_elt: int,
54
- ):
55
- node_i = node_index_in_elt // (ORDER + 1)
56
- node_j = node_index_in_elt - (ORDER + 1) * node_i
57
- return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
58
-
59
- def node_quadrature_weight_linear(
60
- node_index_in_elt: int,
61
- ):
62
- return 0.25
63
-
64
- if ORDER == 1:
65
- return cache.get_func(node_quadrature_weight_linear, self.name)
66
-
67
- return cache.get_func(node_quadrature_weight, self.name)
68
-
69
- @wp.func
70
- def _vertex_coords_f(vidx_in_cell: int):
71
- x = vidx_in_cell // 2
72
- y = vidx_in_cell - 2 * x
73
- return wp.vec2(float(x), float(y))
74
-
75
- def make_trace_node_quadrature_weight(self):
76
- ORDER = self.ORDER
77
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
78
-
79
- def trace_node_quadrature_weight(
80
- node_index_in_elt: int,
81
- ):
82
- # We're either on a side interior or at a vertex
83
- # I.e., either both indices are at extrema, or only one is
84
- # Pick the interior one if possible, if both are at extrema pick any one
85
- node_i = node_index_in_elt // (ORDER + 1)
86
- if node_i > 0 and node_i < ORDER:
87
- return LOBATTO_WEIGHT[node_i]
88
-
89
- node_j = node_index_in_elt - (ORDER + 1) * node_i
90
- return LOBATTO_WEIGHT[node_j]
91
-
92
- def trace_node_quadrature_weight_linear(
93
- node_index_in_elt: int,
94
- ):
95
- return 0.5
96
-
97
- def trace_node_quadrature_weight_open(
98
- node_index_in_elt: int,
99
- ):
100
- return 0.0
101
-
102
- if not is_closed(self.family):
103
- return cache.get_func(trace_node_quadrature_weight_open, self.name)
104
-
105
- if ORDER == 1:
106
- return cache.get_func(trace_node_quadrature_weight_linear, self.name)
107
-
108
- return cache.get_func(trace_node_quadrature_weight, self.name)
109
-
110
- def make_element_inner_weight(self):
111
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
112
- LOBATTO_COORDS = self.LOBATTO_COORDS
113
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
114
-
115
- def element_inner_weight(
116
- coords: Coords,
117
- node_index_in_elt: int,
118
- ):
119
- node_i = node_index_in_elt // ORDER_PLUS_ONE
120
- node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
121
-
122
- w = float(1.0)
123
- for k in range(ORDER_PLUS_ONE):
124
- if k != node_i:
125
- w *= coords[0] - LOBATTO_COORDS[k]
126
- if k != node_j:
127
- w *= coords[1] - LOBATTO_COORDS[k]
128
-
129
- w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j]
130
-
131
- return w
132
-
133
- def element_inner_weight_linear(
134
- coords: Coords,
135
- node_index_in_elt: int,
136
- ):
137
- v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
138
-
139
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
140
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
141
- return wx * wy
142
-
143
- if self.ORDER == 1 and is_closed(self.family):
144
- return cache.get_func(element_inner_weight_linear, self.name)
145
-
146
- return cache.get_func(element_inner_weight, self.name)
147
-
148
- def make_element_inner_weight_gradient(self):
149
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
150
- LOBATTO_COORDS = self.LOBATTO_COORDS
151
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
152
-
153
- def element_inner_weight_gradient(
154
- coords: Coords,
155
- node_index_in_elt: int,
156
- ):
157
- node_i = node_index_in_elt // ORDER_PLUS_ONE
158
- node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
159
-
160
- prefix_x = float(1.0)
161
- prefix_y = float(1.0)
162
- for k in range(ORDER_PLUS_ONE):
163
- if k != node_i:
164
- prefix_y *= coords[0] - LOBATTO_COORDS[k]
165
- if k != node_j:
166
- prefix_x *= coords[1] - LOBATTO_COORDS[k]
167
-
168
- grad_x = float(0.0)
169
- grad_y = float(0.0)
170
-
171
- for k in range(ORDER_PLUS_ONE):
172
- if k != node_i:
173
- delta_x = coords[0] - LOBATTO_COORDS[k]
174
- grad_x = grad_x * delta_x + prefix_x
175
- prefix_x *= delta_x
176
- if k != node_j:
177
- delta_y = coords[1] - LOBATTO_COORDS[k]
178
- grad_y = grad_y * delta_y + prefix_y
179
- prefix_y *= delta_y
180
-
181
- grad = LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x, grad_y)
182
-
183
- return grad
184
-
185
- def element_inner_weight_gradient_linear(
186
- coords: Coords,
187
- node_index_in_elt: int,
188
- ):
189
- v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
190
-
191
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
192
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
193
-
194
- dx = 2.0 * v[0] - 1.0
195
- dy = 2.0 * v[1] - 1.0
196
-
197
- return wp.vec2(dx * wy, dy * wx)
198
-
199
- if self.ORDER == 1 and is_closed(self.family):
200
- return cache.get_func(element_inner_weight_gradient_linear, self.name)
201
-
202
- return cache.get_func(element_inner_weight_gradient, self.name)
203
-
204
- def element_node_triangulation(self):
205
- from warp.fem.utils import grid_to_tris
206
-
207
- return grid_to_tris(self.ORDER, self.ORDER)
208
-
209
-
210
- class SquareSerendipityShapeFunctions:
211
- """
212
- Serendipity element ~ tensor product space without interior nodes
213
- Side shape functions are usual Lagrange shape functions times a linear function in the normal direction
214
- Corner shape functions are bilinear shape functions times a function of (x^{d-1} + y^{d-1})
215
- """
216
-
217
- # Node categories
218
- VERTEX = wp.constant(0)
219
- EDGE_X = wp.constant(1)
220
- EDGE_Y = wp.constant(2)
221
-
222
- def __init__(self, degree: int, family: Polynomial):
223
- if not is_closed(family):
224
- raise ValueError("A closed polynomial family is required to define serendipity elements")
225
-
226
- if degree not in [2, 3]:
227
- raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
228
-
229
- self.family = family
230
-
231
- self.ORDER = wp.constant(degree)
232
- self.NODES_PER_ELEMENT = wp.constant(4 * degree)
233
- self.NODES_PER_SIDE = wp.constant(degree + 1)
234
-
235
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
236
- lagrange_scale = lagrange_scales(lobatto_coords)
237
-
238
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
239
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
240
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
241
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
242
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
243
-
244
- self.node_type_and_type_index = self._get_node_type_and_type_index()
245
- self._node_lobatto_indices = self._get_node_lobatto_indices()
246
-
247
- @property
248
- def name(self) -> str:
249
- return f"Square_S{self.ORDER}_{self.family}"
250
-
251
- def _get_node_type_and_type_index(self):
252
- @cache.dynamic_func(suffix=self.name)
253
- def node_type_and_index(
254
- node_index_in_elt: int,
255
- ):
256
- if node_index_in_elt < 4:
257
- return SquareSerendipityShapeFunctions.VERTEX, node_index_in_elt
258
-
259
- type_index = (node_index_in_elt - 4) // 2
260
- side = node_index_in_elt - 4 - 2 * type_index
261
- return SquareSerendipityShapeFunctions.EDGE_X + side, type_index
262
-
263
- return node_type_and_index
264
-
265
- @wp.func
266
- def side_offset_and_index(type_index: int):
267
- index_in_side = type_index // 2
268
- side_offset = type_index - 2 * index_in_side
269
-
270
- return side_offset, index_in_side
271
-
272
- def _get_node_lobatto_indices(self):
273
- ORDER = self.ORDER
274
-
275
- @cache.dynamic_func(suffix=self.name)
276
- def node_lobatto_indices(node_type: int, type_index: int):
277
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
278
- node_i = type_index // 2
279
- node_j = type_index - 2 * node_i
280
- return node_i * ORDER, node_j * ORDER
281
-
282
- side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
283
-
284
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
285
- node_i = 1 + index_in_side
286
- node_j = side_offset * ORDER
287
- else:
288
- node_j = 1 + index_in_side
289
- node_i = side_offset * ORDER
290
-
291
- return node_i, node_j
292
-
293
- return node_lobatto_indices
294
-
295
- def make_node_coords_in_element(self):
296
- LOBATTO_COORDS = self.LOBATTO_COORDS
297
-
298
- @cache.dynamic_func(suffix=self.name)
299
- def node_coords_in_element(
300
- node_index_in_elt: int,
301
- ):
302
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
303
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
304
- return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
305
-
306
- return node_coords_in_element
307
-
308
- def make_node_quadrature_weight(self):
309
- ORDER = self.ORDER
310
-
311
- @cache.dynamic_func(suffix=self.name)
312
- def node_quadrature_weight(
313
- node_index_in_elt: int,
314
- ):
315
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
316
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
317
- return 0.25 / float(ORDER * ORDER)
318
-
319
- return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
320
-
321
- return node_quadrature_weight
322
-
323
- def make_trace_node_quadrature_weight(self):
324
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
325
-
326
- @cache.dynamic_func(suffix=self.name)
327
- def trace_node_quadrature_weight(
328
- node_index_in_elt: int,
329
- ):
330
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
331
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
332
- return LOBATTO_WEIGHT[0]
333
-
334
- side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
335
- return LOBATTO_WEIGHT[1 + index_in_side]
336
-
337
- return trace_node_quadrature_weight
338
-
339
- def make_element_inner_weight(self):
340
- ORDER = self.ORDER
341
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
342
-
343
- LOBATTO_COORDS = self.LOBATTO_COORDS
344
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
345
-
346
- DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
347
- DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
348
-
349
- @cache.dynamic_func(suffix=self.name)
350
- def element_inner_weight(
351
- coords: Coords,
352
- node_index_in_elt: int,
353
- ):
354
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
355
-
356
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
357
-
358
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
359
- cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
360
- cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
361
-
362
- w = cx * cy
363
-
364
- if ORDER == 2:
365
- w *= cx + cy - 2.0 + LOBATTO_COORDS[1]
366
- return w * LAGRANGE_SCALE[0]
367
- if ORDER == 3:
368
- w *= (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
369
- return w * DEGREE_3_CIRCLE_SCALE
370
-
371
- w = float(1.0)
372
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
373
- w *= wp.select(node_i == 0, coords[0], 1.0 - coords[0])
374
- else:
375
- for k in range(ORDER_PLUS_ONE):
376
- if k != node_i:
377
- w *= coords[0] - LOBATTO_COORDS[k]
378
-
379
- w *= LAGRANGE_SCALE[node_i]
380
-
381
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
382
- w *= wp.select(node_j == 0, coords[1], 1.0 - coords[1])
383
- else:
384
- for k in range(ORDER_PLUS_ONE):
385
- if k != node_j:
386
- w *= coords[1] - LOBATTO_COORDS[k]
387
- w *= LAGRANGE_SCALE[node_j]
388
-
389
- return w
390
-
391
- return element_inner_weight
392
-
393
- def make_element_inner_weight_gradient(self):
394
- ORDER = self.ORDER
395
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
396
- LOBATTO_COORDS = self.LOBATTO_COORDS
397
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
398
-
399
- DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
400
- DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
401
-
402
- @cache.dynamic_func(suffix=self.name)
403
- def element_inner_weight_gradient(
404
- coords: Coords,
405
- node_index_in_elt: int,
406
- ):
407
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
408
-
409
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
410
-
411
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
412
- cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
413
- cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
414
-
415
- gx = wp.select(node_i == 0, 1.0, -1.0)
416
- gy = wp.select(node_j == 0, 1.0, -1.0)
417
-
418
- if ORDER == 2:
419
- w = cx + cy - 2.0 + LOBATTO_COORDS[1]
420
- grad_x = cy * gx * (w + cx)
421
- grad_y = cx * gy * (w + cy)
422
-
423
- return wp.vec2(grad_x, grad_y) * LAGRANGE_SCALE[0]
424
-
425
- if ORDER == 3:
426
- w = (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
427
-
428
- dw_dcx = 2.0 * cx - 1.0
429
- dw_dcy = 2.0 * cy - 1.0
430
- grad_x = cy * gx * (w + cx * dw_dcx)
431
- grad_y = cx * gy * (w + cy * dw_dcy)
432
-
433
- return wp.vec2(grad_x, grad_y) * DEGREE_3_CIRCLE_SCALE
434
-
435
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
436
- prefix_x = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
437
- else:
438
- prefix_x = LAGRANGE_SCALE[node_j]
439
- for k in range(ORDER_PLUS_ONE):
440
- if k != node_j:
441
- prefix_x *= coords[1] - LOBATTO_COORDS[k]
442
-
443
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
444
- prefix_y = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
445
- else:
446
- prefix_y = LAGRANGE_SCALE[node_i]
447
- for k in range(ORDER_PLUS_ONE):
448
- if k != node_i:
449
- prefix_y *= coords[0] - LOBATTO_COORDS[k]
450
-
451
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
452
- grad_y = wp.select(node_j == 0, 1.0, -1.0) * prefix_y
453
- else:
454
- prefix_y *= LAGRANGE_SCALE[node_j]
455
- grad_y = float(0.0)
456
- for k in range(ORDER_PLUS_ONE):
457
- if k != node_j:
458
- delta_y = coords[1] - LOBATTO_COORDS[k]
459
- grad_y = grad_y * delta_y + prefix_y
460
- prefix_y *= delta_y
461
-
462
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
463
- grad_x = wp.select(node_i == 0, 1.0, -1.0) * prefix_x
464
- else:
465
- prefix_x *= LAGRANGE_SCALE[node_i]
466
- grad_x = float(0.0)
467
- for k in range(ORDER_PLUS_ONE):
468
- if k != node_i:
469
- delta_x = coords[0] - LOBATTO_COORDS[k]
470
- grad_x = grad_x * delta_x + prefix_x
471
- prefix_x *= delta_x
472
-
473
- grad = wp.vec2(grad_x, grad_y)
474
- return grad
475
-
476
- return element_inner_weight_gradient
477
-
478
- def element_node_triangulation(self):
479
- if self.ORDER == 2:
480
- element_triangles = [
481
- [0, 4, 5],
482
- [5, 4, 6],
483
- [5, 6, 1],
484
- [4, 2, 7],
485
- [4, 7, 6],
486
- [6, 7, 3],
487
- ]
488
- else:
489
- element_triangles = [
490
- [0, 4, 5],
491
- [2, 7, 8],
492
- [3, 10, 11],
493
- [1, 9, 6],
494
- [5, 6, 9],
495
- [5, 4, 6],
496
- [8, 11, 10],
497
- [8, 7, 11],
498
- [4, 8, 10],
499
- [4, 10, 6],
500
- ]
501
-
502
- return element_triangles
503
-
504
-
505
- class SquareNonConformingPolynomialShapeFunctions:
506
- # embeds the largest equilateral triangle centered at (0.5, 0.5) into the reference square
507
- _tri_height = 0.75
508
- _tri_side = 2.0 / math.sqrt(3.0) * _tri_height
509
- _tri_to_square = np.array([[_tri_side, _tri_side / 2.0], [0.0, _tri_height]])
510
-
511
- _TRI_OFFSET = wp.constant(wp.vec2(0.5 - 0.5 * _tri_side, 0.5 - _tri_height / 3.0))
512
-
513
- def __init__(self, degree: int):
514
- self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree)
515
- self.ORDER = self._tri_shape.ORDER
516
- self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT
517
-
518
- self.element_node_triangulation = self._tri_shape.element_node_triangulation
519
-
520
- @property
521
- def name(self) -> str:
522
- return f"Square_P{self.ORDER}d"
523
-
524
- def make_node_coords_in_element(self):
525
- node_coords_in_tet = self._tri_shape.make_node_coords_in_element()
526
-
527
- TRI_TO_SQUARE = wp.constant(wp.mat22(self._tri_to_square))
528
-
529
- @cache.dynamic_func(suffix=self.name)
530
- def node_coords_in_element(
531
- node_index_in_elt: int,
532
- ):
533
- tri_coords = node_coords_in_tet(node_index_in_elt)
534
- coords = (
535
- TRI_TO_SQUARE * wp.vec2(tri_coords[1], tri_coords[2])
536
- ) + SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
537
- return Coords(coords[0], coords[1], 0.0)
538
-
539
- return node_coords_in_element
540
-
541
- def make_node_quadrature_weight(self):
542
- NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
543
-
544
- if self.ORDER == 2:
545
- # Intrinsic quadrature (order 2)
546
- @cache.dynamic_func(suffix=self.name)
547
- def node_quadrature_weight_quadratic(
548
- node_index_in_elt: int,
549
- ):
550
- node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_elt)
551
- if node_type == Triangle2DPolynomialShapeFunctions.VERTEX:
552
- return 0.18518521
553
- return 0.14814811
554
-
555
- return node_quadrature_weight_quadratic
556
-
557
- @cache.dynamic_func(suffix=self.name)
558
- def node_uniform_quadrature_weight(
559
- node_index_in_elt: int,
560
- ):
561
- return 1.0 / float(NODES_PER_ELEMENT)
562
-
563
- return node_uniform_quadrature_weight
564
-
565
- def make_trace_node_quadrature_weight(self):
566
- # Non-conforming, zero measure on sides
567
-
568
- @wp.func
569
- def zero(node_index_in_elt: int):
570
- return 0.0
571
-
572
- return zero
573
-
574
- def make_element_inner_weight(self):
575
- tri_inner_weight = self._tri_shape.make_element_inner_weight()
576
-
577
- SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
578
-
579
- @cache.dynamic_func(suffix=self.name)
580
- def element_inner_weight(
581
- coords: Coords,
582
- node_index_in_elt: int,
583
- ):
584
- tri_param = SQUARE_TO_TRI * (
585
- wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
586
- )
587
- tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
588
-
589
- return tri_inner_weight(tri_coords, node_index_in_elt)
590
-
591
- return element_inner_weight
592
-
593
- def make_element_inner_weight_gradient(self):
594
- tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient()
595
-
596
- SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
597
-
598
- @cache.dynamic_func(suffix=self.name)
599
- def element_inner_weight_gradient(
600
- coords: Coords,
601
- node_index_in_elt: int,
602
- ):
603
- tri_param = SQUARE_TO_TRI * (
604
- wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
605
- )
606
- tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
607
-
608
- grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt)
609
- return wp.transpose(SQUARE_TO_TRI) * grad
610
-
611
- return element_inner_weight_gradient
1
+ import math
2
+
3
+ import numpy as np
4
+
5
+ import warp as wp
6
+ from warp.fem import cache
7
+ from warp.fem.polynomial import Polynomial, is_closed, lagrange_scales, quadrature_1d
8
+ from warp.fem.types import Coords
9
+
10
+ from .triangle_shape_function import Triangle2DPolynomialShapeFunctions
11
+
12
+
13
+ class SquareBipolynomialShapeFunctions:
14
+ def __init__(self, degree: int, family: Polynomial):
15
+ self.family = family
16
+
17
+ self.ORDER = wp.constant(degree)
18
+ self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1))
19
+ self.NODES_PER_SIDE = wp.constant(degree + 1)
20
+
21
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
22
+ lagrange_scale = lagrange_scales(lobatto_coords)
23
+
24
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
25
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
26
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
27
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
28
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
29
+
30
+ @property
31
+ def name(self) -> str:
32
+ return f"Square_Q{self.ORDER}_{self.family}"
33
+
34
+ def make_node_coords_in_element(self):
35
+ ORDER = self.ORDER
36
+ LOBATTO_COORDS = self.LOBATTO_COORDS
37
+
38
+ @cache.dynamic_func(suffix=self.name)
39
+ def node_coords_in_element(
40
+ node_index_in_elt: int,
41
+ ):
42
+ node_i = node_index_in_elt // (ORDER + 1)
43
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
44
+ return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
45
+
46
+ return node_coords_in_element
47
+
48
+ def make_node_quadrature_weight(self):
49
+ ORDER = self.ORDER
50
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
51
+
52
+ def node_quadrature_weight(
53
+ node_index_in_elt: int,
54
+ ):
55
+ node_i = node_index_in_elt // (ORDER + 1)
56
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
57
+ return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
58
+
59
+ def node_quadrature_weight_linear(
60
+ node_index_in_elt: int,
61
+ ):
62
+ return 0.25
63
+
64
+ if ORDER == 1:
65
+ return cache.get_func(node_quadrature_weight_linear, self.name)
66
+
67
+ return cache.get_func(node_quadrature_weight, self.name)
68
+
69
+ @wp.func
70
+ def _vertex_coords_f(vidx_in_cell: int):
71
+ x = vidx_in_cell // 2
72
+ y = vidx_in_cell - 2 * x
73
+ return wp.vec2(float(x), float(y))
74
+
75
+ def make_trace_node_quadrature_weight(self):
76
+ ORDER = self.ORDER
77
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
78
+
79
+ def trace_node_quadrature_weight(
80
+ node_index_in_elt: int,
81
+ ):
82
+ # We're either on a side interior or at a vertex
83
+ # I.e., either both indices are at extrema, or only one is
84
+ # Pick the interior one if possible, if both are at extrema pick any one
85
+ node_i = node_index_in_elt // (ORDER + 1)
86
+ if node_i > 0 and node_i < ORDER:
87
+ return LOBATTO_WEIGHT[node_i]
88
+
89
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
90
+ return LOBATTO_WEIGHT[node_j]
91
+
92
+ def trace_node_quadrature_weight_linear(
93
+ node_index_in_elt: int,
94
+ ):
95
+ return 0.5
96
+
97
+ def trace_node_quadrature_weight_open(
98
+ node_index_in_elt: int,
99
+ ):
100
+ return 0.0
101
+
102
+ if not is_closed(self.family):
103
+ return cache.get_func(trace_node_quadrature_weight_open, self.name)
104
+
105
+ if ORDER == 1:
106
+ return cache.get_func(trace_node_quadrature_weight_linear, self.name)
107
+
108
+ return cache.get_func(trace_node_quadrature_weight, self.name)
109
+
110
+ def make_element_inner_weight(self):
111
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
112
+ LOBATTO_COORDS = self.LOBATTO_COORDS
113
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
114
+
115
+ def element_inner_weight(
116
+ coords: Coords,
117
+ node_index_in_elt: int,
118
+ ):
119
+ node_i = node_index_in_elt // ORDER_PLUS_ONE
120
+ node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
121
+
122
+ w = float(1.0)
123
+ for k in range(ORDER_PLUS_ONE):
124
+ if k != node_i:
125
+ w *= coords[0] - LOBATTO_COORDS[k]
126
+ if k != node_j:
127
+ w *= coords[1] - LOBATTO_COORDS[k]
128
+
129
+ w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j]
130
+
131
+ return w
132
+
133
+ def element_inner_weight_linear(
134
+ coords: Coords,
135
+ node_index_in_elt: int,
136
+ ):
137
+ v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
138
+
139
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
140
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
141
+ return wx * wy
142
+
143
+ if self.ORDER == 1 and is_closed(self.family):
144
+ return cache.get_func(element_inner_weight_linear, self.name)
145
+
146
+ return cache.get_func(element_inner_weight, self.name)
147
+
148
+ def make_element_inner_weight_gradient(self):
149
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
150
+ LOBATTO_COORDS = self.LOBATTO_COORDS
151
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
152
+
153
+ def element_inner_weight_gradient(
154
+ coords: Coords,
155
+ node_index_in_elt: int,
156
+ ):
157
+ node_i = node_index_in_elt // ORDER_PLUS_ONE
158
+ node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
159
+
160
+ prefix_x = float(1.0)
161
+ prefix_y = float(1.0)
162
+ for k in range(ORDER_PLUS_ONE):
163
+ if k != node_i:
164
+ prefix_y *= coords[0] - LOBATTO_COORDS[k]
165
+ if k != node_j:
166
+ prefix_x *= coords[1] - LOBATTO_COORDS[k]
167
+
168
+ grad_x = float(0.0)
169
+ grad_y = float(0.0)
170
+
171
+ for k in range(ORDER_PLUS_ONE):
172
+ if k != node_i:
173
+ delta_x = coords[0] - LOBATTO_COORDS[k]
174
+ grad_x = grad_x * delta_x + prefix_x
175
+ prefix_x *= delta_x
176
+ if k != node_j:
177
+ delta_y = coords[1] - LOBATTO_COORDS[k]
178
+ grad_y = grad_y * delta_y + prefix_y
179
+ prefix_y *= delta_y
180
+
181
+ grad = LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x, grad_y)
182
+
183
+ return grad
184
+
185
+ def element_inner_weight_gradient_linear(
186
+ coords: Coords,
187
+ node_index_in_elt: int,
188
+ ):
189
+ v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
190
+
191
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
192
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
193
+
194
+ dx = 2.0 * v[0] - 1.0
195
+ dy = 2.0 * v[1] - 1.0
196
+
197
+ return wp.vec2(dx * wy, dy * wx)
198
+
199
+ if self.ORDER == 1 and is_closed(self.family):
200
+ return cache.get_func(element_inner_weight_gradient_linear, self.name)
201
+
202
+ return cache.get_func(element_inner_weight_gradient, self.name)
203
+
204
+ def element_node_triangulation(self):
205
+ from warp.fem.utils import grid_to_tris
206
+
207
+ return grid_to_tris(self.ORDER, self.ORDER)
208
+
209
+
210
+ class SquareSerendipityShapeFunctions:
211
+ """
212
+ Serendipity element ~ tensor product space without interior nodes
213
+ Side shape functions are usual Lagrange shape functions times a linear function in the normal direction
214
+ Corner shape functions are bilinear shape functions times a function of (x^{d-1} + y^{d-1})
215
+ """
216
+
217
+ # Node categories
218
+ VERTEX = wp.constant(0)
219
+ EDGE_X = wp.constant(1)
220
+ EDGE_Y = wp.constant(2)
221
+
222
+ def __init__(self, degree: int, family: Polynomial):
223
+ if not is_closed(family):
224
+ raise ValueError("A closed polynomial family is required to define serendipity elements")
225
+
226
+ if degree not in [2, 3]:
227
+ raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
228
+
229
+ self.family = family
230
+
231
+ self.ORDER = wp.constant(degree)
232
+ self.NODES_PER_ELEMENT = wp.constant(4 * degree)
233
+ self.NODES_PER_SIDE = wp.constant(degree + 1)
234
+
235
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
236
+ lagrange_scale = lagrange_scales(lobatto_coords)
237
+
238
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
239
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
240
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
241
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
242
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
243
+
244
+ self.node_type_and_type_index = self._get_node_type_and_type_index()
245
+ self._node_lobatto_indices = self._get_node_lobatto_indices()
246
+
247
+ @property
248
+ def name(self) -> str:
249
+ return f"Square_S{self.ORDER}_{self.family}"
250
+
251
+ def _get_node_type_and_type_index(self):
252
+ @cache.dynamic_func(suffix=self.name)
253
+ def node_type_and_index(
254
+ node_index_in_elt: int,
255
+ ):
256
+ if node_index_in_elt < 4:
257
+ return SquareSerendipityShapeFunctions.VERTEX, node_index_in_elt
258
+
259
+ type_index = (node_index_in_elt - 4) // 2
260
+ side = node_index_in_elt - 4 - 2 * type_index
261
+ return SquareSerendipityShapeFunctions.EDGE_X + side, type_index
262
+
263
+ return node_type_and_index
264
+
265
+ @wp.func
266
+ def side_offset_and_index(type_index: int):
267
+ index_in_side = type_index // 2
268
+ side_offset = type_index - 2 * index_in_side
269
+
270
+ return side_offset, index_in_side
271
+
272
+ def _get_node_lobatto_indices(self):
273
+ ORDER = self.ORDER
274
+
275
+ @cache.dynamic_func(suffix=self.name)
276
+ def node_lobatto_indices(node_type: int, type_index: int):
277
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
278
+ node_i = type_index // 2
279
+ node_j = type_index - 2 * node_i
280
+ return node_i * ORDER, node_j * ORDER
281
+
282
+ side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
283
+
284
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
285
+ node_i = 1 + index_in_side
286
+ node_j = side_offset * ORDER
287
+ else:
288
+ node_j = 1 + index_in_side
289
+ node_i = side_offset * ORDER
290
+
291
+ return node_i, node_j
292
+
293
+ return node_lobatto_indices
294
+
295
+ def make_node_coords_in_element(self):
296
+ LOBATTO_COORDS = self.LOBATTO_COORDS
297
+
298
+ @cache.dynamic_func(suffix=self.name)
299
+ def node_coords_in_element(
300
+ node_index_in_elt: int,
301
+ ):
302
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
303
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
304
+ return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
305
+
306
+ return node_coords_in_element
307
+
308
+ def make_node_quadrature_weight(self):
309
+ ORDER = self.ORDER
310
+
311
+ @cache.dynamic_func(suffix=self.name)
312
+ def node_quadrature_weight(
313
+ node_index_in_elt: int,
314
+ ):
315
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
316
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
317
+ return 0.25 / float(ORDER * ORDER)
318
+
319
+ return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
320
+
321
+ return node_quadrature_weight
322
+
323
+ def make_trace_node_quadrature_weight(self):
324
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
325
+
326
+ @cache.dynamic_func(suffix=self.name)
327
+ def trace_node_quadrature_weight(
328
+ node_index_in_elt: int,
329
+ ):
330
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
331
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
332
+ return LOBATTO_WEIGHT[0]
333
+
334
+ side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
335
+ return LOBATTO_WEIGHT[1 + index_in_side]
336
+
337
+ return trace_node_quadrature_weight
338
+
339
+ def make_element_inner_weight(self):
340
+ ORDER = self.ORDER
341
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
342
+
343
+ LOBATTO_COORDS = self.LOBATTO_COORDS
344
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
345
+
346
+ DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
347
+ DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
348
+
349
+ @cache.dynamic_func(suffix=self.name)
350
+ def element_inner_weight(
351
+ coords: Coords,
352
+ node_index_in_elt: int,
353
+ ):
354
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
355
+
356
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
357
+
358
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
359
+ cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
360
+ cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
361
+
362
+ w = cx * cy
363
+
364
+ if ORDER == 2:
365
+ w *= cx + cy - 2.0 + LOBATTO_COORDS[1]
366
+ return w * LAGRANGE_SCALE[0]
367
+ if ORDER == 3:
368
+ w *= (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
369
+ return w * DEGREE_3_CIRCLE_SCALE
370
+
371
+ w = float(1.0)
372
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
373
+ w *= wp.select(node_i == 0, coords[0], 1.0 - coords[0])
374
+ else:
375
+ for k in range(ORDER_PLUS_ONE):
376
+ if k != node_i:
377
+ w *= coords[0] - LOBATTO_COORDS[k]
378
+
379
+ w *= LAGRANGE_SCALE[node_i]
380
+
381
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
382
+ w *= wp.select(node_j == 0, coords[1], 1.0 - coords[1])
383
+ else:
384
+ for k in range(ORDER_PLUS_ONE):
385
+ if k != node_j:
386
+ w *= coords[1] - LOBATTO_COORDS[k]
387
+ w *= LAGRANGE_SCALE[node_j]
388
+
389
+ return w
390
+
391
+ return element_inner_weight
392
+
393
+ def make_element_inner_weight_gradient(self):
394
+ ORDER = self.ORDER
395
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
396
+ LOBATTO_COORDS = self.LOBATTO_COORDS
397
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
398
+
399
+ DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
400
+ DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
401
+
402
+ @cache.dynamic_func(suffix=self.name)
403
+ def element_inner_weight_gradient(
404
+ coords: Coords,
405
+ node_index_in_elt: int,
406
+ ):
407
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
408
+
409
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
410
+
411
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
412
+ cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
413
+ cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
414
+
415
+ gx = wp.select(node_i == 0, 1.0, -1.0)
416
+ gy = wp.select(node_j == 0, 1.0, -1.0)
417
+
418
+ if ORDER == 2:
419
+ w = cx + cy - 2.0 + LOBATTO_COORDS[1]
420
+ grad_x = cy * gx * (w + cx)
421
+ grad_y = cx * gy * (w + cy)
422
+
423
+ return wp.vec2(grad_x, grad_y) * LAGRANGE_SCALE[0]
424
+
425
+ if ORDER == 3:
426
+ w = (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
427
+
428
+ dw_dcx = 2.0 * cx - 1.0
429
+ dw_dcy = 2.0 * cy - 1.0
430
+ grad_x = cy * gx * (w + cx * dw_dcx)
431
+ grad_y = cx * gy * (w + cy * dw_dcy)
432
+
433
+ return wp.vec2(grad_x, grad_y) * DEGREE_3_CIRCLE_SCALE
434
+
435
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
436
+ prefix_x = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
437
+ else:
438
+ prefix_x = LAGRANGE_SCALE[node_j]
439
+ for k in range(ORDER_PLUS_ONE):
440
+ if k != node_j:
441
+ prefix_x *= coords[1] - LOBATTO_COORDS[k]
442
+
443
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
444
+ prefix_y = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
445
+ else:
446
+ prefix_y = LAGRANGE_SCALE[node_i]
447
+ for k in range(ORDER_PLUS_ONE):
448
+ if k != node_i:
449
+ prefix_y *= coords[0] - LOBATTO_COORDS[k]
450
+
451
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
452
+ grad_y = wp.select(node_j == 0, 1.0, -1.0) * prefix_y
453
+ else:
454
+ prefix_y *= LAGRANGE_SCALE[node_j]
455
+ grad_y = float(0.0)
456
+ for k in range(ORDER_PLUS_ONE):
457
+ if k != node_j:
458
+ delta_y = coords[1] - LOBATTO_COORDS[k]
459
+ grad_y = grad_y * delta_y + prefix_y
460
+ prefix_y *= delta_y
461
+
462
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
463
+ grad_x = wp.select(node_i == 0, 1.0, -1.0) * prefix_x
464
+ else:
465
+ prefix_x *= LAGRANGE_SCALE[node_i]
466
+ grad_x = float(0.0)
467
+ for k in range(ORDER_PLUS_ONE):
468
+ if k != node_i:
469
+ delta_x = coords[0] - LOBATTO_COORDS[k]
470
+ grad_x = grad_x * delta_x + prefix_x
471
+ prefix_x *= delta_x
472
+
473
+ grad = wp.vec2(grad_x, grad_y)
474
+ return grad
475
+
476
+ return element_inner_weight_gradient
477
+
478
+ def element_node_triangulation(self):
479
+ if self.ORDER == 2:
480
+ element_triangles = [
481
+ [0, 4, 5],
482
+ [5, 4, 6],
483
+ [5, 6, 1],
484
+ [4, 2, 7],
485
+ [4, 7, 6],
486
+ [6, 7, 3],
487
+ ]
488
+ else:
489
+ element_triangles = [
490
+ [0, 4, 5],
491
+ [2, 7, 8],
492
+ [3, 10, 11],
493
+ [1, 9, 6],
494
+ [5, 6, 9],
495
+ [5, 4, 6],
496
+ [8, 11, 10],
497
+ [8, 7, 11],
498
+ [4, 8, 10],
499
+ [4, 10, 6],
500
+ ]
501
+
502
+ return element_triangles
503
+
504
+
505
+ class SquareNonConformingPolynomialShapeFunctions:
506
+ # embeds the largest equilateral triangle centered at (0.5, 0.5) into the reference square
507
+ _tri_height = 0.75
508
+ _tri_side = 2.0 / math.sqrt(3.0) * _tri_height
509
+ _tri_to_square = np.array([[_tri_side, _tri_side / 2.0], [0.0, _tri_height]])
510
+
511
+ _TRI_OFFSET = wp.constant(wp.vec2(0.5 - 0.5 * _tri_side, 0.5 - _tri_height / 3.0))
512
+
513
+ def __init__(self, degree: int):
514
+ self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree)
515
+ self.ORDER = self._tri_shape.ORDER
516
+ self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT
517
+
518
+ self.element_node_triangulation = self._tri_shape.element_node_triangulation
519
+
520
+ @property
521
+ def name(self) -> str:
522
+ return f"Square_P{self.ORDER}d"
523
+
524
+ def make_node_coords_in_element(self):
525
+ node_coords_in_tet = self._tri_shape.make_node_coords_in_element()
526
+
527
+ TRI_TO_SQUARE = wp.constant(wp.mat22(self._tri_to_square))
528
+
529
+ @cache.dynamic_func(suffix=self.name)
530
+ def node_coords_in_element(
531
+ node_index_in_elt: int,
532
+ ):
533
+ tri_coords = node_coords_in_tet(node_index_in_elt)
534
+ coords = (
535
+ TRI_TO_SQUARE * wp.vec2(tri_coords[1], tri_coords[2])
536
+ ) + SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
537
+ return Coords(coords[0], coords[1], 0.0)
538
+
539
+ return node_coords_in_element
540
+
541
+ def make_node_quadrature_weight(self):
542
+ NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
543
+
544
+ if self.ORDER == 2:
545
+ # Intrinsic quadrature (order 2)
546
+ @cache.dynamic_func(suffix=self.name)
547
+ def node_quadrature_weight_quadratic(
548
+ node_index_in_elt: int,
549
+ ):
550
+ node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_elt)
551
+ if node_type == Triangle2DPolynomialShapeFunctions.VERTEX:
552
+ return 0.18518521
553
+ return 0.14814811
554
+
555
+ return node_quadrature_weight_quadratic
556
+
557
+ @cache.dynamic_func(suffix=self.name)
558
+ def node_uniform_quadrature_weight(
559
+ node_index_in_elt: int,
560
+ ):
561
+ return 1.0 / float(NODES_PER_ELEMENT)
562
+
563
+ return node_uniform_quadrature_weight
564
+
565
+ def make_trace_node_quadrature_weight(self):
566
+ # Non-conforming, zero measure on sides
567
+
568
+ @wp.func
569
+ def zero(node_index_in_elt: int):
570
+ return 0.0
571
+
572
+ return zero
573
+
574
+ def make_element_inner_weight(self):
575
+ tri_inner_weight = self._tri_shape.make_element_inner_weight()
576
+
577
+ SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
578
+
579
+ @cache.dynamic_func(suffix=self.name)
580
+ def element_inner_weight(
581
+ coords: Coords,
582
+ node_index_in_elt: int,
583
+ ):
584
+ tri_param = SQUARE_TO_TRI * (
585
+ wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
586
+ )
587
+ tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
588
+
589
+ return tri_inner_weight(tri_coords, node_index_in_elt)
590
+
591
+ return element_inner_weight
592
+
593
+ def make_element_inner_weight_gradient(self):
594
+ tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient()
595
+
596
+ SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
597
+
598
+ @cache.dynamic_func(suffix=self.name)
599
+ def element_inner_weight_gradient(
600
+ coords: Coords,
601
+ node_index_in_elt: int,
602
+ ):
603
+ tri_param = SQUARE_TO_TRI * (
604
+ wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
605
+ )
606
+ tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
607
+
608
+ grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt)
609
+ return wp.transpose(SQUARE_TO_TRI) * grad
610
+
611
+ return element_inner_weight_gradient