warp-lang 1.0.2__py3-none-manylinux2014_x86_64.whl → 1.2.0__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +88 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3693 -3354
- warp/codegen.py +2925 -2792
- warp/config.py +40 -36
- warp/constants.py +49 -45
- warp/context.py +5409 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +381 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -277
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
- warp/examples/benchmarks/benchmark_launches.py +293 -295
- warp/examples/browse.py +29 -29
- warp/examples/core/example_dem.py +232 -219
- warp/examples/core/example_fluid.py +291 -267
- warp/examples/core/example_graph_capture.py +142 -126
- warp/examples/core/example_marching_cubes.py +186 -174
- warp/examples/core/example_mesh.py +172 -155
- warp/examples/core/example_mesh_intersect.py +203 -193
- warp/examples/core/example_nvdb.py +174 -170
- warp/examples/core/example_raycast.py +103 -90
- warp/examples/core/example_raymarch.py +197 -178
- warp/examples/core/example_render_opengl.py +183 -141
- warp/examples/core/example_sph.py +403 -387
- warp/examples/core/example_torch.py +219 -181
- warp/examples/core/example_wave.py +261 -248
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +432 -389
- warp/examples/fem/example_burgers.py +262 -0
- warp/examples/fem/example_convection_diffusion.py +180 -168
- warp/examples/fem/example_convection_diffusion_dg.py +217 -209
- warp/examples/fem/example_deformed_geometry.py +175 -159
- warp/examples/fem/example_diffusion.py +199 -173
- warp/examples/fem/example_diffusion_3d.py +178 -152
- warp/examples/fem/example_diffusion_mgpu.py +219 -214
- warp/examples/fem/example_mixed_elasticity.py +242 -222
- warp/examples/fem/example_navier_stokes.py +257 -243
- warp/examples/fem/example_stokes.py +218 -192
- warp/examples/fem/example_stokes_transfer.py +263 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +258 -246
- warp/examples/optim/example_cloth_throw.py +220 -209
- warp/examples/optim/example_diffray.py +564 -536
- warp/examples/optim/example_drone.py +862 -835
- warp/examples/optim/example_inverse_kinematics.py +174 -168
- warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
- warp/examples/optim/example_spring_cage.py +237 -231
- warp/examples/optim/example_trajectory.py +221 -199
- warp/examples/optim/example_walker.py +304 -293
- warp/examples/sim/example_cartpole.py +137 -129
- warp/examples/sim/example_cloth.py +194 -186
- warp/examples/sim/example_granular.py +122 -111
- warp/examples/sim/example_granular_collision_sdf.py +195 -186
- warp/examples/sim/example_jacobian_ik.py +234 -214
- warp/examples/sim/example_particle_chain.py +116 -105
- warp/examples/sim/example_quadruped.py +191 -180
- warp/examples/sim/example_rigid_chain.py +195 -187
- warp/examples/sim/example_rigid_contact.py +187 -177
- warp/examples/sim/example_rigid_force.py +125 -125
- warp/examples/sim/example_rigid_gyroscopic.py +107 -95
- warp/examples/sim/example_rigid_soft_contact.py +132 -122
- warp/examples/sim/example_soft_body.py +188 -177
- warp/fabric.py +337 -335
- warp/fem/__init__.py +61 -27
- warp/fem/cache.py +403 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +16 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +748 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +437 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/nanogrid.py +455 -0
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1684 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +179 -292
- warp/fem/space/basis_space.py +522 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +148 -267
- warp/fem/space/grid_3d_function_space.py +167 -306
- warp/fem/space/hexmesh_function_space.py +253 -352
- warp/fem/space/nanogrid_function_space.py +202 -0
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +261 -369
- warp/fem/space/restriction.py +161 -160
- warp/fem/space/shape/__init__.py +90 -15
- warp/fem/space/shape/cube_shape_function.py +728 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +224 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +153 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1081 -1025
- warp/native/builtin.h +1603 -1560
- warp/native/bvh.cpp +402 -398
- warp/native/bvh.cu +533 -525
- warp/native/bvh.h +430 -429
- warp/native/clang/clang.cpp +496 -464
- warp/native/crt.cpp +42 -32
- warp/native/crt.h +352 -335
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/exports.h +187 -0
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1545 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +292 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -4782
- warp/native/nanovdb/PNanoVDB.h +3390 -2553
- warp/native/noise.h +850 -850
- warp/native/quat.h +1112 -1085
- warp/native/rand.h +303 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1177 -1133
- warp/native/volume.cpp +529 -297
- warp/native/volume.cu +58 -32
- warp/native/volume.h +960 -538
- warp/native/volume_builder.cu +446 -425
- warp/native/volume_builder.h +34 -19
- warp/native/volume_impl.h +61 -0
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2949 -2828
- warp/native/warp.h +321 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3356 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1917 -1991
- warp/sim/integrator_xpbd.py +3288 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1289 -1227
- warp/stubs.py +2192 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +20 -22
- warp/tests/aux_test_grad_customs.py +21 -23
- warp/tests/aux_test_reference.py +9 -11
- warp/tests/aux_test_reference_reference.py +8 -10
- warp/tests/aux_test_square.py +15 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +237 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +155 -157
- warp/tests/test_arithmetic.py +1088 -1124
- warp/tests/test_array.py +2415 -2326
- warp/tests/test_array_reduce.py +148 -150
- warp/tests/test_async.py +666 -656
- warp/tests/test_atomic.py +139 -141
- warp/tests/test_bool.py +212 -149
- warp/tests/test_builtins_resolution.py +1290 -1292
- warp/tests/test_bvh.py +162 -171
- warp/tests/test_closest_point_edge_edge.py +227 -228
- warp/tests/test_codegen.py +562 -553
- warp/tests/test_compile_consts.py +217 -101
- warp/tests/test_conditional.py +244 -246
- warp/tests/test_copy.py +230 -215
- warp/tests/test_ctypes.py +630 -632
- warp/tests/test_dense.py +65 -67
- warp/tests/test_devices.py +89 -98
- warp/tests/test_dlpack.py +528 -529
- warp/tests/test_examples.py +403 -378
- warp/tests/test_fabricarray.py +952 -955
- warp/tests/test_fast_math.py +60 -54
- warp/tests/test_fem.py +1298 -1278
- warp/tests/test_fp16.py +128 -130
- warp/tests/test_func.py +336 -337
- warp/tests/test_generics.py +596 -571
- warp/tests/test_grad.py +885 -640
- warp/tests/test_grad_customs.py +331 -336
- warp/tests/test_hash_grid.py +208 -164
- warp/tests/test_import.py +37 -39
- warp/tests/test_indexedarray.py +1132 -1134
- warp/tests/test_intersect.py +65 -67
- warp/tests/test_jax.py +305 -307
- warp/tests/test_large.py +169 -164
- warp/tests/test_launch.py +352 -354
- warp/tests/test_lerp.py +217 -261
- warp/tests/test_linear_solvers.py +189 -171
- warp/tests/test_lvalue.py +419 -493
- warp/tests/test_marching_cubes.py +63 -65
- warp/tests/test_mat.py +1799 -1827
- warp/tests/test_mat_lite.py +113 -115
- warp/tests/test_mat_scalar_ops.py +2905 -2889
- warp/tests/test_math.py +124 -193
- warp/tests/test_matmul.py +498 -499
- warp/tests/test_matmul_lite.py +408 -410
- warp/tests/test_mempool.py +186 -190
- warp/tests/test_mesh.py +281 -324
- warp/tests/test_mesh_query_aabb.py +226 -241
- warp/tests/test_mesh_query_point.py +690 -702
- warp/tests/test_mesh_query_ray.py +290 -303
- warp/tests/test_mlp.py +274 -276
- warp/tests/test_model.py +108 -110
- warp/tests/test_module_hashing.py +111 -0
- warp/tests/test_modules_lite.py +36 -39
- warp/tests/test_multigpu.py +161 -163
- warp/tests/test_noise.py +244 -248
- warp/tests/test_operators.py +248 -250
- warp/tests/test_options.py +121 -125
- warp/tests/test_peer.py +131 -137
- warp/tests/test_pinned.py +76 -78
- warp/tests/test_print.py +52 -54
- warp/tests/test_quat.py +2084 -2086
- warp/tests/test_rand.py +324 -288
- warp/tests/test_reload.py +207 -217
- warp/tests/test_rounding.py +177 -179
- warp/tests/test_runlength_encode.py +188 -190
- warp/tests/test_sim_grad.py +241 -0
- warp/tests/test_sim_kinematics.py +89 -97
- warp/tests/test_smoothstep.py +166 -168
- warp/tests/test_snippet.py +303 -266
- warp/tests/test_sparse.py +466 -460
- warp/tests/test_spatial.py +2146 -2148
- warp/tests/test_special_values.py +362 -0
- warp/tests/test_streams.py +484 -473
- warp/tests/test_struct.py +708 -675
- warp/tests/test_tape.py +171 -148
- warp/tests/test_torch.py +741 -743
- warp/tests/test_transient_module.py +85 -87
- warp/tests/test_types.py +554 -659
- warp/tests/test_utils.py +488 -499
- warp/tests/test_vec.py +1262 -1268
- warp/tests/test_vec_lite.py +71 -73
- warp/tests/test_vec_scalar_ops.py +2097 -2099
- warp/tests/test_verify_fp.py +92 -94
- warp/tests/test_volume.py +961 -736
- warp/tests/test_volume_write.py +338 -265
- warp/tests/unittest_serial.py +38 -37
- warp/tests/unittest_suites.py +367 -359
- warp/tests/unittest_utils.py +434 -578
- warp/tests/unused_test_misc.py +69 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +563 -561
- warp/torch.py +321 -295
- warp/types.py +4941 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
- warp_lang-1.2.0.dist-info/RECORD +359 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
- warp/native/nanovdb/PNanoVDBWrite.h +0 -295
- warp_lang-1.0.2.dist-info/RECORD +0 -352
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -1,77 +1,77 @@
|
|
|
1
|
-
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import numpy as np
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
12
|
-
i = indices[:, 0]
|
|
13
|
-
j = indices[:, 1]
|
|
14
|
-
|
|
15
|
-
xi = x[i]
|
|
16
|
-
xj = x[j]
|
|
17
|
-
|
|
18
|
-
vi = v[i]
|
|
19
|
-
vj = v[j]
|
|
20
|
-
|
|
21
|
-
xij = xi - xj
|
|
22
|
-
vij = vi - vj
|
|
23
|
-
|
|
24
|
-
l = np.linalg.norm(xij, axis=1)
|
|
25
|
-
l_inv = 1.0 / l
|
|
26
|
-
|
|
27
|
-
# normalized spring direction
|
|
28
|
-
dir = (xij.T * l_inv).T
|
|
29
|
-
|
|
30
|
-
c = l - rest
|
|
31
|
-
dcdt = np.sum(dir * vij, axis=1)
|
|
32
|
-
|
|
33
|
-
# damping based on relative velocity.
|
|
34
|
-
fs = dir.T * (ke * c + kd * dcdt)
|
|
35
|
-
|
|
36
|
-
np.add.at(f, i, -fs.T)
|
|
37
|
-
np.add.at(f, j, fs.T)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def integrate_particles(x, v, f, w, dt):
|
|
41
|
-
g = np.array((0.0, 0.0 - 9.8, 0.0))
|
|
42
|
-
s = w > 0.0
|
|
43
|
-
|
|
44
|
-
a_ext = g * s[:, None]
|
|
45
|
-
|
|
46
|
-
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
47
|
-
v += ((f.T * w).T + a_ext) * dt
|
|
48
|
-
x += v * dt
|
|
49
|
-
|
|
50
|
-
# clear forces
|
|
51
|
-
f *= 0.0
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
class NpIntegrator:
|
|
55
|
-
def __init__(self, cloth):
|
|
56
|
-
self.cloth = cloth
|
|
57
|
-
|
|
58
|
-
self.forces = np.zeros((self.cloth.num_particles, 3), dtype=np.float32)
|
|
59
|
-
|
|
60
|
-
def simulate(self, dt, substeps):
|
|
61
|
-
sim_dt = dt / substeps
|
|
62
|
-
|
|
63
|
-
for
|
|
64
|
-
eval_springs(
|
|
65
|
-
self.cloth.positions,
|
|
66
|
-
self.cloth.velocities,
|
|
67
|
-
self.cloth.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
68
|
-
self.cloth.spring_lengths,
|
|
69
|
-
self.cloth.spring_stiffness,
|
|
70
|
-
self.cloth.spring_damping,
|
|
71
|
-
self.forces,
|
|
72
|
-
)
|
|
73
|
-
|
|
74
|
-
# integrate
|
|
75
|
-
integrate_particles(self.cloth.positions, self.cloth.velocities, self.forces, self.cloth.inv_masses, sim_dt)
|
|
76
|
-
|
|
77
|
-
return self.cloth.positions
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
12
|
+
i = indices[:, 0]
|
|
13
|
+
j = indices[:, 1]
|
|
14
|
+
|
|
15
|
+
xi = x[i]
|
|
16
|
+
xj = x[j]
|
|
17
|
+
|
|
18
|
+
vi = v[i]
|
|
19
|
+
vj = v[j]
|
|
20
|
+
|
|
21
|
+
xij = xi - xj
|
|
22
|
+
vij = vi - vj
|
|
23
|
+
|
|
24
|
+
l = np.linalg.norm(xij, axis=1)
|
|
25
|
+
l_inv = 1.0 / l
|
|
26
|
+
|
|
27
|
+
# normalized spring direction
|
|
28
|
+
dir = (xij.T * l_inv).T
|
|
29
|
+
|
|
30
|
+
c = l - rest
|
|
31
|
+
dcdt = np.sum(dir * vij, axis=1)
|
|
32
|
+
|
|
33
|
+
# damping based on relative velocity.
|
|
34
|
+
fs = dir.T * (ke * c + kd * dcdt)
|
|
35
|
+
|
|
36
|
+
np.add.at(f, i, -fs.T)
|
|
37
|
+
np.add.at(f, j, fs.T)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def integrate_particles(x, v, f, w, dt):
|
|
41
|
+
g = np.array((0.0, 0.0 - 9.8, 0.0))
|
|
42
|
+
s = w > 0.0
|
|
43
|
+
|
|
44
|
+
a_ext = g * s[:, None]
|
|
45
|
+
|
|
46
|
+
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
47
|
+
v += ((f.T * w).T + a_ext) * dt
|
|
48
|
+
x += v * dt
|
|
49
|
+
|
|
50
|
+
# clear forces
|
|
51
|
+
f *= 0.0
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
class NpIntegrator:
|
|
55
|
+
def __init__(self, cloth):
|
|
56
|
+
self.cloth = cloth
|
|
57
|
+
|
|
58
|
+
self.forces = np.zeros((self.cloth.num_particles, 3), dtype=np.float32)
|
|
59
|
+
|
|
60
|
+
def simulate(self, dt, substeps):
|
|
61
|
+
sim_dt = dt / substeps
|
|
62
|
+
|
|
63
|
+
for _s in range(substeps):
|
|
64
|
+
eval_springs(
|
|
65
|
+
self.cloth.positions,
|
|
66
|
+
self.cloth.velocities,
|
|
67
|
+
self.cloth.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
68
|
+
self.cloth.spring_lengths,
|
|
69
|
+
self.cloth.spring_stiffness,
|
|
70
|
+
self.cloth.spring_damping,
|
|
71
|
+
self.forces,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
# integrate
|
|
75
|
+
integrate_particles(self.cloth.positions, self.cloth.velocities, self.forces, self.cloth.inv_masses, sim_dt)
|
|
76
|
+
|
|
77
|
+
return self.cloth.positions
|
|
@@ -1,86 +1,86 @@
|
|
|
1
|
-
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import torch
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
12
|
-
i = indices[:, 0]
|
|
13
|
-
j = indices[:, 1]
|
|
14
|
-
|
|
15
|
-
xi = x[i]
|
|
16
|
-
xj = x[j]
|
|
17
|
-
|
|
18
|
-
vi = v[i]
|
|
19
|
-
vj = v[j]
|
|
20
|
-
|
|
21
|
-
xij = xi - xj
|
|
22
|
-
vij = vi - vj
|
|
23
|
-
|
|
24
|
-
l = torch.linalg.norm(xij, axis=1)
|
|
25
|
-
l_inv = 1.0 / l
|
|
26
|
-
|
|
27
|
-
# normalized spring direction
|
|
28
|
-
dir = (xij.T * l_inv).T
|
|
29
|
-
|
|
30
|
-
c = l - rest
|
|
31
|
-
dcdt = torch.sum(dir * vij, axis=1)
|
|
32
|
-
|
|
33
|
-
# damping based on relative velocity.
|
|
34
|
-
fs = dir.T * (ke * c + kd * dcdt)
|
|
35
|
-
|
|
36
|
-
f.index_add_(dim=0, index=i, source=-fs.T)
|
|
37
|
-
f.index_add_(dim=0, index=j, source=fs.T)
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
def integrate_particles(x, v, f, g, w, dt):
|
|
41
|
-
s = w > 0.0
|
|
42
|
-
|
|
43
|
-
a_ext = g * s[:, None]
|
|
44
|
-
|
|
45
|
-
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
46
|
-
v += ((f.T * w).T + a_ext) * dt
|
|
47
|
-
x += v * dt
|
|
48
|
-
|
|
49
|
-
# clear forces
|
|
50
|
-
f *= 0.0
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
class TrIntegrator:
|
|
54
|
-
def __init__(self, cloth, device):
|
|
55
|
-
self.cloth = cloth
|
|
56
|
-
|
|
57
|
-
self.positions = torch.tensor(self.cloth.positions, device=device)
|
|
58
|
-
self.velocities = torch.tensor(self.cloth.velocities, device=device)
|
|
59
|
-
self.inv_mass = torch.tensor(self.cloth.inv_masses, device=device)
|
|
60
|
-
|
|
61
|
-
self.spring_indices = torch.tensor(self.cloth.spring_indices, device=device, dtype=torch.long)
|
|
62
|
-
self.spring_lengths = torch.tensor(self.cloth.spring_lengths, device=device)
|
|
63
|
-
self.spring_stiffness = torch.tensor(self.cloth.spring_stiffness, device=device)
|
|
64
|
-
self.spring_damping = torch.tensor(self.cloth.spring_damping, device=device)
|
|
65
|
-
|
|
66
|
-
self.forces = torch.zeros((self.cloth.num_particles, 3), dtype=torch.float32, device=device)
|
|
67
|
-
self.gravity =
|
|
68
|
-
|
|
69
|
-
def simulate(self, dt, substeps):
|
|
70
|
-
sim_dt = dt / substeps
|
|
71
|
-
|
|
72
|
-
for
|
|
73
|
-
eval_springs(
|
|
74
|
-
self.positions,
|
|
75
|
-
self.velocities,
|
|
76
|
-
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
77
|
-
self.spring_lengths,
|
|
78
|
-
self.spring_stiffness,
|
|
79
|
-
self.spring_damping,
|
|
80
|
-
self.forces,
|
|
81
|
-
)
|
|
82
|
-
|
|
83
|
-
# integrate
|
|
84
|
-
integrate_particles(self.positions, self.velocities, self.forces, self.gravity, self.inv_mass, sim_dt)
|
|
85
|
-
|
|
86
|
-
return self.positions.cpu().numpy()
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import torch
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def eval_springs(x, v, indices, rest, ke, kd, f):
|
|
12
|
+
i = indices[:, 0]
|
|
13
|
+
j = indices[:, 1]
|
|
14
|
+
|
|
15
|
+
xi = x[i]
|
|
16
|
+
xj = x[j]
|
|
17
|
+
|
|
18
|
+
vi = v[i]
|
|
19
|
+
vj = v[j]
|
|
20
|
+
|
|
21
|
+
xij = xi - xj
|
|
22
|
+
vij = vi - vj
|
|
23
|
+
|
|
24
|
+
l = torch.linalg.norm(xij, axis=1)
|
|
25
|
+
l_inv = 1.0 / l
|
|
26
|
+
|
|
27
|
+
# normalized spring direction
|
|
28
|
+
dir = (xij.T * l_inv).T
|
|
29
|
+
|
|
30
|
+
c = l - rest
|
|
31
|
+
dcdt = torch.sum(dir * vij, axis=1)
|
|
32
|
+
|
|
33
|
+
# damping based on relative velocity.
|
|
34
|
+
fs = dir.T * (ke * c + kd * dcdt)
|
|
35
|
+
|
|
36
|
+
f.index_add_(dim=0, index=i, source=-fs.T)
|
|
37
|
+
f.index_add_(dim=0, index=j, source=fs.T)
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def integrate_particles(x, v, f, g, w, dt):
|
|
41
|
+
s = w > 0.0
|
|
42
|
+
|
|
43
|
+
a_ext = g * s[:, None]
|
|
44
|
+
|
|
45
|
+
# simple semi-implicit Euler. v1 = v0 + a dt, x1 = x0 + v1 dt
|
|
46
|
+
v += ((f.T * w).T + a_ext) * dt
|
|
47
|
+
x += v * dt
|
|
48
|
+
|
|
49
|
+
# clear forces
|
|
50
|
+
f *= 0.0
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
class TrIntegrator:
|
|
54
|
+
def __init__(self, cloth, device):
|
|
55
|
+
self.cloth = cloth
|
|
56
|
+
|
|
57
|
+
self.positions = torch.tensor(self.cloth.positions, device=device)
|
|
58
|
+
self.velocities = torch.tensor(self.cloth.velocities, device=device)
|
|
59
|
+
self.inv_mass = torch.tensor(self.cloth.inv_masses, device=device)
|
|
60
|
+
|
|
61
|
+
self.spring_indices = torch.tensor(self.cloth.spring_indices, device=device, dtype=torch.long)
|
|
62
|
+
self.spring_lengths = torch.tensor(self.cloth.spring_lengths, device=device)
|
|
63
|
+
self.spring_stiffness = torch.tensor(self.cloth.spring_stiffness, device=device)
|
|
64
|
+
self.spring_damping = torch.tensor(self.cloth.spring_damping, device=device)
|
|
65
|
+
|
|
66
|
+
self.forces = torch.zeros((self.cloth.num_particles, 3), dtype=torch.float32, device=device)
|
|
67
|
+
self.gravity = torch.tensor((0.0, 0.0 - 9.8, 0.0), dtype=torch.float32, device=device)
|
|
68
|
+
|
|
69
|
+
def simulate(self, dt, substeps):
|
|
70
|
+
sim_dt = dt / substeps
|
|
71
|
+
|
|
72
|
+
for _s in range(substeps):
|
|
73
|
+
eval_springs(
|
|
74
|
+
self.positions,
|
|
75
|
+
self.velocities,
|
|
76
|
+
self.spring_indices.reshape((self.cloth.num_springs, 2)),
|
|
77
|
+
self.spring_lengths,
|
|
78
|
+
self.spring_stiffness,
|
|
79
|
+
self.spring_damping,
|
|
80
|
+
self.forces,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
# integrate
|
|
84
|
+
integrate_particles(self.positions, self.velocities, self.forces, self.gravity, self.inv_mass, sim_dt)
|
|
85
|
+
|
|
86
|
+
return self.positions.cpu().numpy()
|
|
@@ -1,112 +1,112 @@
|
|
|
1
|
-
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import
|
|
9
|
-
import
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
@ti.func
|
|
13
|
-
def step(x):
|
|
14
|
-
ret = 0.0
|
|
15
|
-
if x < 0:
|
|
16
|
-
ret = 1
|
|
17
|
-
return ret
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
@ti.data_oriented
|
|
21
|
-
class TiIntegrator:
|
|
22
|
-
@ti.kernel
|
|
23
|
-
def eval_springs(self):
|
|
24
|
-
for tid in range(self.cloth.num_springs):
|
|
25
|
-
i = self.spring_indices[2 * tid]
|
|
26
|
-
j = self.spring_indices[2 * tid + 1]
|
|
27
|
-
|
|
28
|
-
ke = self.spring_stiffness[tid]
|
|
29
|
-
kd = self.spring_damping[tid]
|
|
30
|
-
rest = self.spring_lengths[tid]
|
|
31
|
-
|
|
32
|
-
xi = self.positions[i]
|
|
33
|
-
xj = self.positions[j]
|
|
34
|
-
|
|
35
|
-
vi = self.velocities[i]
|
|
36
|
-
vj = self.velocities[j]
|
|
37
|
-
|
|
38
|
-
xij = xi - xj
|
|
39
|
-
vij = vi - vj
|
|
40
|
-
|
|
41
|
-
l = xij.norm()
|
|
42
|
-
dir = xij.normalized()
|
|
43
|
-
|
|
44
|
-
c = l - rest
|
|
45
|
-
dcdt = dir.dot(vij)
|
|
46
|
-
|
|
47
|
-
fs = dir * (ke * c + kd * dcdt)
|
|
48
|
-
|
|
49
|
-
self.forces[i] -= fs
|
|
50
|
-
self.forces[j] += fs
|
|
51
|
-
|
|
52
|
-
@ti.kernel
|
|
53
|
-
def integrate_particles(self, dt: ti.f32):
|
|
54
|
-
for tid in range(self.cloth.num_particles):
|
|
55
|
-
x0 = self.positions[tid]
|
|
56
|
-
v0 = self.velocities[tid]
|
|
57
|
-
f0 = self.forces[tid]
|
|
58
|
-
w = self.inv_mass[tid]
|
|
59
|
-
|
|
60
|
-
g = ti.Vector([0.0, 0.0, 0.0])
|
|
61
|
-
|
|
62
|
-
if w > 0.0:
|
|
63
|
-
g = ti.Vector([0.0, -9.81, 0.0])
|
|
64
|
-
|
|
65
|
-
v1 = v0 + (f0 * w + g) * dt
|
|
66
|
-
x1 = x0 + v1 * dt
|
|
67
|
-
|
|
68
|
-
self.positions[tid] = x1
|
|
69
|
-
self.velocities[tid] = v1
|
|
70
|
-
self.forces[tid] = ti.Vector([0.0, 0.0, 0.0])
|
|
71
|
-
|
|
72
|
-
def __init__(self, cloth, device):
|
|
73
|
-
if device == "cpu":
|
|
74
|
-
ti.init(arch=ti.cpu)
|
|
75
|
-
elif device == "cuda":
|
|
76
|
-
ti.init(arch=ti.gpu)
|
|
77
|
-
else:
|
|
78
|
-
raise RuntimeError("Unsupported Taichi device")
|
|
79
|
-
|
|
80
|
-
self.cloth = cloth
|
|
81
|
-
|
|
82
|
-
self.positions = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
83
|
-
self.velocities = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
84
|
-
self.inv_mass = ti.field(ti.f32, shape=self.cloth.num_particles)
|
|
85
|
-
|
|
86
|
-
self.spring_indices = ti.field(ti.i32, shape=self.cloth.num_springs * 2)
|
|
87
|
-
self.spring_lengths = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
88
|
-
self.spring_stiffness = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
89
|
-
self.spring_damping = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
90
|
-
|
|
91
|
-
self.forces = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
92
|
-
|
|
93
|
-
# upload data
|
|
94
|
-
self.positions.from_numpy(cloth.positions)
|
|
95
|
-
self.velocities.from_numpy(cloth.velocities)
|
|
96
|
-
self.inv_mass.from_numpy(cloth.inv_masses)
|
|
97
|
-
self.forces.from_numpy(np.zeros_like(self.cloth.velocities))
|
|
98
|
-
|
|
99
|
-
self.spring_indices.from_numpy(cloth.spring_indices)
|
|
100
|
-
self.spring_lengths.from_numpy(cloth.spring_lengths)
|
|
101
|
-
self.spring_stiffness.from_numpy(cloth.spring_stiffness)
|
|
102
|
-
self.spring_damping.from_numpy(cloth.spring_damping)
|
|
103
|
-
|
|
104
|
-
def simulate(self, dt, substeps):
|
|
105
|
-
sim_dt = dt / substeps
|
|
106
|
-
|
|
107
|
-
for
|
|
108
|
-
self.eval_springs()
|
|
109
|
-
|
|
110
|
-
self.integrate_particles(sim_dt)
|
|
111
|
-
|
|
112
|
-
return self.positions.to_numpy()
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import numpy as np
|
|
9
|
+
import taichi as ti
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@ti.func
|
|
13
|
+
def step(x):
|
|
14
|
+
ret = 0.0
|
|
15
|
+
if x < 0:
|
|
16
|
+
ret = 1
|
|
17
|
+
return ret
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@ti.data_oriented
|
|
21
|
+
class TiIntegrator:
|
|
22
|
+
@ti.kernel
|
|
23
|
+
def eval_springs(self):
|
|
24
|
+
for tid in range(self.cloth.num_springs):
|
|
25
|
+
i = self.spring_indices[2 * tid]
|
|
26
|
+
j = self.spring_indices[2 * tid + 1]
|
|
27
|
+
|
|
28
|
+
ke = self.spring_stiffness[tid]
|
|
29
|
+
kd = self.spring_damping[tid]
|
|
30
|
+
rest = self.spring_lengths[tid]
|
|
31
|
+
|
|
32
|
+
xi = self.positions[i]
|
|
33
|
+
xj = self.positions[j]
|
|
34
|
+
|
|
35
|
+
vi = self.velocities[i]
|
|
36
|
+
vj = self.velocities[j]
|
|
37
|
+
|
|
38
|
+
xij = xi - xj
|
|
39
|
+
vij = vi - vj
|
|
40
|
+
|
|
41
|
+
l = xij.norm()
|
|
42
|
+
dir = xij.normalized()
|
|
43
|
+
|
|
44
|
+
c = l - rest
|
|
45
|
+
dcdt = dir.dot(vij)
|
|
46
|
+
|
|
47
|
+
fs = dir * (ke * c + kd * dcdt)
|
|
48
|
+
|
|
49
|
+
self.forces[i] -= fs
|
|
50
|
+
self.forces[j] += fs
|
|
51
|
+
|
|
52
|
+
@ti.kernel
|
|
53
|
+
def integrate_particles(self, dt: ti.f32):
|
|
54
|
+
for tid in range(self.cloth.num_particles):
|
|
55
|
+
x0 = self.positions[tid]
|
|
56
|
+
v0 = self.velocities[tid]
|
|
57
|
+
f0 = self.forces[tid]
|
|
58
|
+
w = self.inv_mass[tid]
|
|
59
|
+
|
|
60
|
+
g = ti.Vector([0.0, 0.0, 0.0])
|
|
61
|
+
|
|
62
|
+
if w > 0.0:
|
|
63
|
+
g = ti.Vector([0.0, -9.81, 0.0])
|
|
64
|
+
|
|
65
|
+
v1 = v0 + (f0 * w + g) * dt
|
|
66
|
+
x1 = x0 + v1 * dt
|
|
67
|
+
|
|
68
|
+
self.positions[tid] = x1
|
|
69
|
+
self.velocities[tid] = v1
|
|
70
|
+
self.forces[tid] = ti.Vector([0.0, 0.0, 0.0])
|
|
71
|
+
|
|
72
|
+
def __init__(self, cloth, device):
|
|
73
|
+
if device == "cpu":
|
|
74
|
+
ti.init(arch=ti.cpu)
|
|
75
|
+
elif device == "cuda":
|
|
76
|
+
ti.init(arch=ti.gpu)
|
|
77
|
+
else:
|
|
78
|
+
raise RuntimeError("Unsupported Taichi device")
|
|
79
|
+
|
|
80
|
+
self.cloth = cloth
|
|
81
|
+
|
|
82
|
+
self.positions = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
83
|
+
self.velocities = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
84
|
+
self.inv_mass = ti.field(ti.f32, shape=self.cloth.num_particles)
|
|
85
|
+
|
|
86
|
+
self.spring_indices = ti.field(ti.i32, shape=self.cloth.num_springs * 2)
|
|
87
|
+
self.spring_lengths = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
88
|
+
self.spring_stiffness = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
89
|
+
self.spring_damping = ti.field(ti.f32, shape=self.cloth.num_springs)
|
|
90
|
+
|
|
91
|
+
self.forces = ti.Vector.field(3, dtype=ti.f32, shape=self.cloth.num_particles)
|
|
92
|
+
|
|
93
|
+
# upload data
|
|
94
|
+
self.positions.from_numpy(cloth.positions)
|
|
95
|
+
self.velocities.from_numpy(cloth.velocities)
|
|
96
|
+
self.inv_mass.from_numpy(cloth.inv_masses)
|
|
97
|
+
self.forces.from_numpy(np.zeros_like(self.cloth.velocities))
|
|
98
|
+
|
|
99
|
+
self.spring_indices.from_numpy(cloth.spring_indices)
|
|
100
|
+
self.spring_lengths.from_numpy(cloth.spring_lengths)
|
|
101
|
+
self.spring_stiffness.from_numpy(cloth.spring_stiffness)
|
|
102
|
+
self.spring_damping.from_numpy(cloth.spring_damping)
|
|
103
|
+
|
|
104
|
+
def simulate(self, dt, substeps):
|
|
105
|
+
sim_dt = dt / substeps
|
|
106
|
+
|
|
107
|
+
for _s in range(substeps):
|
|
108
|
+
self.eval_springs()
|
|
109
|
+
|
|
110
|
+
self.integrate_particles(sim_dt)
|
|
111
|
+
|
|
112
|
+
return self.positions.to_numpy()
|