warp-lang 1.0.1__py3-none-manylinux2014_aarch64.whl → 1.1.0__py3-none-manylinux2014_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/warp-clang.so +0 -0
  4. warp/bin/warp.so +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -279
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -28
  36. warp/examples/core/example_dem.py +234 -221
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -129
  39. warp/examples/core/example_marching_cubes.py +188 -176
  40. warp/examples/core/example_mesh.py +174 -154
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -169
  43. warp/examples/core/example_raycast.py +105 -89
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -389
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -249
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -391
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -248
  65. warp/examples/optim/example_cloth_throw.py +222 -210
  66. warp/examples/optim/example_diffray.py +566 -535
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -169
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
  70. warp/examples/optim/example_spring_cage.py +239 -234
  71. warp/examples/optim/example_trajectory.py +223 -201
  72. warp/examples/optim/example_walker.py +306 -292
  73. warp/examples/sim/example_cartpole.py +139 -128
  74. warp/examples/sim/example_cloth.py +196 -184
  75. warp/examples/sim/example_granular.py +124 -113
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -185
  77. warp/examples/sim/example_jacobian_ik.py +236 -213
  78. warp/examples/sim/example_particle_chain.py +118 -106
  79. warp/examples/sim/example_quadruped.py +193 -179
  80. warp/examples/sim/example_rigid_chain.py +197 -189
  81. warp/examples/sim/example_rigid_contact.py +189 -176
  82. warp/examples/sim/example_rigid_force.py +127 -126
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -97
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -124
  85. warp/examples/sim/example_soft_body.py +190 -178
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.1.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,400 +1,338 @@
1
- Metadata-Version: 2.1
2
- Name: warp-lang
3
- Version: 1.0.1
4
- Summary: A Python framework for high-performance simulation and graphics programming
5
- Author-email: NVIDIA <mmacklin@nvidia.com>
6
- License: NVIDIA Software License
7
- Project-URL: GitHub, https://github.com/NVIDIA/warp
8
- Project-URL: Documentation, https://nvidia.github.io/warp
9
- Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
10
- Classifier: Programming Language :: Python :: 3.7
11
- Classifier: Programming Language :: Python :: 3.8
12
- Classifier: Programming Language :: Python :: 3.9
13
- Classifier: Programming Language :: Python :: 3.10
14
- Classifier: Programming Language :: Python :: 3.11
15
- Classifier: License :: Other/Proprietary License
16
- Classifier: Operating System :: OS Independent
17
- Requires-Python: >=3.7
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE.md
20
- Requires-Dist: numpy
21
- Provides-Extra: dev
22
- Requires-Dist: flake8 ; extra == 'dev'
23
- Requires-Dist: black ; extra == 'dev'
24
- Requires-Dist: isort ; extra == 'dev'
25
- Requires-Dist: nvtx ; extra == 'dev'
26
- Requires-Dist: furo ; extra == 'dev'
27
- Requires-Dist: sphinx-copybutton ; extra == 'dev'
28
- Requires-Dist: coverage[toml] ; extra == 'dev'
29
-
30
- # NVIDIA Warp
31
-
32
- Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
33
- regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
34
-
35
- Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
36
- programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
37
- are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
38
-
39
- Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
40
-
41
- <div align="center">
42
- <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
43
- <p><i>A selection of physical simulations computed with Warp</i></p>
44
- </div>
45
-
46
-
47
- ## Installing
48
-
49
- Warp supports Python versions 3.7 onwards. It can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS. GPU support requires a CUDA capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
50
-
51
- The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
52
-
53
- pip install warp-lang
54
-
55
- Pre-built binary packages are also available on the [Releases](https://github.com/NVIDIA/warp/releases) page. To install in your local Python environment run the following command from the download directory:
56
-
57
- pip install warp_lang-<version and platform>.whl
58
-
59
- ## Getting Started
60
-
61
- An example first program that computes the lengths of random 3D vectors is given below:
62
-
63
- ```python
64
- import warp as wp
65
- import numpy as np
66
-
67
- wp.init()
68
-
69
- num_points = 1024
70
-
71
- @wp.kernel
72
- def length(points: wp.array(dtype=wp.vec3),
73
- lengths: wp.array(dtype=float)):
74
-
75
- # thread index
76
- tid = wp.tid()
77
-
78
- # compute distance of each point from origin
79
- lengths[tid] = wp.length(points[tid])
80
-
81
-
82
- # allocate an array of 3d points
83
- points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
84
- lengths = wp.zeros(num_points, dtype=float)
85
-
86
- # launch kernel
87
- wp.launch(kernel=length,
88
- dim=len(points),
89
- inputs=[points, lengths])
90
-
91
- print(lengths)
92
- ```
93
-
94
- ## Running Examples
95
-
96
- The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations (stored in the same directory as the example). Before running examples, users should ensure that the ``usd-core`` and ``matplotlib`` packages are installed using:
97
-
98
- pip install usd-core matplotlib
99
-
100
- Examples can be run from the command-line as follows:
101
-
102
- python -m warp.examples.<example_subdir>.<example>
103
-
104
- To browse the example source code, you can open the directory where the files are located like this:
105
-
106
- python -m warp.examples.browse
107
-
108
- Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
109
-
110
- USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
111
-
112
- Built-in unit tests can be run from the command-line as follows:
113
-
114
- python -m warp.tests
115
-
116
-
117
- ### examples/core
118
-
119
- <table>
120
- <tbody>
121
- <tr>
122
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_dem.png"></a></td>
123
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_fluid.png"></a></td>
124
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_graph_capture.png"></a></td>
125
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_marching_cubes.png"></a></td>
126
- </tr>
127
- <tr>
128
- <td align="center">dem</td>
129
- <td align="center">fluid</td>
130
- <td align="center">graph capture</td>
131
- <td align="center">marching cubes</td>
132
- </tr>
133
- <tr>
134
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_mesh.png"></a></td>
135
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_nvdb.png"></a></td>
136
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raycast.png"></a></td>
137
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raymarch.png"></a></td>
138
- </tr>
139
- <tr>
140
- <td align="center">mesh</td>
141
- <td align="center">nvdb</td>
142
- <td align="center">raycast</td>
143
- <td align="center">raymarch</td>
144
- </tr>
145
- <tr>
146
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_sph.png"></a></td>
147
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_torch.png"></a></td>
148
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_wave.png"></a></td>
149
- <td></td>
150
- </tr>
151
- <tr>
152
- <td align="center">sph</td>
153
- <td align="center">torch</td>
154
- <td align="center">wave</td>
155
- <td align="center"></td>
156
- </tr>
157
- </tbody>
158
- </table>
159
-
160
-
161
- ### examples/fem
162
-
163
- <table>
164
- <tbody>
165
- <tr>
166
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_apic_fluid.png"></a></td>
167
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_convection_diffusion.png"></a></td>
168
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
169
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion.png"></a></td>
170
- </tr>
171
- <tr>
172
- <td align="center">apic fluid</td>
173
- <td align="center">convection diffusion</td>
174
- <td align="center">diffusion 3d</td>
175
- <td align="center">diffusion</td>
176
- </tr>
177
- <tr>
178
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
179
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_navier_stokes.png"></a></td>
180
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes_transfer.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes_transfer.png"></a></td>
181
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes.png"></a></td>
182
- </tr>
183
- <tr>
184
- <td align="center">mixed elasticity</td>
185
- <td align="center">navier stokes</td>
186
- <td align="center">stokes transfer</td>
187
- <td align="center">stokes</td>
188
- </tr>
189
- </tbody>
190
- </table>
191
-
192
-
193
- ### examples/optim
194
-
195
- <table>
196
- <tbody>
197
- <tr>
198
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_bounce.png"></a></td>
199
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_cloth_throw.png"></a></td>
200
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_diffray.png"></a></td>
201
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_drone.png"></a></td>
202
- </tr>
203
- <tr>
204
- <td align="center">bounce</td>
205
- <td align="center">cloth throw</td>
206
- <td align="center">diffray</td>
207
- <td align="center">drone</td>
208
- </tr>
209
- <tr>
210
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
211
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_spring_cage.png"></a></td>
212
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_trajectory.png"></a></td>
213
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_walker.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_walker.png"></a></td>
214
- </tr>
215
- <tr>
216
- <td align="center">inverse kinematics</td>
217
- <td align="center">spring cage</td>
218
- <td align="center">trajectory</td>
219
- <td align="center">walker</td>
220
- </tr>
221
- </tbody>
222
- </table>
223
-
224
-
225
- ### examples/sim
226
-
227
- <table>
228
- <tbody>
229
- <tr>
230
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cartpole.png"></a></td>
231
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cloth.png"></a></td>
232
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular.png"></a></td>
233
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
234
- </tr>
235
- <tr>
236
- <td align="center">cartpole</td>
237
- <td align="center">cloth</td>
238
- <td align="center">granular</td>
239
- <td align="center">granular collision sdf</td>
240
- </tr>
241
- <tr>
242
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
243
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_quadruped.png"></a></td>
244
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_chain.png"></a></td>
245
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_contact.png"></a></td>
246
- </tr>
247
- <tr>
248
- <td align="center">jacobian ik</td>
249
- <td align="center">quadruped</td>
250
- <td align="center">rigid chain</td>
251
- <td align="center">rigid contact</td>
252
- </tr>
253
- <tr>
254
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_force.png"></a></td>
255
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
256
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
257
- <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_soft_body.png"></a></td>
258
- </tr>
259
- <tr>
260
- <td align="center">rigid force</td>
261
- <td align="center">rigid gyroscopic</td>
262
- <td align="center">rigid soft contact</td>
263
- <td align="center">soft body</td>
264
- </tr>
265
- </tbody>
266
- </table>
267
-
268
-
269
- ## Building
270
-
271
- For developers who want to build the library themselves, the following tools are required:
272
-
273
- * Microsoft Visual Studio 2019 upwards (Windows)
274
- * GCC 7.2 upwards (Linux)
275
- * CUDA Toolkit 11.5 or higher
276
- * [Git LFS](https://git-lfs.github.com/) installed
277
-
278
- After cloning the repository, users should run:
279
-
280
- python build_lib.py
281
-
282
- This will generate the `warp.dll` / `warp.so` core library respectively. It will search for the CUDA Toolkit in the default install directory. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
283
-
284
- pip install -e .
285
-
286
- This ensures that subsequent modifications to the library will be reflected in the Python package.
287
-
288
- ## Omniverse
289
-
290
- A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or USD Composer:
291
-
292
- <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/omniverse.png" width=550px/>
293
-
294
- Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment.
295
- Please see the [Omniverse Warp Documentation](https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html) for more details on how to use Warp in Omniverse.
296
-
297
- ## Learn More
298
-
299
- Please see the following resources for additional background on Warp:
300
-
301
- * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
302
- * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
303
- * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
304
-
305
- The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
306
-
307
- * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
308
- * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
309
- * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
310
-
311
- ## Citing
312
-
313
- If you use Warp in your research please use the following citation:
314
-
315
- ```bibtex
316
- @misc{warp2022,
317
- title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
318
- author = {Miles Macklin},
319
- month = {March},
320
- year = {2022},
321
- note= {NVIDIA GPU Technology Conference (GTC)},
322
- howpublished = {\url{https://github.com/nvidia/warp}}
323
- }
324
- ```
325
-
326
- ## FAQ
327
-
328
- ### How does Warp relate to other Python projects for GPU programming, e.g.: Numba, Taichi, cuPy, PyTorch, etc?
329
- -------
330
-
331
- Warp is inspired by many of these projects and is closely related to Numba and Taichi, which both expose kernel programming to Python. These frameworks map to traditional GPU programming models, so many of the high-level concepts are similar, however there are some functionality and implementation differences.
332
-
333
- Compared to Numba, Warp supports a smaller subset of Python, but offers auto-differentiation of kernel programs, which is useful for machine learning. Compared to Taichi, Warp uses C++/CUDA as an intermediate representation, which makes it convenient to implement and expose low-level routines. In addition, we are building in data structures to support geometry processing (meshes, sparse volumes, point clouds, USD data) as first-class citizens that are not exposed in other runtimes.
334
-
335
- Warp does not offer a full tensor-based programming model like PyTorch and JAX, but is designed to work well with these frameworks through data sharing mechanisms like `__cuda_array_interface__`. For computations that map well to tensors (e.g.: neural-network inference) it makes sense to use these existing tools. For problems with a lot of e.g.: sparsity, conditional logic, heterogeneous workloads (like the ones we often find in simulation and graphics), then the kernel-based programming model like the one in Warp is often more convenient since users have control over individual threads.
336
-
337
- ### Does Warp support all of the Python language?
338
- -------
339
-
340
- No, Warp supports a subset of Python that maps well to the GPU. Our goal is to not have any performance cliffs so that users can expect consistently good behavior from kernels that is close to native code. Examples of unsupported concepts that don't map well to the GPU are dynamic types, list comprehensions, exceptions, garbage collection, etc.
341
-
342
- ### When should I call `wp.synchronize()`?
343
- -------
344
-
345
- One of the common sources of confusion for new users is when calls to `wp.synchronize()` are necessary. The answer is "almost never"! Synchronization is quite expensive, and should generally be avoided unless necessary. Warp naturally takes care of synchronization between operations (e.g.: kernel launches, device memory copies).
346
-
347
- For example, the following requires no manual synchronization, as the conversion to NumPy will automatically synchronize:
348
-
349
- ```python
350
- # run some kernels
351
- wp.launch(kernel_1, dim, [array_x, array_y], device="cuda")
352
- wp.launch(kernel_2, dim, [array_y, array_z], device="cuda")
353
-
354
- # bring data back to host (and implicitly synchronize)
355
- x = array_z.numpy()
356
- ```
357
-
358
- The _only_ case where manual synchronization is needed is when copies are being performed back to CPU asynchronously, e.g.:
359
-
360
- ```python
361
- # copy data back to cpu from gpu, all copies will happen asynchronously to Python
362
- wp.copy(cpu_array_1, gpu_array_1)
363
- wp.copy(cpu_array_2, gpu_array_2)
364
- wp.copy(cpu_array_3, gpu_array_3)
365
-
366
- # ensure that the copies have finished
367
- wp.synchronize()
368
-
369
- # return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
370
- a1 = cpu_array_1.numpy()
371
- a2 = cpu_array_2.numpy()
372
- a3 = cpu_array_3.numpy()
373
- ```
374
-
375
- For more information about asynchronous operations, please refer to the [concurrency documentation](https://nvidia.github.io/warp/modules/concurrency.html) and [synchronization guidance](https://nvidia.github.io/warp/modules/concurrency.html#synchronization-guidance).
376
-
377
- ### What happens when you differentiate a function like `wp.abs(x)`?
378
- -------
379
-
380
- Non-smooth functions such as `y=|x|` do not have a single unique gradient at `x=0`, rather they have what is known as a `subgradient`, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation frameworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for `wp.abs()`, it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in `warp/native/builtin.h`.
381
-
382
- Most optimizers (particularly ones that exploit stochasticity) are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.
383
-
384
- ### Does Warp support multi-GPU programming?
385
- -------
386
-
387
- Yes! Since version `0.4.0` we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as `cuda:0`, `cuda:1`, `cpu` to identify individual devices.
388
-
389
- ### Should I switch to Warp over IsaacGym / PhysX?
390
- -------
391
-
392
- Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.
393
-
394
- ## Discord
395
-
396
- We have a **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
397
-
398
- ## License
399
-
400
- Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.
1
+ Metadata-Version: 2.1
2
+ Name: warp-lang
3
+ Version: 1.1.0
4
+ Summary: A Python framework for high-performance simulation and graphics programming
5
+ Author-email: NVIDIA <mmacklin@nvidia.com>
6
+ License: NVIDIA Software License
7
+ Project-URL: GitHub, https://github.com/NVIDIA/warp
8
+ Project-URL: Documentation, https://nvidia.github.io/warp
9
+ Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
10
+ Classifier: Programming Language :: Python :: 3.7
11
+ Classifier: Programming Language :: Python :: 3.8
12
+ Classifier: Programming Language :: Python :: 3.9
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: License :: Other/Proprietary License
16
+ Classifier: Operating System :: OS Independent
17
+ Requires-Python: >=3.7
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE.md
20
+ Requires-Dist: numpy
21
+ Provides-Extra: dev
22
+ Requires-Dist: pre-commit ; extra == 'dev'
23
+ Requires-Dist: ruff ; extra == 'dev'
24
+ Requires-Dist: nvtx ; extra == 'dev'
25
+ Requires-Dist: furo ; extra == 'dev'
26
+ Requires-Dist: sphinx-copybutton ; extra == 'dev'
27
+ Requires-Dist: coverage[toml] ; extra == 'dev'
28
+
29
+ # NVIDIA Warp
30
+
31
+ Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
32
+ regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
33
+
34
+ Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
35
+ programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
36
+ are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
37
+
38
+ Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
39
+
40
+ <div align="center">
41
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/header.jpg">
42
+ <p><i>A selection of physical simulations computed with Warp</i></p>
43
+ </div>
44
+
45
+
46
+ ## Installing
47
+
48
+ Python version 3.9 or newer is recommended. Warp can run on x86-64 and ARMv8 CPUs on Windows, Linux, and macOS. GPU support requires a CUDA capable NVIDIA GPU and driver (minimum GeForce GTX 9xx).
49
+
50
+ The easiest way to install Warp is from [PyPI](https://pypi.org/project/warp-lang/):
51
+
52
+ pip install warp-lang
53
+
54
+ Pre-built binary packages are also available on the [Releases](https://github.com/NVIDIA/warp/releases) page. To install in your local Python environment run the following command from the download directory:
55
+
56
+ pip install warp_lang-<version and platform>.whl
57
+
58
+ ## Getting Started
59
+
60
+ An example first program that computes the lengths of random 3D vectors is given below:
61
+
62
+ ```python
63
+ import warp as wp
64
+ import numpy as np
65
+
66
+ wp.init()
67
+
68
+ num_points = 1024
69
+
70
+ @wp.kernel
71
+ def length(points: wp.array(dtype=wp.vec3),
72
+ lengths: wp.array(dtype=float)):
73
+
74
+ # thread index
75
+ tid = wp.tid()
76
+
77
+ # compute distance of each point from origin
78
+ lengths[tid] = wp.length(points[tid])
79
+
80
+
81
+ # allocate an array of 3d points
82
+ points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
83
+ lengths = wp.zeros(num_points, dtype=float)
84
+
85
+ # launch kernel
86
+ wp.launch(kernel=length,
87
+ dim=len(points),
88
+ inputs=[points, lengths])
89
+
90
+ print(lengths)
91
+ ```
92
+
93
+ ## Running Examples
94
+
95
+ The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations (stored in the current working directory). Before running examples, users should ensure that the ``usd-core``, ``matplotlib``, and ``pyglet`` packages are installed using:
96
+
97
+ pip install usd-core matplotlib pyglet
98
+
99
+ Examples can be run from the command-line as follows:
100
+
101
+ python -m warp.examples.<example_subdir>.<example>
102
+
103
+ To browse the example source code, you can open the directory where the files are located like this:
104
+
105
+ python -m warp.examples.browse
106
+
107
+ Most examples can be run on either the CPU or a CUDA-capable device, but a handful require a CUDA-capable device. These are marked at the top of the example script.
108
+
109
+ USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
110
+
111
+ Built-in unit tests can be run from the command-line as follows:
112
+
113
+ python -m warp.tests
114
+
115
+
116
+ ### examples/core
117
+
118
+ <table>
119
+ <tbody>
120
+ <tr>
121
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_dem.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_dem.png"></a></td>
122
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_fluid.png"></a></td>
123
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_graph_capture.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_graph_capture.png"></a></td>
124
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_marching_cubes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_marching_cubes.png"></a></td>
125
+ </tr>
126
+ <tr>
127
+ <td align="center">dem</td>
128
+ <td align="center">fluid</td>
129
+ <td align="center">graph capture</td>
130
+ <td align="center">marching cubes</td>
131
+ </tr>
132
+ <tr>
133
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_mesh.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_mesh.png"></a></td>
134
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_nvdb.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_nvdb.png"></a></td>
135
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raycast.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raycast.png"></a></td>
136
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_raymarch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_raymarch.png"></a></td>
137
+ </tr>
138
+ <tr>
139
+ <td align="center">mesh</td>
140
+ <td align="center">nvdb</td>
141
+ <td align="center">raycast</td>
142
+ <td align="center">raymarch</td>
143
+ </tr>
144
+ <tr>
145
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_sph.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_sph.png"></a></td>
146
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_torch.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_torch.png"></a></td>
147
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/core/example_wave.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/core_wave.png"></a></td>
148
+ <td></td>
149
+ </tr>
150
+ <tr>
151
+ <td align="center">sph</td>
152
+ <td align="center">torch</td>
153
+ <td align="center">wave</td>
154
+ <td align="center"></td>
155
+ </tr>
156
+ </tbody>
157
+ </table>
158
+
159
+
160
+ ### examples/fem
161
+
162
+ <table>
163
+ <tbody>
164
+ <tr>
165
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_apic_fluid.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_apic_fluid.png"></a></td>
166
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_convection_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_convection_diffusion.png"></a></td>
167
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion_3d.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion_3d.png"></a></td>
168
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_diffusion.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_diffusion.png"></a></td>
169
+ </tr>
170
+ <tr>
171
+ <td align="center">apic fluid</td>
172
+ <td align="center">convection diffusion</td>
173
+ <td align="center">diffusion 3d</td>
174
+ <td align="center">diffusion</td>
175
+ </tr>
176
+ <tr>
177
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_mixed_elasticity.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_mixed_elasticity.png"></a></td>
178
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_navier_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_navier_stokes.png"></a></td>
179
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes_transfer.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes_transfer.png"></a></td>
180
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/fem/example_stokes.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/fem_stokes.png"></a></td>
181
+ </tr>
182
+ <tr>
183
+ <td align="center">mixed elasticity</td>
184
+ <td align="center">navier stokes</td>
185
+ <td align="center">stokes transfer</td>
186
+ <td align="center">stokes</td>
187
+ </tr>
188
+ </tbody>
189
+ </table>
190
+
191
+
192
+ ### examples/optim
193
+
194
+ <table>
195
+ <tbody>
196
+ <tr>
197
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_bounce.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_bounce.png"></a></td>
198
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_cloth_throw.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_cloth_throw.png"></a></td>
199
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_diffray.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_diffray.png"></a></td>
200
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_drone.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_drone.png"></a></td>
201
+ </tr>
202
+ <tr>
203
+ <td align="center">bounce</td>
204
+ <td align="center">cloth throw</td>
205
+ <td align="center">diffray</td>
206
+ <td align="center">drone</td>
207
+ </tr>
208
+ <tr>
209
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_inverse_kinematics.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_inverse_kinematics.png"></a></td>
210
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_spring_cage.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_spring_cage.png"></a></td>
211
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_trajectory.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_trajectory.png"></a></td>
212
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/optim/example_walker.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/optim_walker.png"></a></td>
213
+ </tr>
214
+ <tr>
215
+ <td align="center">inverse kinematics</td>
216
+ <td align="center">spring cage</td>
217
+ <td align="center">trajectory</td>
218
+ <td align="center">walker</td>
219
+ </tr>
220
+ </tbody>
221
+ </table>
222
+
223
+
224
+ ### examples/sim
225
+
226
+ <table>
227
+ <tbody>
228
+ <tr>
229
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cartpole.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cartpole.png"></a></td>
230
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_cloth.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_cloth.png"></a></td>
231
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular.png"></a></td>
232
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_granular_collision_sdf.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_granular_collision_sdf.png"></a></td>
233
+ </tr>
234
+ <tr>
235
+ <td align="center">cartpole</td>
236
+ <td align="center">cloth</td>
237
+ <td align="center">granular</td>
238
+ <td align="center">granular collision sdf</td>
239
+ </tr>
240
+ <tr>
241
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_jacobian_ik.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_jacobian_ik.png"></a></td>
242
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_quadruped.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_quadruped.png"></a></td>
243
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_chain.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_chain.png"></a></td>
244
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_contact.png"></a></td>
245
+ </tr>
246
+ <tr>
247
+ <td align="center">jacobian ik</td>
248
+ <td align="center">quadruped</td>
249
+ <td align="center">rigid chain</td>
250
+ <td align="center">rigid contact</td>
251
+ </tr>
252
+ <tr>
253
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_force.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_force.png"></a></td>
254
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_gyroscopic.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_gyroscopic.png"></a></td>
255
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_rigid_soft_contact.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_rigid_soft_contact.png"></a></td>
256
+ <td><a href="https://github.com/NVIDIA/warp/tree/main/warp/examples/sim/example_soft_body.py"><img src="https://github.com/NVIDIA/warp/raw/main/docs/img/examples/sim_soft_body.png"></a></td>
257
+ </tr>
258
+ <tr>
259
+ <td align="center">rigid force</td>
260
+ <td align="center">rigid gyroscopic</td>
261
+ <td align="center">rigid soft contact</td>
262
+ <td align="center">soft body</td>
263
+ </tr>
264
+ </tbody>
265
+ </table>
266
+
267
+
268
+ ## Building
269
+
270
+ For developers who want to build the library themselves, the following tools are required:
271
+
272
+ * Microsoft Visual Studio 2019 upwards (Windows)
273
+ * GCC 9.4 upwards (Linux)
274
+ * CUDA Toolkit 11.5 or higher
275
+ * [Git LFS](https://git-lfs.github.com/) installed
276
+
277
+ After cloning the repository, users should run:
278
+
279
+ python build_lib.py
280
+
281
+ This will generate the `warp.dll` / `warp.so` core library respectively. It will search for the CUDA Toolkit in the default install directory. This path can be overridden by setting the `CUDA_PATH` environment variable. Alternatively, the path to the CUDA Toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
282
+
283
+ pip install -e .
284
+
285
+ This ensures that subsequent modifications to the library will be reflected in the Python package.
286
+
287
+ ## Omniverse
288
+
289
+ A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or USD Composer:
290
+
291
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/omniverse.png" width=550px/>
292
+
293
+ Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment.
294
+ Please see the [Omniverse Warp Documentation](https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html) for more details on how to use Warp in Omniverse.
295
+
296
+ ## Learn More
297
+
298
+ Please see the following resources for additional background on Warp:
299
+
300
+ * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
301
+ * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
302
+ * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
303
+ * [GTC 2024 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtc24-s63345/)
304
+
305
+ The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
306
+
307
+ * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
308
+ * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
309
+ * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
310
+
311
+ ## Citing
312
+
313
+ If you use Warp in your research please use the following citation:
314
+
315
+ ```bibtex
316
+ @misc{warp2022,
317
+ title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
318
+ author = {Miles Macklin},
319
+ month = {March},
320
+ year = {2022},
321
+ note= {NVIDIA GPU Technology Conference (GTC)},
322
+ howpublished = {\url{https://github.com/nvidia/warp}}
323
+ }
324
+ ```
325
+
326
+ ## Frequently Asked Questions
327
+
328
+ See the [FAQ](https://nvidia.github.io/warp/faq.html) in the Warp documentation.
329
+
330
+ ## Support
331
+
332
+ Problems, questions, and feature requests can be opened on [GitHub Issues](https://github.com/NVIDIA/warp/issues).
333
+
334
+ The Warp team also monitors the **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
335
+
336
+ ## License
337
+
338
+ Warp is provided under the NVIDIA Software License, please see [LICENSE.md](./LICENSE.md) for full license text.