warp-lang 1.0.2__py3-none-manylinux2014_x86_64.whl → 1.2.0__py3-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +88 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3693 -3354
- warp/codegen.py +2925 -2792
- warp/config.py +40 -36
- warp/constants.py +49 -45
- warp/context.py +5409 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +381 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -277
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +145 -146
- warp/examples/benchmarks/benchmark_launches.py +293 -295
- warp/examples/browse.py +29 -29
- warp/examples/core/example_dem.py +232 -219
- warp/examples/core/example_fluid.py +291 -267
- warp/examples/core/example_graph_capture.py +142 -126
- warp/examples/core/example_marching_cubes.py +186 -174
- warp/examples/core/example_mesh.py +172 -155
- warp/examples/core/example_mesh_intersect.py +203 -193
- warp/examples/core/example_nvdb.py +174 -170
- warp/examples/core/example_raycast.py +103 -90
- warp/examples/core/example_raymarch.py +197 -178
- warp/examples/core/example_render_opengl.py +183 -141
- warp/examples/core/example_sph.py +403 -387
- warp/examples/core/example_torch.py +219 -181
- warp/examples/core/example_wave.py +261 -248
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +432 -389
- warp/examples/fem/example_burgers.py +262 -0
- warp/examples/fem/example_convection_diffusion.py +180 -168
- warp/examples/fem/example_convection_diffusion_dg.py +217 -209
- warp/examples/fem/example_deformed_geometry.py +175 -159
- warp/examples/fem/example_diffusion.py +199 -173
- warp/examples/fem/example_diffusion_3d.py +178 -152
- warp/examples/fem/example_diffusion_mgpu.py +219 -214
- warp/examples/fem/example_mixed_elasticity.py +242 -222
- warp/examples/fem/example_navier_stokes.py +257 -243
- warp/examples/fem/example_stokes.py +218 -192
- warp/examples/fem/example_stokes_transfer.py +263 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +258 -246
- warp/examples/optim/example_cloth_throw.py +220 -209
- warp/examples/optim/example_diffray.py +564 -536
- warp/examples/optim/example_drone.py +862 -835
- warp/examples/optim/example_inverse_kinematics.py +174 -168
- warp/examples/optim/example_inverse_kinematics_torch.py +183 -169
- warp/examples/optim/example_spring_cage.py +237 -231
- warp/examples/optim/example_trajectory.py +221 -199
- warp/examples/optim/example_walker.py +304 -293
- warp/examples/sim/example_cartpole.py +137 -129
- warp/examples/sim/example_cloth.py +194 -186
- warp/examples/sim/example_granular.py +122 -111
- warp/examples/sim/example_granular_collision_sdf.py +195 -186
- warp/examples/sim/example_jacobian_ik.py +234 -214
- warp/examples/sim/example_particle_chain.py +116 -105
- warp/examples/sim/example_quadruped.py +191 -180
- warp/examples/sim/example_rigid_chain.py +195 -187
- warp/examples/sim/example_rigid_contact.py +187 -177
- warp/examples/sim/example_rigid_force.py +125 -125
- warp/examples/sim/example_rigid_gyroscopic.py +107 -95
- warp/examples/sim/example_rigid_soft_contact.py +132 -122
- warp/examples/sim/example_soft_body.py +188 -177
- warp/fabric.py +337 -335
- warp/fem/__init__.py +61 -27
- warp/fem/cache.py +403 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +16 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +748 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +437 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/nanogrid.py +455 -0
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1684 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +179 -292
- warp/fem/space/basis_space.py +522 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +148 -267
- warp/fem/space/grid_3d_function_space.py +167 -306
- warp/fem/space/hexmesh_function_space.py +253 -352
- warp/fem/space/nanogrid_function_space.py +202 -0
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +261 -369
- warp/fem/space/restriction.py +161 -160
- warp/fem/space/shape/__init__.py +90 -15
- warp/fem/space/shape/cube_shape_function.py +728 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +224 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +153 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1081 -1025
- warp/native/builtin.h +1603 -1560
- warp/native/bvh.cpp +402 -398
- warp/native/bvh.cu +533 -525
- warp/native/bvh.h +430 -429
- warp/native/clang/clang.cpp +496 -464
- warp/native/crt.cpp +42 -32
- warp/native/crt.h +352 -335
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/exports.h +187 -0
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1545 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +292 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/GridHandle.h +366 -0
- warp/native/nanovdb/HostBuffer.h +590 -0
- warp/native/nanovdb/NanoVDB.h +6624 -4782
- warp/native/nanovdb/PNanoVDB.h +3390 -2553
- warp/native/noise.h +850 -850
- warp/native/quat.h +1112 -1085
- warp/native/rand.h +303 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1177 -1133
- warp/native/volume.cpp +529 -297
- warp/native/volume.cu +58 -32
- warp/native/volume.h +960 -538
- warp/native/volume_builder.cu +446 -425
- warp/native/volume_builder.h +34 -19
- warp/native/volume_impl.h +61 -0
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2949 -2828
- warp/native/warp.h +321 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3356 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1917 -1991
- warp/sim/integrator_xpbd.py +3288 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1289 -1227
- warp/stubs.py +2192 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/test_index_grid.nvdb +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +20 -22
- warp/tests/aux_test_grad_customs.py +21 -23
- warp/tests/aux_test_reference.py +9 -11
- warp/tests/aux_test_reference_reference.py +8 -10
- warp/tests/aux_test_square.py +15 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +237 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +155 -157
- warp/tests/test_arithmetic.py +1088 -1124
- warp/tests/test_array.py +2415 -2326
- warp/tests/test_array_reduce.py +148 -150
- warp/tests/test_async.py +666 -656
- warp/tests/test_atomic.py +139 -141
- warp/tests/test_bool.py +212 -149
- warp/tests/test_builtins_resolution.py +1290 -1292
- warp/tests/test_bvh.py +162 -171
- warp/tests/test_closest_point_edge_edge.py +227 -228
- warp/tests/test_codegen.py +562 -553
- warp/tests/test_compile_consts.py +217 -101
- warp/tests/test_conditional.py +244 -246
- warp/tests/test_copy.py +230 -215
- warp/tests/test_ctypes.py +630 -632
- warp/tests/test_dense.py +65 -67
- warp/tests/test_devices.py +89 -98
- warp/tests/test_dlpack.py +528 -529
- warp/tests/test_examples.py +403 -378
- warp/tests/test_fabricarray.py +952 -955
- warp/tests/test_fast_math.py +60 -54
- warp/tests/test_fem.py +1298 -1278
- warp/tests/test_fp16.py +128 -130
- warp/tests/test_func.py +336 -337
- warp/tests/test_generics.py +596 -571
- warp/tests/test_grad.py +885 -640
- warp/tests/test_grad_customs.py +331 -336
- warp/tests/test_hash_grid.py +208 -164
- warp/tests/test_import.py +37 -39
- warp/tests/test_indexedarray.py +1132 -1134
- warp/tests/test_intersect.py +65 -67
- warp/tests/test_jax.py +305 -307
- warp/tests/test_large.py +169 -164
- warp/tests/test_launch.py +352 -354
- warp/tests/test_lerp.py +217 -261
- warp/tests/test_linear_solvers.py +189 -171
- warp/tests/test_lvalue.py +419 -493
- warp/tests/test_marching_cubes.py +63 -65
- warp/tests/test_mat.py +1799 -1827
- warp/tests/test_mat_lite.py +113 -115
- warp/tests/test_mat_scalar_ops.py +2905 -2889
- warp/tests/test_math.py +124 -193
- warp/tests/test_matmul.py +498 -499
- warp/tests/test_matmul_lite.py +408 -410
- warp/tests/test_mempool.py +186 -190
- warp/tests/test_mesh.py +281 -324
- warp/tests/test_mesh_query_aabb.py +226 -241
- warp/tests/test_mesh_query_point.py +690 -702
- warp/tests/test_mesh_query_ray.py +290 -303
- warp/tests/test_mlp.py +274 -276
- warp/tests/test_model.py +108 -110
- warp/tests/test_module_hashing.py +111 -0
- warp/tests/test_modules_lite.py +36 -39
- warp/tests/test_multigpu.py +161 -163
- warp/tests/test_noise.py +244 -248
- warp/tests/test_operators.py +248 -250
- warp/tests/test_options.py +121 -125
- warp/tests/test_peer.py +131 -137
- warp/tests/test_pinned.py +76 -78
- warp/tests/test_print.py +52 -54
- warp/tests/test_quat.py +2084 -2086
- warp/tests/test_rand.py +324 -288
- warp/tests/test_reload.py +207 -217
- warp/tests/test_rounding.py +177 -179
- warp/tests/test_runlength_encode.py +188 -190
- warp/tests/test_sim_grad.py +241 -0
- warp/tests/test_sim_kinematics.py +89 -97
- warp/tests/test_smoothstep.py +166 -168
- warp/tests/test_snippet.py +303 -266
- warp/tests/test_sparse.py +466 -460
- warp/tests/test_spatial.py +2146 -2148
- warp/tests/test_special_values.py +362 -0
- warp/tests/test_streams.py +484 -473
- warp/tests/test_struct.py +708 -675
- warp/tests/test_tape.py +171 -148
- warp/tests/test_torch.py +741 -743
- warp/tests/test_transient_module.py +85 -87
- warp/tests/test_types.py +554 -659
- warp/tests/test_utils.py +488 -499
- warp/tests/test_vec.py +1262 -1268
- warp/tests/test_vec_lite.py +71 -73
- warp/tests/test_vec_scalar_ops.py +2097 -2099
- warp/tests/test_verify_fp.py +92 -94
- warp/tests/test_volume.py +961 -736
- warp/tests/test_volume_write.py +338 -265
- warp/tests/unittest_serial.py +38 -37
- warp/tests/unittest_suites.py +367 -359
- warp/tests/unittest_utils.py +434 -578
- warp/tests/unused_test_misc.py +69 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +563 -561
- warp/torch.py +321 -295
- warp/types.py +4941 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/METADATA +365 -400
- warp_lang-1.2.0.dist-info/RECORD +359 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp/examples/fem/example_convection_diffusion_dg0.py +0 -194
- warp/native/nanovdb/PNanoVDBWrite.h +0 -295
- warp_lang-1.0.2.dist-info/RECORD +0 -352
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.2.dist-info → warp_lang-1.2.0.dist-info}/top_level.txt +0 -0
|
@@ -1,293 +1,304 @@
|
|
|
1
|
-
# Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
###########################################################################
|
|
9
|
-
# Example Walker
|
|
10
|
-
#
|
|
11
|
-
# Trains a tetrahedral mesh quadruped to run. Feeds 8 time-varying input
|
|
12
|
-
# phases as inputs into a single layer fully connected network with a tanh
|
|
13
|
-
# activation function. Interprets the output of the network as tet
|
|
14
|
-
# activations, which are fed into the wp.sim soft mesh model. This is
|
|
15
|
-
# simulated forward in time and then evaluated based on the center of mass
|
|
16
|
-
# momentum of the mesh.
|
|
17
|
-
#
|
|
18
|
-
###########################################################################
|
|
19
|
-
|
|
20
|
-
import
|
|
21
|
-
import
|
|
22
|
-
|
|
23
|
-
import
|
|
24
|
-
import
|
|
25
|
-
|
|
26
|
-
import warp
|
|
27
|
-
import warp.
|
|
28
|
-
|
|
29
|
-
import
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
tid =
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
self.
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
self.
|
|
80
|
-
|
|
81
|
-
self.
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
self.
|
|
85
|
-
|
|
86
|
-
self.
|
|
87
|
-
|
|
88
|
-
self.
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
self.model =
|
|
130
|
-
self.
|
|
131
|
-
|
|
132
|
-
self.model.
|
|
133
|
-
|
|
134
|
-
self.model.
|
|
135
|
-
self.model.
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
self.
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
#
|
|
143
|
-
self.
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
#
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
self.
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
self.
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
self.tape
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
self.
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
self.tape
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
self.
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
#
|
|
259
|
-
self.
|
|
260
|
-
self.
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
self.
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
276
|
-
self.
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
|
|
280
|
-
|
|
281
|
-
|
|
282
|
-
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
|
|
287
|
-
|
|
288
|
-
|
|
289
|
-
|
|
290
|
-
|
|
291
|
-
|
|
292
|
-
|
|
293
|
-
|
|
1
|
+
# Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
###########################################################################
|
|
9
|
+
# Example Walker
|
|
10
|
+
#
|
|
11
|
+
# Trains a tetrahedral mesh quadruped to run. Feeds 8 time-varying input
|
|
12
|
+
# phases as inputs into a single layer fully connected network with a tanh
|
|
13
|
+
# activation function. Interprets the output of the network as tet
|
|
14
|
+
# activations, which are fed into the wp.sim soft mesh model. This is
|
|
15
|
+
# simulated forward in time and then evaluated based on the center of mass
|
|
16
|
+
# momentum of the mesh.
|
|
17
|
+
#
|
|
18
|
+
###########################################################################
|
|
19
|
+
|
|
20
|
+
import math
|
|
21
|
+
import os
|
|
22
|
+
|
|
23
|
+
import numpy as np
|
|
24
|
+
from pxr import Usd, UsdGeom
|
|
25
|
+
|
|
26
|
+
import warp as wp
|
|
27
|
+
import warp.examples
|
|
28
|
+
import warp.optim
|
|
29
|
+
import warp.sim
|
|
30
|
+
import warp.sim.render
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@wp.kernel
|
|
34
|
+
def loss_kernel(com: wp.array(dtype=wp.vec3), loss: wp.array(dtype=float)):
|
|
35
|
+
tid = wp.tid()
|
|
36
|
+
vx = com[tid][0]
|
|
37
|
+
vy = com[tid][1]
|
|
38
|
+
vz = com[tid][2]
|
|
39
|
+
delta = wp.sqrt(vx * vx) + wp.sqrt(vy * vy) - vz
|
|
40
|
+
|
|
41
|
+
wp.atomic_add(loss, 0, delta)
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
@wp.kernel
|
|
45
|
+
def com_kernel(velocities: wp.array(dtype=wp.vec3), n: int, com: wp.array(dtype=wp.vec3)):
|
|
46
|
+
tid = wp.tid()
|
|
47
|
+
v = velocities[tid]
|
|
48
|
+
a = v / wp.float32(n)
|
|
49
|
+
wp.atomic_add(com, 0, a)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
@wp.kernel
|
|
53
|
+
def compute_phases(phases: wp.array(dtype=float), sim_time: float):
|
|
54
|
+
tid = wp.tid()
|
|
55
|
+
phases[tid] = wp.sin(phase_freq * sim_time + wp.float32(tid) * phase_step)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
@wp.kernel
|
|
59
|
+
def activation_function(tet_activations: wp.array(dtype=float), activation_inputs: wp.array(dtype=float)):
|
|
60
|
+
tid = wp.tid()
|
|
61
|
+
activation = wp.tanh(activation_inputs[tid])
|
|
62
|
+
tet_activations[tid] = activation_strength * activation
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
phase_count = 8
|
|
66
|
+
phase_step = wp.constant((2.0 * math.pi) / phase_count)
|
|
67
|
+
phase_freq = wp.constant(5.0)
|
|
68
|
+
activation_strength = wp.constant(0.3)
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
class Example:
|
|
72
|
+
def __init__(self, stage_path="example_walker.usd", verbose=False, num_frames=300):
|
|
73
|
+
self.verbose = verbose
|
|
74
|
+
|
|
75
|
+
fps = 60
|
|
76
|
+
self.frame_dt = 1.0 / fps
|
|
77
|
+
self.num_frames = num_frames
|
|
78
|
+
|
|
79
|
+
self.sim_substeps = 80
|
|
80
|
+
self.sim_dt = self.frame_dt / self.sim_substeps
|
|
81
|
+
self.sim_time = 0.0
|
|
82
|
+
|
|
83
|
+
self.iter = 0
|
|
84
|
+
self.train_rate = 0.025
|
|
85
|
+
|
|
86
|
+
self.phase_count = phase_count
|
|
87
|
+
|
|
88
|
+
self.render_time = 0.0
|
|
89
|
+
|
|
90
|
+
# bear
|
|
91
|
+
asset_stage = Usd.Stage.Open(os.path.join(warp.examples.get_asset_directory(), "bear.usd"))
|
|
92
|
+
|
|
93
|
+
geom = UsdGeom.Mesh(asset_stage.GetPrimAtPath("/root/bear"))
|
|
94
|
+
points = geom.GetPointsAttr().Get()
|
|
95
|
+
|
|
96
|
+
xform = geom.ComputeLocalToWorldTransform(0.0)
|
|
97
|
+
for i in range(len(points)):
|
|
98
|
+
points[i] = xform.Transform(points[i])
|
|
99
|
+
|
|
100
|
+
self.points = [wp.vec3(point) for point in points]
|
|
101
|
+
self.tet_indices = geom.GetPrim().GetAttribute("tetraIndices").Get()
|
|
102
|
+
|
|
103
|
+
# sim model
|
|
104
|
+
builder = wp.sim.ModelBuilder()
|
|
105
|
+
builder.add_soft_mesh(
|
|
106
|
+
pos=wp.vec3(0.0, 0.5, 0.0),
|
|
107
|
+
rot=wp.quat_identity(),
|
|
108
|
+
scale=1.0,
|
|
109
|
+
vel=wp.vec3(0.0, 0.0, 0.0),
|
|
110
|
+
vertices=self.points,
|
|
111
|
+
indices=self.tet_indices,
|
|
112
|
+
density=1.0,
|
|
113
|
+
k_mu=2000.0,
|
|
114
|
+
k_lambda=2000.0,
|
|
115
|
+
k_damp=2.0,
|
|
116
|
+
tri_ke=0.0,
|
|
117
|
+
tri_ka=1e-8,
|
|
118
|
+
tri_kd=0.0,
|
|
119
|
+
tri_drag=0.0,
|
|
120
|
+
tri_lift=0.0,
|
|
121
|
+
)
|
|
122
|
+
|
|
123
|
+
# finalize model
|
|
124
|
+
self.model = builder.finalize(requires_grad=True)
|
|
125
|
+
self.control = self.model.control()
|
|
126
|
+
|
|
127
|
+
self.model.soft_contact_ke = 2.0e3
|
|
128
|
+
self.model.soft_contact_kd = 0.1
|
|
129
|
+
self.model.soft_contact_kf = 10.0
|
|
130
|
+
self.model.soft_contact_mu = 0.7
|
|
131
|
+
|
|
132
|
+
radii = wp.zeros(self.model.particle_count, dtype=float)
|
|
133
|
+
radii.fill_(0.05)
|
|
134
|
+
self.model.particle_radius = radii
|
|
135
|
+
self.model.ground = True
|
|
136
|
+
|
|
137
|
+
# allocate sim states
|
|
138
|
+
self.states = []
|
|
139
|
+
for _i in range(self.num_frames * self.sim_substeps + 1):
|
|
140
|
+
self.states.append(self.model.state(requires_grad=True))
|
|
141
|
+
|
|
142
|
+
# initialize the integrator.
|
|
143
|
+
self.integrator = wp.sim.SemiImplicitIntegrator()
|
|
144
|
+
|
|
145
|
+
# model input
|
|
146
|
+
self.phases = []
|
|
147
|
+
for _i in range(self.num_frames):
|
|
148
|
+
self.phases.append(wp.zeros(self.phase_count, dtype=float, requires_grad=True))
|
|
149
|
+
|
|
150
|
+
# single layer linear network
|
|
151
|
+
rng = np.random.default_rng(42)
|
|
152
|
+
k = 1.0 / self.phase_count
|
|
153
|
+
weights = rng.uniform(-np.sqrt(k), np.sqrt(k), (self.model.tet_count, self.phase_count))
|
|
154
|
+
self.weights = wp.array(weights, dtype=float, requires_grad=True)
|
|
155
|
+
self.bias = wp.zeros(self.model.tet_count, dtype=float, requires_grad=True)
|
|
156
|
+
|
|
157
|
+
# tanh activation layer
|
|
158
|
+
self.activation_inputs = []
|
|
159
|
+
self.tet_activations = []
|
|
160
|
+
for _i in range(self.num_frames):
|
|
161
|
+
self.activation_inputs.append(wp.zeros(self.model.tet_count, dtype=float, requires_grad=True))
|
|
162
|
+
self.tet_activations.append(wp.zeros(self.model.tet_count, dtype=float, requires_grad=True))
|
|
163
|
+
|
|
164
|
+
# optimization
|
|
165
|
+
self.loss = wp.zeros(1, dtype=float, requires_grad=True)
|
|
166
|
+
self.coms = []
|
|
167
|
+
for _i in range(self.num_frames):
|
|
168
|
+
self.coms.append(wp.zeros(1, dtype=wp.vec3, requires_grad=True))
|
|
169
|
+
self.optimizer = warp.optim.Adam([self.weights.flatten()], lr=self.train_rate)
|
|
170
|
+
|
|
171
|
+
# rendering
|
|
172
|
+
if stage_path:
|
|
173
|
+
self.renderer = wp.sim.render.SimRenderer(self.model, stage_path)
|
|
174
|
+
else:
|
|
175
|
+
self.renderer = None
|
|
176
|
+
|
|
177
|
+
# capture forward/backward passes
|
|
178
|
+
self.use_cuda_graph = wp.get_device().is_cuda
|
|
179
|
+
if self.use_cuda_graph:
|
|
180
|
+
with wp.ScopedCapture() as capture:
|
|
181
|
+
self.tape = wp.Tape()
|
|
182
|
+
with self.tape:
|
|
183
|
+
for i in range(self.num_frames):
|
|
184
|
+
self.forward(i)
|
|
185
|
+
self.tape.backward(self.loss)
|
|
186
|
+
self.graph = capture.graph
|
|
187
|
+
|
|
188
|
+
def forward(self, frame):
|
|
189
|
+
with wp.ScopedTimer("network", active=self.verbose):
|
|
190
|
+
# build sinusoidal input phases
|
|
191
|
+
wp.launch(kernel=compute_phases, dim=self.phase_count, inputs=[self.phases[frame], self.sim_time])
|
|
192
|
+
# fully connected, linear transformation layer
|
|
193
|
+
wp.matmul(
|
|
194
|
+
self.weights,
|
|
195
|
+
self.phases[frame].reshape((self.phase_count, 1)),
|
|
196
|
+
self.bias.reshape((self.model.tet_count, 1)),
|
|
197
|
+
self.activation_inputs[frame].reshape((self.model.tet_count, 1)),
|
|
198
|
+
)
|
|
199
|
+
# tanh activation function
|
|
200
|
+
wp.launch(
|
|
201
|
+
kernel=activation_function,
|
|
202
|
+
dim=self.model.tet_count,
|
|
203
|
+
inputs=[self.tet_activations[frame], self.activation_inputs[frame]],
|
|
204
|
+
)
|
|
205
|
+
self.control.tet_activations = self.tet_activations[frame]
|
|
206
|
+
|
|
207
|
+
with wp.ScopedTimer("simulate", active=self.verbose):
|
|
208
|
+
# run simulation loop
|
|
209
|
+
for i in range(self.sim_substeps):
|
|
210
|
+
self.states[frame * self.sim_substeps + i].clear_forces()
|
|
211
|
+
self.integrator.simulate(
|
|
212
|
+
self.model,
|
|
213
|
+
self.states[frame * self.sim_substeps + i],
|
|
214
|
+
self.states[frame * self.sim_substeps + i + 1],
|
|
215
|
+
self.sim_dt,
|
|
216
|
+
self.control,
|
|
217
|
+
)
|
|
218
|
+
self.sim_time += self.sim_dt
|
|
219
|
+
|
|
220
|
+
with wp.ScopedTimer("loss", active=self.verbose):
|
|
221
|
+
# compute center of mass velocity
|
|
222
|
+
wp.launch(
|
|
223
|
+
com_kernel,
|
|
224
|
+
dim=self.model.particle_count,
|
|
225
|
+
inputs=[
|
|
226
|
+
self.states[(frame + 1) * self.sim_substeps].particle_qd,
|
|
227
|
+
self.model.particle_count,
|
|
228
|
+
self.coms[frame],
|
|
229
|
+
],
|
|
230
|
+
outputs=[],
|
|
231
|
+
)
|
|
232
|
+
# compute loss
|
|
233
|
+
wp.launch(loss_kernel, dim=1, inputs=[self.coms[frame], self.loss], outputs=[])
|
|
234
|
+
|
|
235
|
+
def step(self):
|
|
236
|
+
with wp.ScopedTimer("step"):
|
|
237
|
+
if self.use_cuda_graph:
|
|
238
|
+
wp.capture_launch(self.graph)
|
|
239
|
+
else:
|
|
240
|
+
self.tape = wp.Tape()
|
|
241
|
+
with self.tape:
|
|
242
|
+
for i in range(self.num_frames):
|
|
243
|
+
self.forward(i)
|
|
244
|
+
self.tape.backward(self.loss)
|
|
245
|
+
|
|
246
|
+
# optimization
|
|
247
|
+
x = self.weights.grad.flatten()
|
|
248
|
+
self.optimizer.step([x])
|
|
249
|
+
|
|
250
|
+
loss = self.loss.numpy()
|
|
251
|
+
if self.verbose:
|
|
252
|
+
print(f"Iteration {self.iter}: {loss}")
|
|
253
|
+
|
|
254
|
+
# reset sim
|
|
255
|
+
self.sim_time = 0.0
|
|
256
|
+
self.states[0] = self.model.state(requires_grad=True)
|
|
257
|
+
|
|
258
|
+
# clear grads and zero arrays for next iteration
|
|
259
|
+
self.tape.zero()
|
|
260
|
+
self.loss.zero_()
|
|
261
|
+
for i in range(self.num_frames):
|
|
262
|
+
self.coms[i].zero_()
|
|
263
|
+
|
|
264
|
+
self.iter += 1
|
|
265
|
+
|
|
266
|
+
def render(self):
|
|
267
|
+
if self.renderer is None:
|
|
268
|
+
return
|
|
269
|
+
|
|
270
|
+
with wp.ScopedTimer("render"):
|
|
271
|
+
for i in range(self.num_frames + 1):
|
|
272
|
+
self.renderer.begin_frame(self.render_time)
|
|
273
|
+
self.renderer.render(self.states[i * self.sim_substeps])
|
|
274
|
+
self.renderer.end_frame()
|
|
275
|
+
|
|
276
|
+
self.render_time += self.frame_dt
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
if __name__ == "__main__":
|
|
280
|
+
import argparse
|
|
281
|
+
|
|
282
|
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
283
|
+
parser.add_argument("--device", type=str, default=None, help="Override the default Warp device.")
|
|
284
|
+
parser.add_argument(
|
|
285
|
+
"--stage_path",
|
|
286
|
+
type=lambda x: None if x == "None" else str(x),
|
|
287
|
+
default="example_walker.usd",
|
|
288
|
+
help="Path to the output USD file.",
|
|
289
|
+
)
|
|
290
|
+
parser.add_argument("--num_frames", type=int, default=300, help="Total number of frames per training iteration.")
|
|
291
|
+
parser.add_argument("--train_iters", type=int, default=30, help="Total number of training iterations.")
|
|
292
|
+
parser.add_argument("--verbose", action="store_true", help="Print out additional status messages during execution.")
|
|
293
|
+
|
|
294
|
+
args = parser.parse_known_args()[0]
|
|
295
|
+
|
|
296
|
+
with wp.ScopedDevice(args.device):
|
|
297
|
+
example = Example(stage_path=args.stage_path, verbose=args.verbose, num_frames=args.num_frames)
|
|
298
|
+
|
|
299
|
+
for _ in range(args.train_iters):
|
|
300
|
+
example.step()
|
|
301
|
+
example.render()
|
|
302
|
+
|
|
303
|
+
if example.renderer:
|
|
304
|
+
example.renderer.save()
|