warp-lang 1.0.1__py3-none-manylinux2014_aarch64.whl → 1.1.0__py3-none-manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -279
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -28
  36. warp/examples/core/example_dem.py +234 -221
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -129
  39. warp/examples/core/example_marching_cubes.py +188 -176
  40. warp/examples/core/example_mesh.py +174 -154
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -169
  43. warp/examples/core/example_raycast.py +105 -89
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -389
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -249
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -391
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -248
  65. warp/examples/optim/example_cloth_throw.py +222 -210
  66. warp/examples/optim/example_diffray.py +566 -535
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -169
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
  70. warp/examples/optim/example_spring_cage.py +239 -234
  71. warp/examples/optim/example_trajectory.py +223 -201
  72. warp/examples/optim/example_walker.py +306 -292
  73. warp/examples/sim/example_cartpole.py +139 -128
  74. warp/examples/sim/example_cloth.py +196 -184
  75. warp/examples/sim/example_granular.py +124 -113
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -185
  77. warp/examples/sim/example_jacobian_ik.py +236 -213
  78. warp/examples/sim/example_particle_chain.py +118 -106
  79. warp/examples/sim/example_quadruped.py +193 -179
  80. warp/examples/sim/example_rigid_chain.py +197 -189
  81. warp/examples/sim/example_rigid_contact.py +189 -176
  82. warp/examples/sim/example_rigid_force.py +127 -126
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -97
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -124
  85. warp/examples/sim/example_soft_body.py +190 -178
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.1.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,738 +1,738 @@
1
- import math
2
-
3
- import warp as wp
4
- import numpy as np
5
-
6
- from warp.fem.geometry import Grid3D
7
- from warp.fem.polynomial import Polynomial, quadrature_1d, lagrange_scales, is_closed
8
- from warp.fem.types import Coords
9
- from warp.fem import cache
10
-
11
- from .tet_shape_function import TetrahedronPolynomialShapeFunctions
12
-
13
- _CUBE_EDGE_INDICES = wp.constant(
14
- wp.mat(shape=(3, 4), dtype=int)(
15
- [
16
- [0, 4, 2, 6],
17
- [3, 1, 7, 5],
18
- [8, 11, 9, 10],
19
- ]
20
- )
21
- )
22
-
23
-
24
- class CubeTripolynomialShapeFunctions:
25
- VERTEX = 0
26
- EDGE = 1
27
- FACE = 2
28
- INTERIOR = 3
29
-
30
- def __init__(self, degree: int, family: Polynomial):
31
- self.family = family
32
-
33
- self.ORDER = wp.constant(degree)
34
- self.NODES_PER_ELEMENT = wp.constant((degree + 1) ** 3)
35
- self.NODES_PER_EDGE = wp.constant(degree + 1)
36
-
37
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
38
- lagrange_scale = lagrange_scales(lobatto_coords)
39
-
40
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
41
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
42
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
43
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
44
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
45
-
46
- self._node_ijk = self._make_node_ijk()
47
- self.node_type_and_type_index = self._make_node_type_and_type_index()
48
-
49
- @property
50
- def name(self) -> str:
51
- return f"Cube_Q{self.ORDER}_{self.family}"
52
-
53
- @wp.func
54
- def _vertex_coords_f(vidx_in_cell: int):
55
- x = vidx_in_cell // 4
56
- y = (vidx_in_cell - 4 * x) // 2
57
- z = vidx_in_cell - 4 * x - 2 * y
58
- return wp.vec3(float(x), float(y), float(z))
59
-
60
- def _make_node_ijk(self):
61
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
62
-
63
- def node_ijk(
64
- node_index_in_elt: int,
65
- ):
66
- node_i = node_index_in_elt // (ORDER_PLUS_ONE * ORDER_PLUS_ONE)
67
- node_jk = node_index_in_elt - ORDER_PLUS_ONE * ORDER_PLUS_ONE * node_i
68
- node_j = node_jk // ORDER_PLUS_ONE
69
- node_k = node_jk - ORDER_PLUS_ONE * node_j
70
- return node_i, node_j, node_k
71
-
72
- return cache.get_func(node_ijk, self.name)
73
-
74
- def _make_node_type_and_type_index(self):
75
- ORDER = self.ORDER
76
-
77
- @cache.dynamic_func(suffix=self.name)
78
- def node_type_and_type_index(
79
- node_index_in_elt: int,
80
- ):
81
- i, j, k = self._node_ijk(node_index_in_elt)
82
-
83
- zi = wp.select(i == 0, 0, 1)
84
- zj = wp.select(j == 0, 0, 1)
85
- zk = wp.select(k == 0, 0, 1)
86
-
87
- mi = wp.select(i == ORDER, 0, 1)
88
- mj = wp.select(j == ORDER, 0, 1)
89
- mk = wp.select(k == ORDER, 0, 1)
90
-
91
- if zi + mi == 1:
92
- if zj + mj == 1:
93
- if zk + mk == 1:
94
- # vertex
95
- type_instance = mi * 4 + mj * 2 + mk
96
- return CubeTripolynomialShapeFunctions.VERTEX, type_instance, 0
97
-
98
- # z edge
99
- type_instance = _CUBE_EDGE_INDICES[2, mi * 2 + mj]
100
- type_index = k - 1
101
- return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
102
-
103
- if zk + mk == 1:
104
- # y edge
105
- type_instance = _CUBE_EDGE_INDICES[1, mk * 2 + mi]
106
- type_index = j - 1
107
- return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
108
-
109
- # x face
110
- type_instance = mi
111
- type_index = wp.select(mi == 1, (j - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + j - 1)
112
- return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
113
-
114
- if zj + mj == 1:
115
- if zk + mk == 1:
116
- # x edge
117
- type_instance = _CUBE_EDGE_INDICES[0, mj * 2 + mk]
118
- type_index = i - 1
119
- return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
120
-
121
- # y face
122
- type_instance = 2 + mj
123
- type_index = wp.select(mj == 1, (i - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + i - 1)
124
- return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
125
-
126
- if zk + mk == 1:
127
- # z face
128
- type_instance = 4 + mk
129
- type_index = wp.select(mk == 1, (j - 1) * (ORDER - 1) + i - 1, (i - 1) * (ORDER - 1) + j - 1)
130
- return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
131
-
132
- type_index = ((i - 1) * (ORDER - 1) + (j - 1)) * (ORDER - 1) + k - 1
133
- return CubeTripolynomialShapeFunctions.INTERIOR, 0, type_index
134
-
135
- return node_type_and_type_index
136
-
137
- def make_node_coords_in_element(self):
138
- LOBATTO_COORDS = self.LOBATTO_COORDS
139
-
140
- @cache.dynamic_func(suffix=self.name)
141
- def node_coords_in_element(
142
- node_index_in_elt: int,
143
- ):
144
- node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
145
- return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], LOBATTO_COORDS[node_k])
146
-
147
- return node_coords_in_element
148
-
149
- def make_node_quadrature_weight(self):
150
- ORDER = self.ORDER
151
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
152
-
153
- def node_quadrature_weight(
154
- node_index_in_elt: int,
155
- ):
156
- node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
157
- return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
158
-
159
- def node_quadrature_weight_linear(
160
- node_index_in_elt: int,
161
- ):
162
- return 0.125
163
-
164
- if ORDER == 1:
165
- return cache.get_func(node_quadrature_weight_linear, self.name)
166
-
167
- return cache.get_func(node_quadrature_weight, self.name)
168
-
169
- def make_trace_node_quadrature_weight(self):
170
- ORDER = self.ORDER
171
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
172
-
173
- def trace_node_quadrature_weight(
174
- node_index_in_elt: int,
175
- ):
176
- # We're either on a side interior or at a vertex
177
- # If we find one index at extremum, pick the two other
178
-
179
- node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
180
-
181
- if node_i == 0 or node_i == ORDER:
182
- return LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
183
-
184
- if node_j == 0 or node_j == ORDER:
185
- return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_k]
186
-
187
- return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
188
-
189
- def trace_node_quadrature_weight_linear(
190
- node_index_in_elt: int,
191
- ):
192
- return 0.25
193
-
194
- def trace_node_quadrature_weight_open(
195
- node_index_in_elt: int,
196
- ):
197
- return 0.0
198
-
199
- if not is_closed(self.family):
200
- return cache.get_func(trace_node_quadrature_weight_open, self.name)
201
-
202
- if ORDER == 1:
203
- return cache.get_func(trace_node_quadrature_weight_linear, self.name)
204
-
205
- return cache.get_func(trace_node_quadrature_weight, self.name)
206
-
207
- def make_element_inner_weight(self):
208
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
209
- LOBATTO_COORDS = self.LOBATTO_COORDS
210
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
211
-
212
- def element_inner_weight(
213
- coords: Coords,
214
- node_index_in_elt: int,
215
- ):
216
- node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
217
-
218
- w = float(1.0)
219
- for k in range(ORDER_PLUS_ONE):
220
- if k != node_i:
221
- w *= coords[0] - LOBATTO_COORDS[k]
222
- if k != node_j:
223
- w *= coords[1] - LOBATTO_COORDS[k]
224
- if k != node_k:
225
- w *= coords[2] - LOBATTO_COORDS[k]
226
-
227
- w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k]
228
-
229
- return w
230
-
231
- def element_inner_weight_linear(
232
- coords: Coords,
233
- node_index_in_elt: int,
234
- ):
235
- v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
236
-
237
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
238
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
239
- wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
240
- return wx * wy * wz
241
-
242
- if self.ORDER == 1 and is_closed(self.family):
243
- return cache.get_func(element_inner_weight_linear, self.name)
244
-
245
- return cache.get_func(element_inner_weight, self.name)
246
-
247
- def make_element_inner_weight_gradient(self):
248
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
249
- LOBATTO_COORDS = self.LOBATTO_COORDS
250
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
251
-
252
- def element_inner_weight_gradient(
253
- coords: Coords,
254
- node_index_in_elt: int,
255
- ):
256
- node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
257
-
258
- prefix_xy = float(1.0)
259
- prefix_yz = float(1.0)
260
- prefix_zx = float(1.0)
261
- for k in range(ORDER_PLUS_ONE):
262
- if k != node_i:
263
- prefix_yz *= coords[0] - LOBATTO_COORDS[k]
264
- if k != node_j:
265
- prefix_zx *= coords[1] - LOBATTO_COORDS[k]
266
- if k != node_k:
267
- prefix_xy *= coords[2] - LOBATTO_COORDS[k]
268
-
269
- prefix_x = prefix_zx * prefix_xy
270
- prefix_y = prefix_yz * prefix_xy
271
- prefix_z = prefix_zx * prefix_yz
272
-
273
- grad_x = float(0.0)
274
- grad_y = float(0.0)
275
- grad_z = float(0.0)
276
-
277
- for k in range(ORDER_PLUS_ONE):
278
- if k != node_i:
279
- delta_x = coords[0] - LOBATTO_COORDS[k]
280
- grad_x = grad_x * delta_x + prefix_x
281
- prefix_x *= delta_x
282
- if k != node_j:
283
- delta_y = coords[1] - LOBATTO_COORDS[k]
284
- grad_y = grad_y * delta_y + prefix_y
285
- prefix_y *= delta_y
286
- if k != node_k:
287
- delta_z = coords[2] - LOBATTO_COORDS[k]
288
- grad_z = grad_z * delta_z + prefix_z
289
- prefix_z *= delta_z
290
-
291
- grad = (
292
- LAGRANGE_SCALE[node_i]
293
- * LAGRANGE_SCALE[node_j]
294
- * LAGRANGE_SCALE[node_k]
295
- * wp.vec3(
296
- grad_x,
297
- grad_y,
298
- grad_z,
299
- )
300
- )
301
-
302
- return grad
303
-
304
- def element_inner_weight_gradient_linear(
305
- coords: Coords,
306
- node_index_in_elt: int,
307
- ):
308
- v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
309
-
310
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
311
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
312
- wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
313
-
314
- dx = 2.0 * v[0] - 1.0
315
- dy = 2.0 * v[1] - 1.0
316
- dz = 2.0 * v[2] - 1.0
317
-
318
- return wp.vec3(dx * wy * wz, dy * wz * wx, dz * wx * wy)
319
-
320
- if self.ORDER == 1 and is_closed(self.family):
321
- return cache.get_func(element_inner_weight_gradient_linear, self.name)
322
-
323
- return cache.get_func(element_inner_weight_gradient, self.name)
324
-
325
- def element_node_hexes(self):
326
- from warp.fem.utils import grid_to_hexes
327
-
328
- return grid_to_hexes(self.ORDER, self.ORDER, self.ORDER)
329
-
330
- def element_node_tets(self):
331
- from warp.fem.utils import grid_to_tets
332
-
333
- return grid_to_tets(self.ORDER, self.ORDER, self.ORDER)
334
-
335
-
336
- class CubeSerendipityShapeFunctions:
337
- """
338
- Serendipity element ~ tensor product space without interior nodes
339
- Edge shape functions are usual Lagrange shape functions times a bilinear function in the normal directions
340
- Corner shape functions are trilinear shape functions times a function of (x^{d-1} + y^{d-1})
341
- """
342
-
343
- # Node categories
344
- VERTEX = wp.constant(0)
345
- EDGE_X = wp.constant(1)
346
- EDGE_Y = wp.constant(2)
347
-
348
- def __init__(self, degree: int, family: Polynomial):
349
- if not is_closed(family):
350
- raise ValueError("A closed polynomial family is required to define serendipity elements")
351
-
352
- if degree not in [2, 3]:
353
- raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
354
-
355
- self.family = family
356
-
357
- self.ORDER = wp.constant(degree)
358
- self.NODES_PER_ELEMENT = wp.constant(8 + 12 * (degree - 1))
359
- self.NODES_PER_EDGE = wp.constant(degree + 1)
360
-
361
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
362
- lagrange_scale = lagrange_scales(lobatto_coords)
363
-
364
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
365
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
366
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
367
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
368
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
369
-
370
- self.node_type_and_type_index = self._get_node_type_and_type_index()
371
- self._node_lobatto_indices = self._get_node_lobatto_indices()
372
-
373
- @property
374
- def name(self) -> str:
375
- return f"Cube_S{self.ORDER}_{self.family}"
376
-
377
- def _get_node_type_and_type_index(self):
378
- @cache.dynamic_func(suffix=self.name)
379
- def node_type_and_index(
380
- node_index_in_elt: int,
381
- ):
382
- if node_index_in_elt < 8:
383
- return CubeSerendipityShapeFunctions.VERTEX, node_index_in_elt
384
-
385
- type_index = (node_index_in_elt - 8) // 3
386
- side = node_index_in_elt - 8 - 3 * type_index
387
- return CubeSerendipityShapeFunctions.EDGE_X + side, type_index
388
-
389
- return node_type_and_index
390
-
391
- @wp.func
392
- def _vertex_coords(vidx_in_cell: int):
393
- x = vidx_in_cell // 4
394
- y = (vidx_in_cell - 4 * x) // 2
395
- z = vidx_in_cell - 4 * x - 2 * y
396
- return wp.vec3i(x, y, z)
397
-
398
- @wp.func
399
- def _edge_coords(type_index: int):
400
- index_in_side = type_index // 4
401
- side_offset = type_index - 4 * index_in_side
402
- return (wp.vec3i(index_in_side + 1, side_offset // 2, side_offset % 2),)
403
-
404
- @wp.func
405
- def _edge_axis(node_type: int):
406
- return node_type - CubeSerendipityShapeFunctions.EDGE_X
407
-
408
- @wp.func
409
- def _cube_edge_index(node_type: int, type_index: int):
410
- index_in_side = type_index // 4
411
- side_offset = type_index - 4 * index_in_side
412
-
413
- return _CUBE_EDGE_INDICES[node_type - CubeSerendipityShapeFunctions.EDGE_X, side_offset], index_in_side
414
-
415
- def _get_node_lobatto_indices(self):
416
- ORDER = self.ORDER
417
-
418
- @cache.dynamic_func(suffix=self.name)
419
- def node_lobatto_indices(node_type: int, type_index: int):
420
- if node_type == CubeSerendipityShapeFunctions.VERTEX:
421
- return CubeSerendipityShapeFunctions._vertex_coords(type_index) * ORDER
422
-
423
- axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
424
- local_coords = CubeSerendipityShapeFunctions._edge_coords(type_index)
425
-
426
- local_indices = wp.vec3i(local_coords[0], local_coords[1] * ORDER, local_coords[2] * ORDER)
427
-
428
- return Grid3D._local_to_world(axis, local_indices)
429
-
430
- return node_lobatto_indices
431
-
432
- def make_node_coords_in_element(self):
433
- LOBATTO_COORDS = self.LOBATTO_COORDS
434
-
435
- @cache.dynamic_func(suffix=self.name)
436
- def node_coords_in_element(
437
- node_index_in_elt: int,
438
- ):
439
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
440
- node_coords = self._node_lobatto_indices(node_type, type_index)
441
- return Coords(
442
- LOBATTO_COORDS[node_coords[0]], LOBATTO_COORDS[node_coords[1]], LOBATTO_COORDS[node_coords[2]]
443
- )
444
-
445
- return node_coords_in_element
446
-
447
- def make_node_quadrature_weight(self):
448
- ORDER = self.ORDER
449
-
450
- @cache.dynamic_func(suffix=self.name)
451
- def node_quadrature_weight(
452
- node_index_in_elt: int,
453
- ):
454
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
455
- if node_type == CubeSerendipityShapeFunctions.VERTEX:
456
- return 1.0 / float(8 * ORDER * ORDER * ORDER)
457
-
458
- return (1.0 - 1.0 / float(ORDER * ORDER * ORDER)) / float(12 * (ORDER - 1))
459
-
460
- return node_quadrature_weight
461
-
462
- def make_trace_node_quadrature_weight(self):
463
- ORDER = self.ORDER
464
-
465
- @cache.dynamic_func(suffix=self.name)
466
- def trace_node_quadrature_weight(
467
- node_index_in_elt: int,
468
- ):
469
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
470
- if node_type == CubeSerendipityShapeFunctions.VERTEX:
471
- return 0.25 / float(ORDER * ORDER)
472
-
473
- return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
474
-
475
- return trace_node_quadrature_weight
476
-
477
- def make_element_inner_weight(self):
478
- ORDER = self.ORDER
479
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
480
-
481
- LOBATTO_COORDS = self.LOBATTO_COORDS
482
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
483
-
484
- DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
485
- DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
486
-
487
- @cache.dynamic_func(suffix=self.name)
488
- def element_inner_weight(
489
- coords: Coords,
490
- node_index_in_elt: int,
491
- ):
492
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
493
-
494
- if node_type == CubeSerendipityShapeFunctions.VERTEX:
495
- node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
496
-
497
- cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
498
- cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
499
- cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
500
-
501
- w = cx * cy * cz
502
-
503
- if ORDER == 2:
504
- w *= cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
505
- return w * LAGRANGE_SCALE[0]
506
- if ORDER == 3:
507
- w *= (
508
- (cx - 0.5) * (cx - 0.5)
509
- + (cy - 0.5) * (cy - 0.5)
510
- + (cz - 0.5) * (cz - 0.5)
511
- - DEGREE_3_SPHERE_RAD
512
- )
513
- return w * DEGREE_3_SPHERE_SCALE
514
-
515
- axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
516
-
517
- node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
518
-
519
- local_coords = Grid3D._world_to_local(axis, coords)
520
-
521
- w = float(1.0)
522
- w *= wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
523
- w *= wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
524
-
525
- for k in range(ORDER_PLUS_ONE):
526
- if k != node_all[0]:
527
- w *= local_coords[0] - LOBATTO_COORDS[k]
528
- w *= LAGRANGE_SCALE[node_all[0]]
529
-
530
- return w
531
-
532
- return element_inner_weight
533
-
534
- def make_element_inner_weight_gradient(self):
535
- ORDER = self.ORDER
536
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
537
- LOBATTO_COORDS = self.LOBATTO_COORDS
538
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
539
-
540
- DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
541
- DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
542
-
543
- @cache.dynamic_func(suffix=self.name)
544
- def element_inner_weight_gradient(
545
- coords: Coords,
546
- node_index_in_elt: int,
547
- ):
548
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
549
-
550
- if node_type == CubeSerendipityShapeFunctions.VERTEX:
551
- node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
552
-
553
- cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
554
- cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
555
- cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
556
-
557
- gx = wp.select(node_ijk[0] == 0, 1.0, -1.0)
558
- gy = wp.select(node_ijk[1] == 0, 1.0, -1.0)
559
- gz = wp.select(node_ijk[2] == 0, 1.0, -1.0)
560
-
561
- if ORDER == 2:
562
- w = cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
563
- grad_x = cy * cz * gx * (w + cx)
564
- grad_y = cz * cx * gy * (w + cy)
565
- grad_z = cx * cy * gz * (w + cz)
566
-
567
- return wp.vec3(grad_x, grad_y, grad_z) * LAGRANGE_SCALE[0]
568
-
569
- if ORDER == 3:
570
- w = (
571
- (cx - 0.5) * (cx - 0.5)
572
- + (cy - 0.5) * (cy - 0.5)
573
- + (cz - 0.5) * (cz - 0.5)
574
- - DEGREE_3_SPHERE_RAD
575
- )
576
-
577
- dw_dcx = 2.0 * cx - 1.0
578
- dw_dcy = 2.0 * cy - 1.0
579
- dw_dcz = 2.0 * cz - 1.0
580
- grad_x = cy * cz * gx * (w + dw_dcx * cx)
581
- grad_y = cz * cx * gy * (w + dw_dcy * cy)
582
- grad_z = cx * cy * gz * (w + dw_dcz * cz)
583
-
584
- return wp.vec3(grad_x, grad_y, grad_z) * DEGREE_3_SPHERE_SCALE
585
-
586
- axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
587
- node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
588
-
589
- local_coords = Grid3D._world_to_local(axis, coords)
590
-
591
- w_long = wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
592
- w_lat = wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
593
-
594
- g_long = wp.select(node_all[1] == 0, 1.0, -1.0)
595
- g_lat = wp.select(node_all[2] == 0, 1.0, -1.0)
596
-
597
- w_alt = LAGRANGE_SCALE[node_all[0]]
598
- g_alt = float(0.0)
599
- prefix_alt = LAGRANGE_SCALE[node_all[0]]
600
- for k in range(ORDER_PLUS_ONE):
601
- if k != node_all[0]:
602
- delta_alt = local_coords[0] - LOBATTO_COORDS[k]
603
- w_alt *= delta_alt
604
- g_alt = g_alt * delta_alt + prefix_alt
605
- prefix_alt *= delta_alt
606
-
607
- local_grad = wp.vec3(g_alt * w_long * w_lat, w_alt * g_long * w_lat, w_alt * w_long * g_lat)
608
-
609
- return Grid3D._local_to_world(axis, local_grad)
610
-
611
- return element_inner_weight_gradient
612
-
613
- def element_node_tets(self):
614
- from warp.fem.utils import grid_to_tets
615
-
616
- if self.ORDER == 2:
617
- element_tets = np.array(
618
- [
619
- [0, 8, 9, 10],
620
- [1, 11, 10, 15],
621
- [2, 9, 14, 13],
622
- [3, 15, 13, 17],
623
- [4, 12, 8, 16],
624
- [5, 18, 16, 11],
625
- [6, 14, 12, 19],
626
- [7, 19, 18, 17],
627
- [16, 12, 18, 11],
628
- [8, 16, 12, 11],
629
- [12, 19, 18, 14],
630
- [14, 19, 17, 18],
631
- [10, 9, 15, 8],
632
- [10, 8, 11, 15],
633
- [9, 13, 15, 14],
634
- [13, 14, 17, 15],
635
- ]
636
- )
637
-
638
- middle_hex = np.array([8, 11, 9, 15, 12, 18, 14, 17])
639
- middle_tets = middle_hex[grid_to_tets(1, 1, 1)]
640
-
641
- return np.concatenate((element_tets, middle_tets))
642
-
643
- raise NotImplementedError()
644
-
645
-
646
- class CubeNonConformingPolynomialShapeFunctions:
647
- # embeds the largest regular tet centered at (0.5, 0.5, 0.5) into the reference cube
648
-
649
- _tet_height = 2.0 / 3.0
650
- _tet_side = math.sqrt(3.0 / 2.0) * _tet_height
651
- _tet_face_height = math.sqrt(3.0) / 2.0 * _tet_side
652
-
653
- _tet_to_cube = np.array(
654
- [
655
- [_tet_side, _tet_side / 2.0, _tet_side / 2.0],
656
- [0.0, _tet_face_height, _tet_face_height / 3.0],
657
- [0.0, 0.0, _tet_height],
658
- ]
659
- )
660
-
661
- _TET_OFFSET = wp.constant(wp.vec3(0.5 - 0.5 * _tet_side, 0.5 - _tet_face_height / 3.0, 0.5 - 0.25 * _tet_height))
662
-
663
- def __init__(self, degree: int):
664
- self._tet_shape = TetrahedronPolynomialShapeFunctions(degree=degree)
665
- self.ORDER = self._tet_shape.ORDER
666
- self.NODES_PER_ELEMENT = self._tet_shape.NODES_PER_ELEMENT
667
-
668
- self.element_node_tets = self._tet_shape.element_node_tets
669
-
670
- @property
671
- def name(self) -> str:
672
- return f"Cube_P{self.ORDER}d"
673
-
674
- def make_node_coords_in_element(self):
675
- node_coords_in_tet = self._tet_shape.make_node_coords_in_element()
676
-
677
- TET_TO_CUBE = wp.constant(wp.mat33(self._tet_to_cube))
678
-
679
- @cache.dynamic_func(suffix=self.name)
680
- def node_coords_in_element(
681
- node_index_in_elt: int,
682
- ):
683
- tet_coords = node_coords_in_tet(node_index_in_elt)
684
- return TET_TO_CUBE * tet_coords + CubeNonConformingPolynomialShapeFunctions._TET_OFFSET
685
-
686
- return node_coords_in_element
687
-
688
- def make_node_quadrature_weight(self):
689
- NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
690
-
691
- @cache.dynamic_func(suffix=self.name)
692
- def node_uniform_quadrature_weight(
693
- node_index_in_elt: int,
694
- ):
695
- return 1.0 / float(NODES_PER_ELEMENT)
696
-
697
- return node_uniform_quadrature_weight
698
-
699
- def make_trace_node_quadrature_weight(self):
700
- # Non-conforming, zero measure on sides
701
-
702
- @wp.func
703
- def zero(node_index_in_elt: int):
704
- return 0.0
705
-
706
- return zero
707
-
708
- def make_element_inner_weight(self):
709
- tet_inner_weight = self._tet_shape.make_element_inner_weight()
710
-
711
- CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
712
-
713
- @cache.dynamic_func(suffix=self.name)
714
- def element_inner_weight(
715
- coords: Coords,
716
- node_index_in_elt: int,
717
- ):
718
- tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
719
-
720
- return tet_inner_weight(tet_coords, node_index_in_elt)
721
-
722
- return element_inner_weight
723
-
724
- def make_element_inner_weight_gradient(self):
725
- tet_inner_weight_gradient = self._tet_shape.make_element_inner_weight_gradient()
726
-
727
- CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
728
-
729
- @cache.dynamic_func(suffix=self.name)
730
- def element_inner_weight_gradient(
731
- coords: Coords,
732
- node_index_in_elt: int,
733
- ):
734
- tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
735
- grad = tet_inner_weight_gradient(tet_coords, node_index_in_elt)
736
- return wp.transpose(CUBE_TO_TET) * grad
737
-
738
- return element_inner_weight_gradient
1
+ import math
2
+
3
+ import numpy as np
4
+
5
+ import warp as wp
6
+ from warp.fem import cache
7
+ from warp.fem.geometry import Grid3D
8
+ from warp.fem.polynomial import Polynomial, is_closed, lagrange_scales, quadrature_1d
9
+ from warp.fem.types import Coords
10
+
11
+ from .tet_shape_function import TetrahedronPolynomialShapeFunctions
12
+
13
+ _CUBE_EDGE_INDICES = wp.constant(
14
+ wp.mat(shape=(3, 4), dtype=int)(
15
+ [
16
+ [0, 4, 2, 6],
17
+ [3, 1, 7, 5],
18
+ [8, 11, 9, 10],
19
+ ]
20
+ )
21
+ )
22
+
23
+
24
+ class CubeTripolynomialShapeFunctions:
25
+ VERTEX = 0
26
+ EDGE = 1
27
+ FACE = 2
28
+ INTERIOR = 3
29
+
30
+ def __init__(self, degree: int, family: Polynomial):
31
+ self.family = family
32
+
33
+ self.ORDER = wp.constant(degree)
34
+ self.NODES_PER_ELEMENT = wp.constant((degree + 1) ** 3)
35
+ self.NODES_PER_EDGE = wp.constant(degree + 1)
36
+
37
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
38
+ lagrange_scale = lagrange_scales(lobatto_coords)
39
+
40
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
41
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
42
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
43
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
44
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
45
+
46
+ self._node_ijk = self._make_node_ijk()
47
+ self.node_type_and_type_index = self._make_node_type_and_type_index()
48
+
49
+ @property
50
+ def name(self) -> str:
51
+ return f"Cube_Q{self.ORDER}_{self.family}"
52
+
53
+ @wp.func
54
+ def _vertex_coords_f(vidx_in_cell: int):
55
+ x = vidx_in_cell // 4
56
+ y = (vidx_in_cell - 4 * x) // 2
57
+ z = vidx_in_cell - 4 * x - 2 * y
58
+ return wp.vec3(float(x), float(y), float(z))
59
+
60
+ def _make_node_ijk(self):
61
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
62
+
63
+ def node_ijk(
64
+ node_index_in_elt: int,
65
+ ):
66
+ node_i = node_index_in_elt // (ORDER_PLUS_ONE * ORDER_PLUS_ONE)
67
+ node_jk = node_index_in_elt - ORDER_PLUS_ONE * ORDER_PLUS_ONE * node_i
68
+ node_j = node_jk // ORDER_PLUS_ONE
69
+ node_k = node_jk - ORDER_PLUS_ONE * node_j
70
+ return node_i, node_j, node_k
71
+
72
+ return cache.get_func(node_ijk, self.name)
73
+
74
+ def _make_node_type_and_type_index(self):
75
+ ORDER = self.ORDER
76
+
77
+ @cache.dynamic_func(suffix=self.name)
78
+ def node_type_and_type_index(
79
+ node_index_in_elt: int,
80
+ ):
81
+ i, j, k = self._node_ijk(node_index_in_elt)
82
+
83
+ zi = wp.select(i == 0, 0, 1)
84
+ zj = wp.select(j == 0, 0, 1)
85
+ zk = wp.select(k == 0, 0, 1)
86
+
87
+ mi = wp.select(i == ORDER, 0, 1)
88
+ mj = wp.select(j == ORDER, 0, 1)
89
+ mk = wp.select(k == ORDER, 0, 1)
90
+
91
+ if zi + mi == 1:
92
+ if zj + mj == 1:
93
+ if zk + mk == 1:
94
+ # vertex
95
+ type_instance = mi * 4 + mj * 2 + mk
96
+ return CubeTripolynomialShapeFunctions.VERTEX, type_instance, 0
97
+
98
+ # z edge
99
+ type_instance = _CUBE_EDGE_INDICES[2, mi * 2 + mj]
100
+ type_index = k - 1
101
+ return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
102
+
103
+ if zk + mk == 1:
104
+ # y edge
105
+ type_instance = _CUBE_EDGE_INDICES[1, mk * 2 + mi]
106
+ type_index = j - 1
107
+ return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
108
+
109
+ # x face
110
+ type_instance = mi
111
+ type_index = wp.select(mi == 1, (j - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + j - 1)
112
+ return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
113
+
114
+ if zj + mj == 1:
115
+ if zk + mk == 1:
116
+ # x edge
117
+ type_instance = _CUBE_EDGE_INDICES[0, mj * 2 + mk]
118
+ type_index = i - 1
119
+ return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
120
+
121
+ # y face
122
+ type_instance = 2 + mj
123
+ type_index = wp.select(mj == 1, (i - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + i - 1)
124
+ return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
125
+
126
+ if zk + mk == 1:
127
+ # z face
128
+ type_instance = 4 + mk
129
+ type_index = wp.select(mk == 1, (j - 1) * (ORDER - 1) + i - 1, (i - 1) * (ORDER - 1) + j - 1)
130
+ return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
131
+
132
+ type_index = ((i - 1) * (ORDER - 1) + (j - 1)) * (ORDER - 1) + k - 1
133
+ return CubeTripolynomialShapeFunctions.INTERIOR, 0, type_index
134
+
135
+ return node_type_and_type_index
136
+
137
+ def make_node_coords_in_element(self):
138
+ LOBATTO_COORDS = self.LOBATTO_COORDS
139
+
140
+ @cache.dynamic_func(suffix=self.name)
141
+ def node_coords_in_element(
142
+ node_index_in_elt: int,
143
+ ):
144
+ node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
145
+ return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], LOBATTO_COORDS[node_k])
146
+
147
+ return node_coords_in_element
148
+
149
+ def make_node_quadrature_weight(self):
150
+ ORDER = self.ORDER
151
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
152
+
153
+ def node_quadrature_weight(
154
+ node_index_in_elt: int,
155
+ ):
156
+ node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
157
+ return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
158
+
159
+ def node_quadrature_weight_linear(
160
+ node_index_in_elt: int,
161
+ ):
162
+ return 0.125
163
+
164
+ if ORDER == 1:
165
+ return cache.get_func(node_quadrature_weight_linear, self.name)
166
+
167
+ return cache.get_func(node_quadrature_weight, self.name)
168
+
169
+ def make_trace_node_quadrature_weight(self):
170
+ ORDER = self.ORDER
171
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
172
+
173
+ def trace_node_quadrature_weight(
174
+ node_index_in_elt: int,
175
+ ):
176
+ # We're either on a side interior or at a vertex
177
+ # If we find one index at extremum, pick the two other
178
+
179
+ node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
180
+
181
+ if node_i == 0 or node_i == ORDER:
182
+ return LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
183
+
184
+ if node_j == 0 or node_j == ORDER:
185
+ return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_k]
186
+
187
+ return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
188
+
189
+ def trace_node_quadrature_weight_linear(
190
+ node_index_in_elt: int,
191
+ ):
192
+ return 0.25
193
+
194
+ def trace_node_quadrature_weight_open(
195
+ node_index_in_elt: int,
196
+ ):
197
+ return 0.0
198
+
199
+ if not is_closed(self.family):
200
+ return cache.get_func(trace_node_quadrature_weight_open, self.name)
201
+
202
+ if ORDER == 1:
203
+ return cache.get_func(trace_node_quadrature_weight_linear, self.name)
204
+
205
+ return cache.get_func(trace_node_quadrature_weight, self.name)
206
+
207
+ def make_element_inner_weight(self):
208
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
209
+ LOBATTO_COORDS = self.LOBATTO_COORDS
210
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
211
+
212
+ def element_inner_weight(
213
+ coords: Coords,
214
+ node_index_in_elt: int,
215
+ ):
216
+ node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
217
+
218
+ w = float(1.0)
219
+ for k in range(ORDER_PLUS_ONE):
220
+ if k != node_i:
221
+ w *= coords[0] - LOBATTO_COORDS[k]
222
+ if k != node_j:
223
+ w *= coords[1] - LOBATTO_COORDS[k]
224
+ if k != node_k:
225
+ w *= coords[2] - LOBATTO_COORDS[k]
226
+
227
+ w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k]
228
+
229
+ return w
230
+
231
+ def element_inner_weight_linear(
232
+ coords: Coords,
233
+ node_index_in_elt: int,
234
+ ):
235
+ v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
236
+
237
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
238
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
239
+ wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
240
+ return wx * wy * wz
241
+
242
+ if self.ORDER == 1 and is_closed(self.family):
243
+ return cache.get_func(element_inner_weight_linear, self.name)
244
+
245
+ return cache.get_func(element_inner_weight, self.name)
246
+
247
+ def make_element_inner_weight_gradient(self):
248
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
249
+ LOBATTO_COORDS = self.LOBATTO_COORDS
250
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
251
+
252
+ def element_inner_weight_gradient(
253
+ coords: Coords,
254
+ node_index_in_elt: int,
255
+ ):
256
+ node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
257
+
258
+ prefix_xy = float(1.0)
259
+ prefix_yz = float(1.0)
260
+ prefix_zx = float(1.0)
261
+ for k in range(ORDER_PLUS_ONE):
262
+ if k != node_i:
263
+ prefix_yz *= coords[0] - LOBATTO_COORDS[k]
264
+ if k != node_j:
265
+ prefix_zx *= coords[1] - LOBATTO_COORDS[k]
266
+ if k != node_k:
267
+ prefix_xy *= coords[2] - LOBATTO_COORDS[k]
268
+
269
+ prefix_x = prefix_zx * prefix_xy
270
+ prefix_y = prefix_yz * prefix_xy
271
+ prefix_z = prefix_zx * prefix_yz
272
+
273
+ grad_x = float(0.0)
274
+ grad_y = float(0.0)
275
+ grad_z = float(0.0)
276
+
277
+ for k in range(ORDER_PLUS_ONE):
278
+ if k != node_i:
279
+ delta_x = coords[0] - LOBATTO_COORDS[k]
280
+ grad_x = grad_x * delta_x + prefix_x
281
+ prefix_x *= delta_x
282
+ if k != node_j:
283
+ delta_y = coords[1] - LOBATTO_COORDS[k]
284
+ grad_y = grad_y * delta_y + prefix_y
285
+ prefix_y *= delta_y
286
+ if k != node_k:
287
+ delta_z = coords[2] - LOBATTO_COORDS[k]
288
+ grad_z = grad_z * delta_z + prefix_z
289
+ prefix_z *= delta_z
290
+
291
+ grad = (
292
+ LAGRANGE_SCALE[node_i]
293
+ * LAGRANGE_SCALE[node_j]
294
+ * LAGRANGE_SCALE[node_k]
295
+ * wp.vec3(
296
+ grad_x,
297
+ grad_y,
298
+ grad_z,
299
+ )
300
+ )
301
+
302
+ return grad
303
+
304
+ def element_inner_weight_gradient_linear(
305
+ coords: Coords,
306
+ node_index_in_elt: int,
307
+ ):
308
+ v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
309
+
310
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
311
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
312
+ wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
313
+
314
+ dx = 2.0 * v[0] - 1.0
315
+ dy = 2.0 * v[1] - 1.0
316
+ dz = 2.0 * v[2] - 1.0
317
+
318
+ return wp.vec3(dx * wy * wz, dy * wz * wx, dz * wx * wy)
319
+
320
+ if self.ORDER == 1 and is_closed(self.family):
321
+ return cache.get_func(element_inner_weight_gradient_linear, self.name)
322
+
323
+ return cache.get_func(element_inner_weight_gradient, self.name)
324
+
325
+ def element_node_hexes(self):
326
+ from warp.fem.utils import grid_to_hexes
327
+
328
+ return grid_to_hexes(self.ORDER, self.ORDER, self.ORDER)
329
+
330
+ def element_node_tets(self):
331
+ from warp.fem.utils import grid_to_tets
332
+
333
+ return grid_to_tets(self.ORDER, self.ORDER, self.ORDER)
334
+
335
+
336
+ class CubeSerendipityShapeFunctions:
337
+ """
338
+ Serendipity element ~ tensor product space without interior nodes
339
+ Edge shape functions are usual Lagrange shape functions times a bilinear function in the normal directions
340
+ Corner shape functions are trilinear shape functions times a function of (x^{d-1} + y^{d-1})
341
+ """
342
+
343
+ # Node categories
344
+ VERTEX = wp.constant(0)
345
+ EDGE_X = wp.constant(1)
346
+ EDGE_Y = wp.constant(2)
347
+
348
+ def __init__(self, degree: int, family: Polynomial):
349
+ if not is_closed(family):
350
+ raise ValueError("A closed polynomial family is required to define serendipity elements")
351
+
352
+ if degree not in [2, 3]:
353
+ raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
354
+
355
+ self.family = family
356
+
357
+ self.ORDER = wp.constant(degree)
358
+ self.NODES_PER_ELEMENT = wp.constant(8 + 12 * (degree - 1))
359
+ self.NODES_PER_EDGE = wp.constant(degree + 1)
360
+
361
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
362
+ lagrange_scale = lagrange_scales(lobatto_coords)
363
+
364
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
365
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
366
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
367
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
368
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
369
+
370
+ self.node_type_and_type_index = self._get_node_type_and_type_index()
371
+ self._node_lobatto_indices = self._get_node_lobatto_indices()
372
+
373
+ @property
374
+ def name(self) -> str:
375
+ return f"Cube_S{self.ORDER}_{self.family}"
376
+
377
+ def _get_node_type_and_type_index(self):
378
+ @cache.dynamic_func(suffix=self.name)
379
+ def node_type_and_index(
380
+ node_index_in_elt: int,
381
+ ):
382
+ if node_index_in_elt < 8:
383
+ return CubeSerendipityShapeFunctions.VERTEX, node_index_in_elt
384
+
385
+ type_index = (node_index_in_elt - 8) // 3
386
+ side = node_index_in_elt - 8 - 3 * type_index
387
+ return CubeSerendipityShapeFunctions.EDGE_X + side, type_index
388
+
389
+ return node_type_and_index
390
+
391
+ @wp.func
392
+ def _vertex_coords(vidx_in_cell: int):
393
+ x = vidx_in_cell // 4
394
+ y = (vidx_in_cell - 4 * x) // 2
395
+ z = vidx_in_cell - 4 * x - 2 * y
396
+ return wp.vec3i(x, y, z)
397
+
398
+ @wp.func
399
+ def _edge_coords(type_index: int):
400
+ index_in_side = type_index // 4
401
+ side_offset = type_index - 4 * index_in_side
402
+ return (wp.vec3i(index_in_side + 1, side_offset // 2, side_offset % 2),)
403
+
404
+ @wp.func
405
+ def _edge_axis(node_type: int):
406
+ return node_type - CubeSerendipityShapeFunctions.EDGE_X
407
+
408
+ @wp.func
409
+ def _cube_edge_index(node_type: int, type_index: int):
410
+ index_in_side = type_index // 4
411
+ side_offset = type_index - 4 * index_in_side
412
+
413
+ return _CUBE_EDGE_INDICES[node_type - CubeSerendipityShapeFunctions.EDGE_X, side_offset], index_in_side
414
+
415
+ def _get_node_lobatto_indices(self):
416
+ ORDER = self.ORDER
417
+
418
+ @cache.dynamic_func(suffix=self.name)
419
+ def node_lobatto_indices(node_type: int, type_index: int):
420
+ if node_type == CubeSerendipityShapeFunctions.VERTEX:
421
+ return CubeSerendipityShapeFunctions._vertex_coords(type_index) * ORDER
422
+
423
+ axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
424
+ local_coords = CubeSerendipityShapeFunctions._edge_coords(type_index)
425
+
426
+ local_indices = wp.vec3i(local_coords[0], local_coords[1] * ORDER, local_coords[2] * ORDER)
427
+
428
+ return Grid3D._local_to_world(axis, local_indices)
429
+
430
+ return node_lobatto_indices
431
+
432
+ def make_node_coords_in_element(self):
433
+ LOBATTO_COORDS = self.LOBATTO_COORDS
434
+
435
+ @cache.dynamic_func(suffix=self.name)
436
+ def node_coords_in_element(
437
+ node_index_in_elt: int,
438
+ ):
439
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
440
+ node_coords = self._node_lobatto_indices(node_type, type_index)
441
+ return Coords(
442
+ LOBATTO_COORDS[node_coords[0]], LOBATTO_COORDS[node_coords[1]], LOBATTO_COORDS[node_coords[2]]
443
+ )
444
+
445
+ return node_coords_in_element
446
+
447
+ def make_node_quadrature_weight(self):
448
+ ORDER = self.ORDER
449
+
450
+ @cache.dynamic_func(suffix=self.name)
451
+ def node_quadrature_weight(
452
+ node_index_in_elt: int,
453
+ ):
454
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
455
+ if node_type == CubeSerendipityShapeFunctions.VERTEX:
456
+ return 1.0 / float(8 * ORDER * ORDER * ORDER)
457
+
458
+ return (1.0 - 1.0 / float(ORDER * ORDER * ORDER)) / float(12 * (ORDER - 1))
459
+
460
+ return node_quadrature_weight
461
+
462
+ def make_trace_node_quadrature_weight(self):
463
+ ORDER = self.ORDER
464
+
465
+ @cache.dynamic_func(suffix=self.name)
466
+ def trace_node_quadrature_weight(
467
+ node_index_in_elt: int,
468
+ ):
469
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
470
+ if node_type == CubeSerendipityShapeFunctions.VERTEX:
471
+ return 0.25 / float(ORDER * ORDER)
472
+
473
+ return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
474
+
475
+ return trace_node_quadrature_weight
476
+
477
+ def make_element_inner_weight(self):
478
+ ORDER = self.ORDER
479
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
480
+
481
+ LOBATTO_COORDS = self.LOBATTO_COORDS
482
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
483
+
484
+ DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
485
+ DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
486
+
487
+ @cache.dynamic_func(suffix=self.name)
488
+ def element_inner_weight(
489
+ coords: Coords,
490
+ node_index_in_elt: int,
491
+ ):
492
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
493
+
494
+ if node_type == CubeSerendipityShapeFunctions.VERTEX:
495
+ node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
496
+
497
+ cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
498
+ cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
499
+ cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
500
+
501
+ w = cx * cy * cz
502
+
503
+ if ORDER == 2:
504
+ w *= cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
505
+ return w * LAGRANGE_SCALE[0]
506
+ if ORDER == 3:
507
+ w *= (
508
+ (cx - 0.5) * (cx - 0.5)
509
+ + (cy - 0.5) * (cy - 0.5)
510
+ + (cz - 0.5) * (cz - 0.5)
511
+ - DEGREE_3_SPHERE_RAD
512
+ )
513
+ return w * DEGREE_3_SPHERE_SCALE
514
+
515
+ axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
516
+
517
+ node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
518
+
519
+ local_coords = Grid3D._world_to_local(axis, coords)
520
+
521
+ w = float(1.0)
522
+ w *= wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
523
+ w *= wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
524
+
525
+ for k in range(ORDER_PLUS_ONE):
526
+ if k != node_all[0]:
527
+ w *= local_coords[0] - LOBATTO_COORDS[k]
528
+ w *= LAGRANGE_SCALE[node_all[0]]
529
+
530
+ return w
531
+
532
+ return element_inner_weight
533
+
534
+ def make_element_inner_weight_gradient(self):
535
+ ORDER = self.ORDER
536
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
537
+ LOBATTO_COORDS = self.LOBATTO_COORDS
538
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
539
+
540
+ DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
541
+ DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
542
+
543
+ @cache.dynamic_func(suffix=self.name)
544
+ def element_inner_weight_gradient(
545
+ coords: Coords,
546
+ node_index_in_elt: int,
547
+ ):
548
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
549
+
550
+ if node_type == CubeSerendipityShapeFunctions.VERTEX:
551
+ node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
552
+
553
+ cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
554
+ cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
555
+ cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
556
+
557
+ gx = wp.select(node_ijk[0] == 0, 1.0, -1.0)
558
+ gy = wp.select(node_ijk[1] == 0, 1.0, -1.0)
559
+ gz = wp.select(node_ijk[2] == 0, 1.0, -1.0)
560
+
561
+ if ORDER == 2:
562
+ w = cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
563
+ grad_x = cy * cz * gx * (w + cx)
564
+ grad_y = cz * cx * gy * (w + cy)
565
+ grad_z = cx * cy * gz * (w + cz)
566
+
567
+ return wp.vec3(grad_x, grad_y, grad_z) * LAGRANGE_SCALE[0]
568
+
569
+ if ORDER == 3:
570
+ w = (
571
+ (cx - 0.5) * (cx - 0.5)
572
+ + (cy - 0.5) * (cy - 0.5)
573
+ + (cz - 0.5) * (cz - 0.5)
574
+ - DEGREE_3_SPHERE_RAD
575
+ )
576
+
577
+ dw_dcx = 2.0 * cx - 1.0
578
+ dw_dcy = 2.0 * cy - 1.0
579
+ dw_dcz = 2.0 * cz - 1.0
580
+ grad_x = cy * cz * gx * (w + dw_dcx * cx)
581
+ grad_y = cz * cx * gy * (w + dw_dcy * cy)
582
+ grad_z = cx * cy * gz * (w + dw_dcz * cz)
583
+
584
+ return wp.vec3(grad_x, grad_y, grad_z) * DEGREE_3_SPHERE_SCALE
585
+
586
+ axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
587
+ node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
588
+
589
+ local_coords = Grid3D._world_to_local(axis, coords)
590
+
591
+ w_long = wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
592
+ w_lat = wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
593
+
594
+ g_long = wp.select(node_all[1] == 0, 1.0, -1.0)
595
+ g_lat = wp.select(node_all[2] == 0, 1.0, -1.0)
596
+
597
+ w_alt = LAGRANGE_SCALE[node_all[0]]
598
+ g_alt = float(0.0)
599
+ prefix_alt = LAGRANGE_SCALE[node_all[0]]
600
+ for k in range(ORDER_PLUS_ONE):
601
+ if k != node_all[0]:
602
+ delta_alt = local_coords[0] - LOBATTO_COORDS[k]
603
+ w_alt *= delta_alt
604
+ g_alt = g_alt * delta_alt + prefix_alt
605
+ prefix_alt *= delta_alt
606
+
607
+ local_grad = wp.vec3(g_alt * w_long * w_lat, w_alt * g_long * w_lat, w_alt * w_long * g_lat)
608
+
609
+ return Grid3D._local_to_world(axis, local_grad)
610
+
611
+ return element_inner_weight_gradient
612
+
613
+ def element_node_tets(self):
614
+ from warp.fem.utils import grid_to_tets
615
+
616
+ if self.ORDER == 2:
617
+ element_tets = np.array(
618
+ [
619
+ [0, 8, 9, 10],
620
+ [1, 11, 10, 15],
621
+ [2, 9, 14, 13],
622
+ [3, 15, 13, 17],
623
+ [4, 12, 8, 16],
624
+ [5, 18, 16, 11],
625
+ [6, 14, 12, 19],
626
+ [7, 19, 18, 17],
627
+ [16, 12, 18, 11],
628
+ [8, 16, 12, 11],
629
+ [12, 19, 18, 14],
630
+ [14, 19, 17, 18],
631
+ [10, 9, 15, 8],
632
+ [10, 8, 11, 15],
633
+ [9, 13, 15, 14],
634
+ [13, 14, 17, 15],
635
+ ]
636
+ )
637
+
638
+ middle_hex = np.array([8, 11, 9, 15, 12, 18, 14, 17])
639
+ middle_tets = middle_hex[grid_to_tets(1, 1, 1)]
640
+
641
+ return np.concatenate((element_tets, middle_tets))
642
+
643
+ raise NotImplementedError()
644
+
645
+
646
+ class CubeNonConformingPolynomialShapeFunctions:
647
+ # embeds the largest regular tet centered at (0.5, 0.5, 0.5) into the reference cube
648
+
649
+ _tet_height = 2.0 / 3.0
650
+ _tet_side = math.sqrt(3.0 / 2.0) * _tet_height
651
+ _tet_face_height = math.sqrt(3.0) / 2.0 * _tet_side
652
+
653
+ _tet_to_cube = np.array(
654
+ [
655
+ [_tet_side, _tet_side / 2.0, _tet_side / 2.0],
656
+ [0.0, _tet_face_height, _tet_face_height / 3.0],
657
+ [0.0, 0.0, _tet_height],
658
+ ]
659
+ )
660
+
661
+ _TET_OFFSET = wp.constant(wp.vec3(0.5 - 0.5 * _tet_side, 0.5 - _tet_face_height / 3.0, 0.5 - 0.25 * _tet_height))
662
+
663
+ def __init__(self, degree: int):
664
+ self._tet_shape = TetrahedronPolynomialShapeFunctions(degree=degree)
665
+ self.ORDER = self._tet_shape.ORDER
666
+ self.NODES_PER_ELEMENT = self._tet_shape.NODES_PER_ELEMENT
667
+
668
+ self.element_node_tets = self._tet_shape.element_node_tets
669
+
670
+ @property
671
+ def name(self) -> str:
672
+ return f"Cube_P{self.ORDER}d"
673
+
674
+ def make_node_coords_in_element(self):
675
+ node_coords_in_tet = self._tet_shape.make_node_coords_in_element()
676
+
677
+ TET_TO_CUBE = wp.constant(wp.mat33(self._tet_to_cube))
678
+
679
+ @cache.dynamic_func(suffix=self.name)
680
+ def node_coords_in_element(
681
+ node_index_in_elt: int,
682
+ ):
683
+ tet_coords = node_coords_in_tet(node_index_in_elt)
684
+ return TET_TO_CUBE * tet_coords + CubeNonConformingPolynomialShapeFunctions._TET_OFFSET
685
+
686
+ return node_coords_in_element
687
+
688
+ def make_node_quadrature_weight(self):
689
+ NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
690
+
691
+ @cache.dynamic_func(suffix=self.name)
692
+ def node_uniform_quadrature_weight(
693
+ node_index_in_elt: int,
694
+ ):
695
+ return 1.0 / float(NODES_PER_ELEMENT)
696
+
697
+ return node_uniform_quadrature_weight
698
+
699
+ def make_trace_node_quadrature_weight(self):
700
+ # Non-conforming, zero measure on sides
701
+
702
+ @wp.func
703
+ def zero(node_index_in_elt: int):
704
+ return 0.0
705
+
706
+ return zero
707
+
708
+ def make_element_inner_weight(self):
709
+ tet_inner_weight = self._tet_shape.make_element_inner_weight()
710
+
711
+ CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
712
+
713
+ @cache.dynamic_func(suffix=self.name)
714
+ def element_inner_weight(
715
+ coords: Coords,
716
+ node_index_in_elt: int,
717
+ ):
718
+ tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
719
+
720
+ return tet_inner_weight(tet_coords, node_index_in_elt)
721
+
722
+ return element_inner_weight
723
+
724
+ def make_element_inner_weight_gradient(self):
725
+ tet_inner_weight_gradient = self._tet_shape.make_element_inner_weight_gradient()
726
+
727
+ CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
728
+
729
+ @cache.dynamic_func(suffix=self.name)
730
+ def element_inner_weight_gradient(
731
+ coords: Coords,
732
+ node_index_in_elt: int,
733
+ ):
734
+ tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
735
+ grad = tet_inner_weight_gradient(tet_coords, node_index_in_elt)
736
+ return wp.transpose(CUBE_TO_TET) * grad
737
+
738
+ return element_inner_weight_gradient