warp-lang 1.0.1__py3-none-manylinux2014_aarch64.whl → 1.1.0__py3-none-manylinux2014_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/warp-clang.so +0 -0
- warp/bin/warp.so +0 -0
- warp/build.py +115 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3425 -3354
- warp/codegen.py +2878 -2792
- warp/config.py +40 -36
- warp/constants.py +45 -45
- warp/context.py +5194 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +383 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -279
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
- warp/examples/benchmarks/benchmark_launches.py +295 -295
- warp/examples/browse.py +29 -28
- warp/examples/core/example_dem.py +234 -221
- warp/examples/core/example_fluid.py +293 -267
- warp/examples/core/example_graph_capture.py +144 -129
- warp/examples/core/example_marching_cubes.py +188 -176
- warp/examples/core/example_mesh.py +174 -154
- warp/examples/core/example_mesh_intersect.py +205 -193
- warp/examples/core/example_nvdb.py +176 -169
- warp/examples/core/example_raycast.py +105 -89
- warp/examples/core/example_raymarch.py +199 -178
- warp/examples/core/example_render_opengl.py +185 -141
- warp/examples/core/example_sph.py +405 -389
- warp/examples/core/example_torch.py +222 -181
- warp/examples/core/example_wave.py +263 -249
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +407 -391
- warp/examples/fem/example_convection_diffusion.py +182 -168
- warp/examples/fem/example_convection_diffusion_dg.py +219 -209
- warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
- warp/examples/fem/example_deformed_geometry.py +177 -159
- warp/examples/fem/example_diffusion.py +201 -173
- warp/examples/fem/example_diffusion_3d.py +177 -152
- warp/examples/fem/example_diffusion_mgpu.py +221 -214
- warp/examples/fem/example_mixed_elasticity.py +244 -222
- warp/examples/fem/example_navier_stokes.py +259 -243
- warp/examples/fem/example_stokes.py +220 -192
- warp/examples/fem/example_stokes_transfer.py +265 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +260 -248
- warp/examples/optim/example_cloth_throw.py +222 -210
- warp/examples/optim/example_diffray.py +566 -535
- warp/examples/optim/example_drone.py +864 -835
- warp/examples/optim/example_inverse_kinematics.py +176 -169
- warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
- warp/examples/optim/example_spring_cage.py +239 -234
- warp/examples/optim/example_trajectory.py +223 -201
- warp/examples/optim/example_walker.py +306 -292
- warp/examples/sim/example_cartpole.py +139 -128
- warp/examples/sim/example_cloth.py +196 -184
- warp/examples/sim/example_granular.py +124 -113
- warp/examples/sim/example_granular_collision_sdf.py +197 -185
- warp/examples/sim/example_jacobian_ik.py +236 -213
- warp/examples/sim/example_particle_chain.py +118 -106
- warp/examples/sim/example_quadruped.py +193 -179
- warp/examples/sim/example_rigid_chain.py +197 -189
- warp/examples/sim/example_rigid_contact.py +189 -176
- warp/examples/sim/example_rigid_force.py +127 -126
- warp/examples/sim/example_rigid_gyroscopic.py +109 -97
- warp/examples/sim/example_rigid_soft_contact.py +134 -124
- warp/examples/sim/example_soft_body.py +190 -178
- warp/fabric.py +337 -335
- warp/fem/__init__.py +60 -27
- warp/fem/cache.py +401 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +15 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +744 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +441 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1630 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +294 -292
- warp/fem/space/basis_space.py +488 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +267 -267
- warp/fem/space/grid_3d_function_space.py +305 -306
- warp/fem/space/hexmesh_function_space.py +350 -352
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +368 -369
- warp/fem/space/restriction.py +158 -160
- warp/fem/space/shape/__init__.py +13 -15
- warp/fem/space/shape/cube_shape_function.py +738 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +294 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +223 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1072 -1025
- warp/native/builtin.h +1560 -1560
- warp/native/bvh.cpp +398 -398
- warp/native/bvh.cu +525 -525
- warp/native/bvh.h +429 -429
- warp/native/clang/clang.cpp +495 -464
- warp/native/crt.cpp +31 -31
- warp/native/crt.h +334 -334
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1498 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +293 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/NanoVDB.h +4782 -4782
- warp/native/nanovdb/PNanoVDB.h +2553 -2553
- warp/native/nanovdb/PNanoVDBWrite.h +294 -294
- warp/native/noise.h +850 -850
- warp/native/quat.h +1084 -1084
- warp/native/rand.h +299 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1132 -1132
- warp/native/volume.cpp +297 -297
- warp/native/volume.cu +32 -32
- warp/native/volume.h +538 -538
- warp/native/volume_builder.cu +425 -425
- warp/native/volume_builder.h +19 -19
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2943 -2828
- warp/native/warp.h +313 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3217 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1910 -1991
- warp/sim/integrator_xpbd.py +3294 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1227 -1227
- warp/stubs.py +2109 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +22 -22
- warp/tests/aux_test_grad_customs.py +23 -23
- warp/tests/aux_test_reference.py +11 -11
- warp/tests/aux_test_reference_reference.py +10 -10
- warp/tests/aux_test_square.py +17 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +239 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +157 -157
- warp/tests/test_arithmetic.py +1124 -1124
- warp/tests/test_array.py +2417 -2326
- warp/tests/test_array_reduce.py +150 -150
- warp/tests/test_async.py +668 -656
- warp/tests/test_atomic.py +141 -141
- warp/tests/test_bool.py +204 -149
- warp/tests/test_builtins_resolution.py +1292 -1292
- warp/tests/test_bvh.py +164 -171
- warp/tests/test_closest_point_edge_edge.py +228 -228
- warp/tests/test_codegen.py +566 -553
- warp/tests/test_compile_consts.py +97 -101
- warp/tests/test_conditional.py +246 -246
- warp/tests/test_copy.py +232 -215
- warp/tests/test_ctypes.py +632 -632
- warp/tests/test_dense.py +67 -67
- warp/tests/test_devices.py +91 -98
- warp/tests/test_dlpack.py +530 -529
- warp/tests/test_examples.py +400 -378
- warp/tests/test_fabricarray.py +955 -955
- warp/tests/test_fast_math.py +62 -54
- warp/tests/test_fem.py +1277 -1278
- warp/tests/test_fp16.py +130 -130
- warp/tests/test_func.py +338 -337
- warp/tests/test_generics.py +571 -571
- warp/tests/test_grad.py +746 -640
- warp/tests/test_grad_customs.py +333 -336
- warp/tests/test_hash_grid.py +210 -164
- warp/tests/test_import.py +39 -39
- warp/tests/test_indexedarray.py +1134 -1134
- warp/tests/test_intersect.py +67 -67
- warp/tests/test_jax.py +307 -307
- warp/tests/test_large.py +167 -164
- warp/tests/test_launch.py +354 -354
- warp/tests/test_lerp.py +261 -261
- warp/tests/test_linear_solvers.py +191 -171
- warp/tests/test_lvalue.py +421 -493
- warp/tests/test_marching_cubes.py +65 -65
- warp/tests/test_mat.py +1801 -1827
- warp/tests/test_mat_lite.py +115 -115
- warp/tests/test_mat_scalar_ops.py +2907 -2889
- warp/tests/test_math.py +126 -193
- warp/tests/test_matmul.py +500 -499
- warp/tests/test_matmul_lite.py +410 -410
- warp/tests/test_mempool.py +188 -190
- warp/tests/test_mesh.py +284 -324
- warp/tests/test_mesh_query_aabb.py +228 -241
- warp/tests/test_mesh_query_point.py +692 -702
- warp/tests/test_mesh_query_ray.py +292 -303
- warp/tests/test_mlp.py +276 -276
- warp/tests/test_model.py +110 -110
- warp/tests/test_modules_lite.py +39 -39
- warp/tests/test_multigpu.py +163 -163
- warp/tests/test_noise.py +248 -248
- warp/tests/test_operators.py +250 -250
- warp/tests/test_options.py +123 -125
- warp/tests/test_peer.py +133 -137
- warp/tests/test_pinned.py +78 -78
- warp/tests/test_print.py +54 -54
- warp/tests/test_quat.py +2086 -2086
- warp/tests/test_rand.py +288 -288
- warp/tests/test_reload.py +217 -217
- warp/tests/test_rounding.py +179 -179
- warp/tests/test_runlength_encode.py +190 -190
- warp/tests/test_sim_grad.py +243 -0
- warp/tests/test_sim_kinematics.py +91 -97
- warp/tests/test_smoothstep.py +168 -168
- warp/tests/test_snippet.py +305 -266
- warp/tests/test_sparse.py +468 -460
- warp/tests/test_spatial.py +2148 -2148
- warp/tests/test_streams.py +486 -473
- warp/tests/test_struct.py +710 -675
- warp/tests/test_tape.py +173 -148
- warp/tests/test_torch.py +743 -743
- warp/tests/test_transient_module.py +87 -87
- warp/tests/test_types.py +556 -659
- warp/tests/test_utils.py +490 -499
- warp/tests/test_vec.py +1264 -1268
- warp/tests/test_vec_lite.py +73 -73
- warp/tests/test_vec_scalar_ops.py +2099 -2099
- warp/tests/test_verify_fp.py +94 -94
- warp/tests/test_volume.py +737 -736
- warp/tests/test_volume_write.py +255 -265
- warp/tests/unittest_serial.py +37 -37
- warp/tests/unittest_suites.py +363 -359
- warp/tests/unittest_utils.py +603 -578
- warp/tests/unused_test_misc.py +71 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +566 -561
- warp/torch.py +321 -295
- warp/types.py +4504 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
- warp_lang-1.1.0.dist-info/RECORD +352 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp_lang-1.0.1.dist-info/RECORD +0 -352
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/tests/test_indexedarray.py
CHANGED
|
@@ -1,1134 +1,1134 @@
|
|
|
1
|
-
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
# and proprietary rights in and to this software, related documentation
|
|
4
|
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
# distribution of this software and related documentation without an express
|
|
6
|
-
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
|
|
8
|
-
import unittest
|
|
9
|
-
from typing import Any
|
|
10
|
-
|
|
11
|
-
import numpy as np
|
|
12
|
-
|
|
13
|
-
import warp as wp
|
|
14
|
-
from warp.tests.test_array import FillStruct
|
|
15
|
-
from warp.tests.unittest_utils import *
|
|
16
|
-
|
|
17
|
-
wp.init()
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
@wp.kernel
|
|
21
|
-
def kernel_1d(a: wp.indexedarray(dtype=float), expected: wp.array(dtype=float)):
|
|
22
|
-
i = wp.tid()
|
|
23
|
-
|
|
24
|
-
wp.expect_eq(a[i], expected[i])
|
|
25
|
-
|
|
26
|
-
a[i] = 2.0 * a[i]
|
|
27
|
-
|
|
28
|
-
wp.atomic_add(a, i, 1.0)
|
|
29
|
-
|
|
30
|
-
wp.expect_eq(a[i], 2.0 * expected[i] + 1.0)
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
def test_indexedarray_1d(test, device):
|
|
34
|
-
values = np.arange(10, dtype=np.float32)
|
|
35
|
-
arr = wp.array(data=values, device=device)
|
|
36
|
-
|
|
37
|
-
indices = wp.array([1, 3, 5, 7, 9], dtype=int, device=device)
|
|
38
|
-
|
|
39
|
-
iarr = wp.indexedarray1d(arr, [indices])
|
|
40
|
-
|
|
41
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
42
|
-
test.assertEqual(iarr.ndim, 1)
|
|
43
|
-
test.assertEqual(iarr.shape, (5,))
|
|
44
|
-
test.assertEqual(iarr.size, 5)
|
|
45
|
-
|
|
46
|
-
expected_arr = wp.array(data=[1, 3, 5, 7, 9], dtype=float, device=device)
|
|
47
|
-
|
|
48
|
-
wp.launch(kernel_1d, dim=iarr.size, inputs=[iarr, expected_arr], device=device)
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
@wp.kernel
|
|
52
|
-
def kernel_2d(a: wp.indexedarray2d(dtype=float), expected: wp.array2d(dtype=float)):
|
|
53
|
-
i, j = wp.tid()
|
|
54
|
-
|
|
55
|
-
# check expected values
|
|
56
|
-
wp.expect_eq(a[i, j], expected[i, j])
|
|
57
|
-
|
|
58
|
-
# test wp.view()
|
|
59
|
-
wp.expect_eq(a[i][j], a[i, j])
|
|
60
|
-
|
|
61
|
-
a[i, j] = 2.0 * a[i, j]
|
|
62
|
-
|
|
63
|
-
wp.atomic_add(a, i, j, 1.0)
|
|
64
|
-
|
|
65
|
-
wp.expect_eq(a[i, j], 2.0 * expected[i, j] + 1.0)
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
def test_indexedarray_2d(test, device):
|
|
69
|
-
values = np.arange(100, dtype=np.float32).reshape((10, 10))
|
|
70
|
-
arr = wp.array(data=values, device=device)
|
|
71
|
-
|
|
72
|
-
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
73
|
-
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
74
|
-
|
|
75
|
-
iarr = wp.indexedarray2d(arr, [indices0, indices1])
|
|
76
|
-
|
|
77
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
78
|
-
test.assertEqual(iarr.ndim, 2)
|
|
79
|
-
test.assertEqual(iarr.shape, (2, 3))
|
|
80
|
-
test.assertEqual(iarr.size, 6)
|
|
81
|
-
|
|
82
|
-
expected_values = [[12, 14, 18], [32, 34, 38]]
|
|
83
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
84
|
-
|
|
85
|
-
wp.launch(kernel_2d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
@wp.kernel
|
|
89
|
-
def kernel_3d(a: wp.indexedarray3d(dtype=float), expected: wp.array3d(dtype=float)):
|
|
90
|
-
i, j, k = wp.tid()
|
|
91
|
-
|
|
92
|
-
# check expected values
|
|
93
|
-
wp.expect_eq(a[i, j, k], expected[i, j, k])
|
|
94
|
-
|
|
95
|
-
# test wp.view()
|
|
96
|
-
wp.expect_eq(a[i][j][k], a[i, j, k])
|
|
97
|
-
wp.expect_eq(a[i, j][k], a[i, j, k])
|
|
98
|
-
wp.expect_eq(a[i][j, k], a[i, j, k])
|
|
99
|
-
|
|
100
|
-
a[i, j, k] = 2.0 * a[i, j, k]
|
|
101
|
-
|
|
102
|
-
wp.atomic_add(a, i, j, k, 1.0)
|
|
103
|
-
|
|
104
|
-
wp.expect_eq(a[i, j, k], 2.0 * expected[i, j, k] + 1.0)
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
def test_indexedarray_3d(test, device):
|
|
108
|
-
values = np.arange(1000, dtype=np.float32).reshape((10, 10, 10))
|
|
109
|
-
arr = wp.array(data=values, device=device)
|
|
110
|
-
|
|
111
|
-
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
112
|
-
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
113
|
-
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
114
|
-
|
|
115
|
-
iarr = wp.indexedarray3d(arr, [indices0, indices1, indices2])
|
|
116
|
-
|
|
117
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
118
|
-
test.assertEqual(iarr.ndim, 3)
|
|
119
|
-
test.assertEqual(iarr.shape, (2, 3, 2))
|
|
120
|
-
test.assertEqual(iarr.size, 12)
|
|
121
|
-
|
|
122
|
-
expected_values = [
|
|
123
|
-
[[120, 125], [140, 145], [180, 185]],
|
|
124
|
-
[[320, 325], [340, 345], [380, 385]],
|
|
125
|
-
]
|
|
126
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
127
|
-
|
|
128
|
-
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
@wp.kernel
|
|
132
|
-
def kernel_4d(a: wp.indexedarray4d(dtype=float), expected: wp.array4d(dtype=float)):
|
|
133
|
-
i, j, k, l = wp.tid()
|
|
134
|
-
|
|
135
|
-
# check expected values
|
|
136
|
-
wp.expect_eq(a[i, j, k, l], expected[i, j, k, l])
|
|
137
|
-
|
|
138
|
-
# test wp.view()
|
|
139
|
-
wp.expect_eq(a[i][j][k][l], a[i, j, k, l])
|
|
140
|
-
wp.expect_eq(a[i][j, k, l], a[i, j, k, l])
|
|
141
|
-
wp.expect_eq(a[i, j][k, l], a[i, j, k, l])
|
|
142
|
-
wp.expect_eq(a[i, j, k][l], a[i, j, k, l])
|
|
143
|
-
|
|
144
|
-
a[i, j, k, l] = 2.0 * a[i, j, k, l]
|
|
145
|
-
|
|
146
|
-
wp.atomic_add(a, i, j, k, l, 1.0)
|
|
147
|
-
|
|
148
|
-
wp.expect_eq(a[i, j, k, l], 2.0 * expected[i, j, k, l] + 1.0)
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
def test_indexedarray_4d(test, device):
|
|
152
|
-
values = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10))
|
|
153
|
-
arr = wp.array(data=values, device=device)
|
|
154
|
-
|
|
155
|
-
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
156
|
-
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
157
|
-
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
158
|
-
indices3 = wp.array([6, 7, 9], dtype=int, device=device)
|
|
159
|
-
|
|
160
|
-
iarr = wp.indexedarray4d(arr, [indices0, indices1, indices2, indices3])
|
|
161
|
-
|
|
162
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
163
|
-
test.assertEqual(iarr.ndim, 4)
|
|
164
|
-
test.assertEqual(iarr.shape, (2, 3, 2, 3))
|
|
165
|
-
test.assertEqual(iarr.size, 36)
|
|
166
|
-
|
|
167
|
-
expected_values = [
|
|
168
|
-
[
|
|
169
|
-
[[1206, 1207, 1209], [1256, 1257, 1259]],
|
|
170
|
-
[[1406, 1407, 1409], [1456, 1457, 1459]],
|
|
171
|
-
[[1806, 1807, 1809], [1856, 1857, 1859]],
|
|
172
|
-
],
|
|
173
|
-
[
|
|
174
|
-
[[3206, 3207, 3209], [3256, 3257, 3259]],
|
|
175
|
-
[[3406, 3407, 3409], [3456, 3457, 3459]],
|
|
176
|
-
[[3806, 3807, 3809], [3856, 3857, 3859]],
|
|
177
|
-
],
|
|
178
|
-
]
|
|
179
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
180
|
-
|
|
181
|
-
wp.launch(kernel_4d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
def test_indexedarray_mixed(test, device):
|
|
185
|
-
# [[[ 0, 1, 2, 3],
|
|
186
|
-
# [ 4, 5, 6, 7],
|
|
187
|
-
# [ 8, 9, 10, 11],
|
|
188
|
-
# [12, 13, 14, 15]],
|
|
189
|
-
# [[16, 17, 18, 19],
|
|
190
|
-
# [20, 21, 22, 23],
|
|
191
|
-
# [24, 25, 26, 27],
|
|
192
|
-
# [28, 29, 30, 31]],
|
|
193
|
-
# [[32, 33, 34, 35],
|
|
194
|
-
# [36, 37, 38, 39],
|
|
195
|
-
# [40, 41, 42, 43],
|
|
196
|
-
# [44, 45, 46, 47],
|
|
197
|
-
# [[48, 49, 50, 51],
|
|
198
|
-
# [52, 53, 54, 55],
|
|
199
|
-
# [56, 57, 58, 59],
|
|
200
|
-
# [60, 61, 62, 63]]]]
|
|
201
|
-
values = np.arange(64, dtype=np.float32).reshape((4, 4, 4))
|
|
202
|
-
|
|
203
|
-
indices = wp.array([0, 3], dtype=int, device=device)
|
|
204
|
-
|
|
205
|
-
# -----
|
|
206
|
-
|
|
207
|
-
arr = wp.array(data=values, device=device)
|
|
208
|
-
iarr = wp.indexedarray(arr, [indices, None, None])
|
|
209
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
210
|
-
test.assertEqual(iarr.ndim, 3)
|
|
211
|
-
test.assertEqual(iarr.shape, (2, 4, 4))
|
|
212
|
-
test.assertEqual(iarr.size, 32)
|
|
213
|
-
|
|
214
|
-
expected_values = [
|
|
215
|
-
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]],
|
|
216
|
-
[[48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61, 62, 63]],
|
|
217
|
-
]
|
|
218
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
219
|
-
|
|
220
|
-
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
221
|
-
|
|
222
|
-
# -----
|
|
223
|
-
|
|
224
|
-
arr = wp.array(data=values, device=device)
|
|
225
|
-
iarr = wp.indexedarray(arr, [indices, indices, None])
|
|
226
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
227
|
-
test.assertEqual(iarr.ndim, 3)
|
|
228
|
-
test.assertEqual(iarr.shape, (2, 2, 4))
|
|
229
|
-
test.assertEqual(iarr.size, 16)
|
|
230
|
-
|
|
231
|
-
expected_values = [[[0, 1, 2, 3], [12, 13, 14, 15]], [[48, 49, 50, 51], [60, 61, 62, 63]]]
|
|
232
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
233
|
-
|
|
234
|
-
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
235
|
-
|
|
236
|
-
# -----
|
|
237
|
-
|
|
238
|
-
arr = wp.array(data=values, device=device)
|
|
239
|
-
iarr = wp.indexedarray(arr, [indices, None, indices])
|
|
240
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
241
|
-
test.assertEqual(iarr.ndim, 3)
|
|
242
|
-
test.assertEqual(iarr.shape, (2, 4, 2))
|
|
243
|
-
test.assertEqual(iarr.size, 16)
|
|
244
|
-
|
|
245
|
-
expected_values = [[[0, 3], [4, 7], [8, 11], [12, 15]], [[48, 51], [52, 55], [56, 59], [60, 63]]]
|
|
246
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
247
|
-
|
|
248
|
-
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
249
|
-
|
|
250
|
-
# -----
|
|
251
|
-
|
|
252
|
-
arr = wp.array(data=values, device=device)
|
|
253
|
-
iarr = wp.indexedarray(arr, [None, indices, indices])
|
|
254
|
-
test.assertEqual(iarr.dtype, arr.dtype)
|
|
255
|
-
test.assertEqual(iarr.ndim, 3)
|
|
256
|
-
test.assertEqual(iarr.shape, (4, 2, 2))
|
|
257
|
-
test.assertEqual(iarr.size, 16)
|
|
258
|
-
|
|
259
|
-
expected_values = [[[0, 3], [12, 15]], [[16, 19], [28, 31]], [[32, 35], [44, 47]], [[48, 51], [60, 63]]]
|
|
260
|
-
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
261
|
-
|
|
262
|
-
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
vec2i = wp.types.vector(length=2, dtype=wp.int32)
|
|
266
|
-
vec3i = wp.types.vector(length=3, dtype=wp.int32)
|
|
267
|
-
vec4i = wp.types.vector(length=4, dtype=wp.int32)
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
@wp.kernel
|
|
271
|
-
def shape_kernel_1d(arr: wp.indexedarray1d(dtype=float), expected: int):
|
|
272
|
-
wp.expect_eq(arr.shape[0], expected)
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
@wp.kernel
|
|
276
|
-
def shape_kernel_2d(arr: wp.indexedarray2d(dtype=float), expected: vec2i):
|
|
277
|
-
wp.expect_eq(arr.shape[0], expected[0])
|
|
278
|
-
wp.expect_eq(arr.shape[1], expected[1])
|
|
279
|
-
|
|
280
|
-
# 1d slice
|
|
281
|
-
view = arr[0]
|
|
282
|
-
wp.expect_eq(view.shape[0], expected[1])
|
|
283
|
-
|
|
284
|
-
|
|
285
|
-
@wp.kernel
|
|
286
|
-
def shape_kernel_3d(arr: wp.indexedarray3d(dtype=float), expected: vec3i):
|
|
287
|
-
wp.expect_eq(arr.shape[0], expected[0])
|
|
288
|
-
wp.expect_eq(arr.shape[1], expected[1])
|
|
289
|
-
wp.expect_eq(arr.shape[2], expected[2])
|
|
290
|
-
|
|
291
|
-
# 2d slice
|
|
292
|
-
view2 = arr[0]
|
|
293
|
-
wp.expect_eq(view2.shape[0], expected[1])
|
|
294
|
-
wp.expect_eq(view2.shape[1], expected[2])
|
|
295
|
-
|
|
296
|
-
# 1d slice
|
|
297
|
-
view1 = arr[0, 0]
|
|
298
|
-
wp.expect_eq(view1.shape[0], expected[2])
|
|
299
|
-
|
|
300
|
-
|
|
301
|
-
@wp.kernel
|
|
302
|
-
def shape_kernel_4d(arr: wp.indexedarray4d(dtype=float), expected: vec4i):
|
|
303
|
-
wp.expect_eq(arr.shape[0], expected[0])
|
|
304
|
-
wp.expect_eq(arr.shape[1], expected[1])
|
|
305
|
-
wp.expect_eq(arr.shape[2], expected[2])
|
|
306
|
-
wp.expect_eq(arr.shape[3], expected[3])
|
|
307
|
-
|
|
308
|
-
# 3d slice
|
|
309
|
-
view3 = arr[0]
|
|
310
|
-
wp.expect_eq(view3.shape[0], expected[1])
|
|
311
|
-
wp.expect_eq(view3.shape[1], expected[2])
|
|
312
|
-
wp.expect_eq(view3.shape[2], expected[3])
|
|
313
|
-
|
|
314
|
-
# 2d slice
|
|
315
|
-
view2 = arr[0, 0]
|
|
316
|
-
wp.expect_eq(view2.shape[0], expected[2])
|
|
317
|
-
wp.expect_eq(view2.shape[1], expected[3])
|
|
318
|
-
|
|
319
|
-
# 1d slice
|
|
320
|
-
view1 = arr[0, 0, 0]
|
|
321
|
-
wp.expect_eq(view1.shape[0], expected[3])
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
def test_indexedarray_shape(test, device):
|
|
325
|
-
with wp.ScopedDevice(device):
|
|
326
|
-
data1 = wp.zeros(10, dtype=float)
|
|
327
|
-
data2 = wp.zeros((10, 20), dtype=float)
|
|
328
|
-
data3 = wp.zeros((10, 20, 30), dtype=float)
|
|
329
|
-
data4 = wp.zeros((10, 20, 30, 40), dtype=float)
|
|
330
|
-
|
|
331
|
-
indices1 = wp.array(data=[2, 7], dtype=int)
|
|
332
|
-
indices2 = wp.array(data=[2, 7, 12, 17], dtype=int)
|
|
333
|
-
indices3 = wp.array(data=[2, 7, 12, 17, 22, 27], dtype=int)
|
|
334
|
-
indices4 = wp.array(data=[2, 7, 12, 17, 22, 27, 32, 37], dtype=int)
|
|
335
|
-
|
|
336
|
-
ia1 = wp.indexedarray(data1, [indices1])
|
|
337
|
-
wp.launch(shape_kernel_1d, dim=1, inputs=[ia1, 2])
|
|
338
|
-
|
|
339
|
-
ia2_1 = wp.indexedarray(data2, [indices1, None])
|
|
340
|
-
ia2_2 = wp.indexedarray(data2, [None, indices2])
|
|
341
|
-
ia2_3 = wp.indexedarray(data2, [indices1, indices2])
|
|
342
|
-
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_1, vec2i(2, 20)])
|
|
343
|
-
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_2, vec2i(10, 4)])
|
|
344
|
-
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_3, vec2i(2, 4)])
|
|
345
|
-
|
|
346
|
-
ia3_1 = wp.indexedarray(data3, [indices1, None, None])
|
|
347
|
-
ia3_2 = wp.indexedarray(data3, [None, indices2, None])
|
|
348
|
-
ia3_3 = wp.indexedarray(data3, [None, None, indices3])
|
|
349
|
-
ia3_4 = wp.indexedarray(data3, [indices1, indices2, None])
|
|
350
|
-
ia3_5 = wp.indexedarray(data3, [indices1, None, indices3])
|
|
351
|
-
ia3_6 = wp.indexedarray(data3, [None, indices2, indices3])
|
|
352
|
-
ia3_7 = wp.indexedarray(data3, [indices1, indices2, indices3])
|
|
353
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_1, vec3i(2, 20, 30)])
|
|
354
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_2, vec3i(10, 4, 30)])
|
|
355
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_3, vec3i(10, 20, 6)])
|
|
356
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_4, vec3i(2, 4, 30)])
|
|
357
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_5, vec3i(2, 20, 6)])
|
|
358
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_6, vec3i(10, 4, 6)])
|
|
359
|
-
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_7, vec3i(2, 4, 6)])
|
|
360
|
-
|
|
361
|
-
ia4_1 = wp.indexedarray(data4, [indices1, None, None, None])
|
|
362
|
-
ia4_2 = wp.indexedarray(data4, [indices1, None, None, indices4])
|
|
363
|
-
ia4_3 = wp.indexedarray(data4, [None, indices2, indices3, None])
|
|
364
|
-
ia4_4 = wp.indexedarray(data4, [indices1, indices2, indices3, indices4])
|
|
365
|
-
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_1, vec4i(2, 20, 30, 40)])
|
|
366
|
-
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_2, vec4i(2, 20, 30, 8)])
|
|
367
|
-
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_3, vec4i(10, 4, 6, 40)])
|
|
368
|
-
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_4, vec4i(2, 4, 6, 8)])
|
|
369
|
-
|
|
370
|
-
wp.synchronize_device(device)
|
|
371
|
-
|
|
372
|
-
|
|
373
|
-
def test_indexedarray_getitem(test, device):
|
|
374
|
-
with wp.ScopedDevice(device):
|
|
375
|
-
data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
|
|
376
|
-
|
|
377
|
-
I = wp.array(data=[0, 1, 2], dtype=int)
|
|
378
|
-
|
|
379
|
-
# use constructor
|
|
380
|
-
a1 = wp.indexedarray(data, [None, None, I])
|
|
381
|
-
a2 = wp.indexedarray(data, [None, I])
|
|
382
|
-
a3 = wp.indexedarray(data, [None, I, I])
|
|
383
|
-
a4 = wp.indexedarray(data, [I])
|
|
384
|
-
a5 = wp.indexedarray(data, [I, None, I])
|
|
385
|
-
a6 = wp.indexedarray(data, [I, I])
|
|
386
|
-
a7 = wp.indexedarray(data, [I, I, I])
|
|
387
|
-
|
|
388
|
-
# use array.__getitem__()
|
|
389
|
-
b1 = data[:, :, I]
|
|
390
|
-
b2 = data[:, I]
|
|
391
|
-
b3 = data[:, I, I]
|
|
392
|
-
b4 = data[I]
|
|
393
|
-
b5 = data[I, :, I]
|
|
394
|
-
b6 = data[I, I]
|
|
395
|
-
b7 = data[I, I, I]
|
|
396
|
-
|
|
397
|
-
test.assertEqual(type(a1), type(b1))
|
|
398
|
-
test.assertEqual(type(a2), type(b2))
|
|
399
|
-
test.assertEqual(type(a3), type(b3))
|
|
400
|
-
test.assertEqual(type(a4), type(b4))
|
|
401
|
-
test.assertEqual(type(a5), type(b5))
|
|
402
|
-
test.assertEqual(type(a6), type(b6))
|
|
403
|
-
test.assertEqual(type(a7), type(b7))
|
|
404
|
-
|
|
405
|
-
assert_np_equal(a1.numpy(), b1.numpy())
|
|
406
|
-
assert_np_equal(a2.numpy(), b2.numpy())
|
|
407
|
-
assert_np_equal(a3.numpy(), b3.numpy())
|
|
408
|
-
assert_np_equal(a4.numpy(), b4.numpy())
|
|
409
|
-
assert_np_equal(a5.numpy(), b5.numpy())
|
|
410
|
-
assert_np_equal(a6.numpy(), b6.numpy())
|
|
411
|
-
assert_np_equal(a7.numpy(), b7.numpy())
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
def test_indexedarray_slicing(test, device):
|
|
415
|
-
with wp.ScopedDevice(device):
|
|
416
|
-
data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
|
|
417
|
-
|
|
418
|
-
# test equivalence of slicing and indexing the same range
|
|
419
|
-
s = slice(0, 3)
|
|
420
|
-
I = wp.array(data=[0, 1, 2], dtype=int)
|
|
421
|
-
|
|
422
|
-
a0 = data[s, s, s]
|
|
423
|
-
test.assertEqual(type(a0), wp.array)
|
|
424
|
-
a1 = data[s, s, I]
|
|
425
|
-
test.assertEqual(type(a1), wp.indexedarray)
|
|
426
|
-
a2 = data[s, I, s]
|
|
427
|
-
test.assertEqual(type(a2), wp.indexedarray)
|
|
428
|
-
a3 = data[s, I, I]
|
|
429
|
-
test.assertEqual(type(a3), wp.indexedarray)
|
|
430
|
-
a4 = data[I, s, s]
|
|
431
|
-
test.assertEqual(type(a4), wp.indexedarray)
|
|
432
|
-
a5 = data[I, s, I]
|
|
433
|
-
test.assertEqual(type(a5), wp.indexedarray)
|
|
434
|
-
a6 = data[I, I, s]
|
|
435
|
-
test.assertEqual(type(a6), wp.indexedarray)
|
|
436
|
-
a7 = data[I, I, I]
|
|
437
|
-
test.assertEqual(type(a7), wp.indexedarray)
|
|
438
|
-
|
|
439
|
-
expected = a0.numpy()
|
|
440
|
-
|
|
441
|
-
assert_np_equal(a1.numpy(), expected)
|
|
442
|
-
assert_np_equal(a2.numpy(), expected)
|
|
443
|
-
assert_np_equal(a3.numpy(), expected)
|
|
444
|
-
assert_np_equal(a4.numpy(), expected)
|
|
445
|
-
assert_np_equal(a5.numpy(), expected)
|
|
446
|
-
assert_np_equal(a6.numpy(), expected)
|
|
447
|
-
assert_np_equal(a7.numpy(), expected)
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
# generic increment kernels that work with any array (regular or indexed)
|
|
451
|
-
@wp.kernel
|
|
452
|
-
def inc_1d(a: Any):
|
|
453
|
-
i = wp.tid()
|
|
454
|
-
a[i] = a[i] + 1
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
@wp.kernel
|
|
458
|
-
def inc_2d(a: Any):
|
|
459
|
-
i, j = wp.tid()
|
|
460
|
-
a[i, j] = a[i, j] + 1
|
|
461
|
-
|
|
462
|
-
|
|
463
|
-
@wp.kernel
|
|
464
|
-
def inc_3d(a: Any):
|
|
465
|
-
i, j, k = wp.tid()
|
|
466
|
-
a[i, j, k] = a[i, j, k] + 1
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
@wp.kernel
|
|
470
|
-
def inc_4d(a: Any):
|
|
471
|
-
i, j, k, l = wp.tid()
|
|
472
|
-
a[i, j, k, l] = a[i, j, k, l] + 1
|
|
473
|
-
|
|
474
|
-
|
|
475
|
-
# optional overloads to avoid module reloading
|
|
476
|
-
wp.overload(inc_1d, [wp.array1d(dtype=int)])
|
|
477
|
-
wp.overload(inc_2d, [wp.array2d(dtype=int)])
|
|
478
|
-
wp.overload(inc_3d, [wp.array3d(dtype=int)])
|
|
479
|
-
wp.overload(inc_4d, [wp.array4d(dtype=int)])
|
|
480
|
-
|
|
481
|
-
wp.overload(inc_1d, [wp.indexedarray1d(dtype=int)])
|
|
482
|
-
wp.overload(inc_2d, [wp.indexedarray2d(dtype=int)])
|
|
483
|
-
wp.overload(inc_3d, [wp.indexedarray3d(dtype=int)])
|
|
484
|
-
wp.overload(inc_4d, [wp.indexedarray4d(dtype=int)])
|
|
485
|
-
|
|
486
|
-
|
|
487
|
-
def test_indexedarray_generics(test, device):
|
|
488
|
-
with wp.ScopedDevice(device):
|
|
489
|
-
data1 = wp.zeros((5,), dtype=int)
|
|
490
|
-
data2 = wp.zeros((5, 5), dtype=int)
|
|
491
|
-
data3 = wp.zeros((5, 5, 5), dtype=int)
|
|
492
|
-
data4 = wp.zeros((5, 5, 5, 5), dtype=int)
|
|
493
|
-
|
|
494
|
-
indices = wp.array(data=[0, 4], dtype=int)
|
|
495
|
-
|
|
496
|
-
ia1 = wp.indexedarray(data1, [indices])
|
|
497
|
-
ia2 = wp.indexedarray(data2, [indices, indices])
|
|
498
|
-
ia3 = wp.indexedarray(data3, [indices, indices, indices])
|
|
499
|
-
ia4 = wp.indexedarray(data4, [indices, indices, indices, indices])
|
|
500
|
-
|
|
501
|
-
wp.launch(inc_1d, dim=data1.shape, inputs=[data1])
|
|
502
|
-
wp.launch(inc_2d, dim=data2.shape, inputs=[data2])
|
|
503
|
-
wp.launch(inc_3d, dim=data3.shape, inputs=[data3])
|
|
504
|
-
wp.launch(inc_4d, dim=data4.shape, inputs=[data4])
|
|
505
|
-
|
|
506
|
-
wp.launch(inc_1d, dim=ia1.shape, inputs=[ia1])
|
|
507
|
-
wp.launch(inc_2d, dim=ia2.shape, inputs=[ia2])
|
|
508
|
-
wp.launch(inc_3d, dim=ia3.shape, inputs=[ia3])
|
|
509
|
-
wp.launch(inc_4d, dim=ia4.shape, inputs=[ia4])
|
|
510
|
-
|
|
511
|
-
expected1 = np.ones(5, dtype=np.int32)
|
|
512
|
-
expected1[0] = 2
|
|
513
|
-
expected1[4] = 2
|
|
514
|
-
|
|
515
|
-
expected2 = np.ones((5, 5), dtype=np.int32)
|
|
516
|
-
expected2[0, 0] = 2
|
|
517
|
-
expected2[0, 4] = 2
|
|
518
|
-
expected2[4, 0] = 2
|
|
519
|
-
expected2[4, 4] = 2
|
|
520
|
-
|
|
521
|
-
expected3 = np.ones((5, 5, 5), dtype=np.int32)
|
|
522
|
-
expected3[0, 0, 0] = 2
|
|
523
|
-
expected3[0, 0, 4] = 2
|
|
524
|
-
expected3[0, 4, 0] = 2
|
|
525
|
-
expected3[0, 4, 4] = 2
|
|
526
|
-
expected3[4, 0, 0] = 2
|
|
527
|
-
expected3[4, 0, 4] = 2
|
|
528
|
-
expected3[4, 4, 0] = 2
|
|
529
|
-
expected3[4, 4, 4] = 2
|
|
530
|
-
|
|
531
|
-
expected4 = np.ones((5, 5, 5, 5), dtype=np.int32)
|
|
532
|
-
expected4[0, 0, 0, 0] = 2
|
|
533
|
-
expected4[0, 0, 0, 4] = 2
|
|
534
|
-
expected4[0, 0, 4, 0] = 2
|
|
535
|
-
expected4[0, 0, 4, 4] = 2
|
|
536
|
-
expected4[0, 4, 0, 0] = 2
|
|
537
|
-
expected4[0, 4, 0, 4] = 2
|
|
538
|
-
expected4[0, 4, 4, 0] = 2
|
|
539
|
-
expected4[0, 4, 4, 4] = 2
|
|
540
|
-
expected4[4, 0, 0, 0] = 2
|
|
541
|
-
expected4[4, 0, 0, 4] = 2
|
|
542
|
-
expected4[4, 0, 4, 0] = 2
|
|
543
|
-
expected4[4, 0, 4, 4] = 2
|
|
544
|
-
expected4[4, 4, 0, 0] = 2
|
|
545
|
-
expected4[4, 4, 0, 4] = 2
|
|
546
|
-
expected4[4, 4, 4, 0] = 2
|
|
547
|
-
expected4[4, 4, 4, 4] = 2
|
|
548
|
-
|
|
549
|
-
assert_np_equal(data1.numpy(), expected1)
|
|
550
|
-
assert_np_equal(data2.numpy(), expected2)
|
|
551
|
-
assert_np_equal(data3.numpy(), expected3)
|
|
552
|
-
assert_np_equal(data4.numpy(), expected4)
|
|
553
|
-
|
|
554
|
-
assert_np_equal(ia1.numpy(), np.full((2,), 2, dtype=np.int32))
|
|
555
|
-
assert_np_equal(ia2.numpy(), np.full((2, 2), 2, dtype=np.int32))
|
|
556
|
-
assert_np_equal(ia3.numpy(), np.full((2, 2, 2), 2, dtype=np.int32))
|
|
557
|
-
assert_np_equal(ia4.numpy(), np.full((2, 2, 2, 2), 2, dtype=np.int32))
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
def test_indexedarray_empty(test, device):
|
|
561
|
-
# Test whether common operations work with empty (zero-sized) indexed arrays
|
|
562
|
-
# without throwing exceptions.
|
|
563
|
-
|
|
564
|
-
def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
|
|
565
|
-
data_shape = (1,) * ndim
|
|
566
|
-
dtype_shape = ()
|
|
567
|
-
|
|
568
|
-
if wptype in wp.types.scalar_types:
|
|
569
|
-
# scalar, vector, or matrix
|
|
570
|
-
if ncols > 0:
|
|
571
|
-
if nrows > 0:
|
|
572
|
-
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
573
|
-
else:
|
|
574
|
-
wptype = wp.types.vector(ncols, wptype)
|
|
575
|
-
dtype_shape = wptype._shape_
|
|
576
|
-
fill_value = wptype(42)
|
|
577
|
-
else:
|
|
578
|
-
# struct
|
|
579
|
-
fill_value = wptype()
|
|
580
|
-
|
|
581
|
-
# create a data array
|
|
582
|
-
data = wp.empty(data_shape, dtype=wptype, device=device, requires_grad=True)
|
|
583
|
-
|
|
584
|
-
# create a zero-sized array of indices
|
|
585
|
-
indices = wp.empty(0, dtype=int, device=device)
|
|
586
|
-
|
|
587
|
-
a = data[indices]
|
|
588
|
-
|
|
589
|
-
# we expect dim to be zero for the empty indexed array, unchanged otherwise
|
|
590
|
-
expected_shape = (0, *data_shape[1:])
|
|
591
|
-
|
|
592
|
-
test.assertEqual(a.size, 0)
|
|
593
|
-
test.assertEqual(a.shape, expected_shape)
|
|
594
|
-
|
|
595
|
-
# all of these methods should succeed with zero-sized arrays
|
|
596
|
-
a.zero_()
|
|
597
|
-
a.fill_(fill_value)
|
|
598
|
-
b = a.contiguous()
|
|
599
|
-
|
|
600
|
-
b = wp.empty_like(a)
|
|
601
|
-
b = wp.zeros_like(a)
|
|
602
|
-
b = wp.full_like(a, fill_value)
|
|
603
|
-
b = wp.clone(a)
|
|
604
|
-
|
|
605
|
-
wp.copy(a, b)
|
|
606
|
-
a.assign(b)
|
|
607
|
-
|
|
608
|
-
na = a.numpy()
|
|
609
|
-
test.assertEqual(na.size, 0)
|
|
610
|
-
test.assertEqual(na.shape, (*expected_shape, *dtype_shape))
|
|
611
|
-
test.assertEqual(na.dtype, nptype)
|
|
612
|
-
|
|
613
|
-
test.assertEqual(a.list(), [])
|
|
614
|
-
|
|
615
|
-
for ndim in range(1, 5):
|
|
616
|
-
# test with scalars, vectors, and matrices
|
|
617
|
-
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
618
|
-
# scalars
|
|
619
|
-
test_empty_ops(ndim, 0, 0, wptype, nptype)
|
|
620
|
-
|
|
621
|
-
for ncols in [2, 3, 4, 5]:
|
|
622
|
-
# vectors
|
|
623
|
-
test_empty_ops(ndim, 0, ncols, wptype, nptype)
|
|
624
|
-
# square matrices
|
|
625
|
-
test_empty_ops(ndim, ncols, ncols, wptype, nptype)
|
|
626
|
-
|
|
627
|
-
# non-square matrices
|
|
628
|
-
test_empty_ops(ndim, 2, 3, wptype, nptype)
|
|
629
|
-
test_empty_ops(ndim, 3, 2, wptype, nptype)
|
|
630
|
-
test_empty_ops(ndim, 3, 4, wptype, nptype)
|
|
631
|
-
test_empty_ops(ndim, 4, 3, wptype, nptype)
|
|
632
|
-
|
|
633
|
-
# test with structs
|
|
634
|
-
test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
|
|
635
|
-
|
|
636
|
-
|
|
637
|
-
def test_indexedarray_fill_scalar(test, device):
|
|
638
|
-
dim_x = 4
|
|
639
|
-
|
|
640
|
-
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
641
|
-
data1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
642
|
-
data2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
643
|
-
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
644
|
-
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
645
|
-
|
|
646
|
-
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
647
|
-
|
|
648
|
-
a1 = data1[indices]
|
|
649
|
-
a2 = data2[indices]
|
|
650
|
-
a3 = data3[indices]
|
|
651
|
-
a4 = data4[indices]
|
|
652
|
-
|
|
653
|
-
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
654
|
-
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
655
|
-
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
656
|
-
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
657
|
-
|
|
658
|
-
# fill with int value
|
|
659
|
-
fill_value = 42
|
|
660
|
-
|
|
661
|
-
a1.fill_(fill_value)
|
|
662
|
-
a2.fill_(fill_value)
|
|
663
|
-
a3.fill_(fill_value)
|
|
664
|
-
a4.fill_(fill_value)
|
|
665
|
-
|
|
666
|
-
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
667
|
-
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
668
|
-
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
669
|
-
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
670
|
-
|
|
671
|
-
a1.zero_()
|
|
672
|
-
a2.zero_()
|
|
673
|
-
a3.zero_()
|
|
674
|
-
a4.zero_()
|
|
675
|
-
|
|
676
|
-
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
677
|
-
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
678
|
-
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
679
|
-
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
680
|
-
|
|
681
|
-
if wptype in wp.types.float_types:
|
|
682
|
-
# fill with float value
|
|
683
|
-
fill_value = 13.37
|
|
684
|
-
|
|
685
|
-
a1.fill_(fill_value)
|
|
686
|
-
a2.fill_(fill_value)
|
|
687
|
-
a3.fill_(fill_value)
|
|
688
|
-
a4.fill_(fill_value)
|
|
689
|
-
|
|
690
|
-
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
691
|
-
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
692
|
-
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
693
|
-
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
694
|
-
|
|
695
|
-
# fill with Warp scalar value
|
|
696
|
-
fill_value = wptype(17)
|
|
697
|
-
|
|
698
|
-
a1.fill_(fill_value)
|
|
699
|
-
a2.fill_(fill_value)
|
|
700
|
-
a3.fill_(fill_value)
|
|
701
|
-
a4.fill_(fill_value)
|
|
702
|
-
|
|
703
|
-
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
|
|
704
|
-
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
|
|
705
|
-
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
|
|
706
|
-
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
|
|
707
|
-
|
|
708
|
-
|
|
709
|
-
def test_indexedarray_fill_vector(test, device):
|
|
710
|
-
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
711
|
-
|
|
712
|
-
dim_x = 4
|
|
713
|
-
|
|
714
|
-
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
715
|
-
# vector types
|
|
716
|
-
vector_types = [
|
|
717
|
-
wp.types.vector(2, wptype),
|
|
718
|
-
wp.types.vector(3, wptype),
|
|
719
|
-
wp.types.vector(4, wptype),
|
|
720
|
-
wp.types.vector(5, wptype),
|
|
721
|
-
]
|
|
722
|
-
|
|
723
|
-
for vec_type in vector_types:
|
|
724
|
-
vec_len = vec_type._length_
|
|
725
|
-
|
|
726
|
-
data1 = wp.zeros(dim_x, dtype=vec_type, device=device)
|
|
727
|
-
data2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
|
|
728
|
-
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
729
|
-
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
730
|
-
|
|
731
|
-
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
732
|
-
|
|
733
|
-
a1 = data1[indices]
|
|
734
|
-
a2 = data2[indices]
|
|
735
|
-
a3 = data3[indices]
|
|
736
|
-
a4 = data4[indices]
|
|
737
|
-
|
|
738
|
-
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
739
|
-
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
740
|
-
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
741
|
-
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
742
|
-
|
|
743
|
-
# fill with int scalar
|
|
744
|
-
fill_value = 42
|
|
745
|
-
|
|
746
|
-
a1.fill_(fill_value)
|
|
747
|
-
a2.fill_(fill_value)
|
|
748
|
-
a3.fill_(fill_value)
|
|
749
|
-
a4.fill_(fill_value)
|
|
750
|
-
|
|
751
|
-
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
752
|
-
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
753
|
-
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
754
|
-
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
755
|
-
|
|
756
|
-
# test zeroing
|
|
757
|
-
a1.zero_()
|
|
758
|
-
a2.zero_()
|
|
759
|
-
a3.zero_()
|
|
760
|
-
a4.zero_()
|
|
761
|
-
|
|
762
|
-
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
763
|
-
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
764
|
-
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
765
|
-
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
766
|
-
|
|
767
|
-
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
768
|
-
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
769
|
-
fill_arr = np.array(fill_list, dtype=nptype)
|
|
770
|
-
fill_vec = vec_type(fill_list)
|
|
771
|
-
|
|
772
|
-
expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
|
|
773
|
-
expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
|
|
774
|
-
expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
|
|
775
|
-
expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
|
|
776
|
-
|
|
777
|
-
# fill with list of vector length
|
|
778
|
-
a1.fill_(fill_list)
|
|
779
|
-
a2.fill_(fill_list)
|
|
780
|
-
a3.fill_(fill_list)
|
|
781
|
-
a4.fill_(fill_list)
|
|
782
|
-
|
|
783
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
784
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
785
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
786
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
787
|
-
|
|
788
|
-
# clear
|
|
789
|
-
a1.zero_()
|
|
790
|
-
a2.zero_()
|
|
791
|
-
a3.zero_()
|
|
792
|
-
a4.zero_()
|
|
793
|
-
|
|
794
|
-
# fill with numpy array of vector length
|
|
795
|
-
a1.fill_(fill_arr)
|
|
796
|
-
a2.fill_(fill_arr)
|
|
797
|
-
a3.fill_(fill_arr)
|
|
798
|
-
a4.fill_(fill_arr)
|
|
799
|
-
|
|
800
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
801
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
802
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
803
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
804
|
-
|
|
805
|
-
# clear
|
|
806
|
-
a1.zero_()
|
|
807
|
-
a2.zero_()
|
|
808
|
-
a3.zero_()
|
|
809
|
-
a4.zero_()
|
|
810
|
-
|
|
811
|
-
# fill with vec instance
|
|
812
|
-
a1.fill_(fill_vec)
|
|
813
|
-
a2.fill_(fill_vec)
|
|
814
|
-
a3.fill_(fill_vec)
|
|
815
|
-
a4.fill_(fill_vec)
|
|
816
|
-
|
|
817
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
818
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
819
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
820
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
821
|
-
|
|
822
|
-
if wptype in wp.types.float_types:
|
|
823
|
-
# fill with float scalar
|
|
824
|
-
fill_value = 13.37
|
|
825
|
-
|
|
826
|
-
a1.fill_(fill_value)
|
|
827
|
-
a2.fill_(fill_value)
|
|
828
|
-
a3.fill_(fill_value)
|
|
829
|
-
a4.fill_(fill_value)
|
|
830
|
-
|
|
831
|
-
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
832
|
-
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
833
|
-
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
834
|
-
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
835
|
-
|
|
836
|
-
# fill with float list of vector length
|
|
837
|
-
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
838
|
-
|
|
839
|
-
a1.fill_(fill_list)
|
|
840
|
-
a2.fill_(fill_list)
|
|
841
|
-
a3.fill_(fill_list)
|
|
842
|
-
a4.fill_(fill_list)
|
|
843
|
-
|
|
844
|
-
expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
|
|
845
|
-
expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
|
|
846
|
-
expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
|
|
847
|
-
expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
|
|
848
|
-
|
|
849
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
850
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
851
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
852
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
853
|
-
|
|
854
|
-
|
|
855
|
-
def test_indexedarray_fill_matrix(test, device):
|
|
856
|
-
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
857
|
-
|
|
858
|
-
dim_x = 4
|
|
859
|
-
|
|
860
|
-
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
861
|
-
# matrix types
|
|
862
|
-
matrix_types = [
|
|
863
|
-
# square matrices
|
|
864
|
-
wp.types.matrix((2, 2), wptype),
|
|
865
|
-
wp.types.matrix((3, 3), wptype),
|
|
866
|
-
wp.types.matrix((4, 4), wptype),
|
|
867
|
-
wp.types.matrix((5, 5), wptype),
|
|
868
|
-
# non-square matrices
|
|
869
|
-
wp.types.matrix((2, 3), wptype),
|
|
870
|
-
wp.types.matrix((3, 2), wptype),
|
|
871
|
-
wp.types.matrix((3, 4), wptype),
|
|
872
|
-
wp.types.matrix((4, 3), wptype),
|
|
873
|
-
]
|
|
874
|
-
|
|
875
|
-
for mat_type in matrix_types:
|
|
876
|
-
mat_len = mat_type._length_
|
|
877
|
-
mat_shape = mat_type._shape_
|
|
878
|
-
|
|
879
|
-
data1 = wp.zeros(dim_x, dtype=mat_type, device=device)
|
|
880
|
-
data2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
|
|
881
|
-
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
882
|
-
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
883
|
-
|
|
884
|
-
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
885
|
-
|
|
886
|
-
a1 = data1[indices]
|
|
887
|
-
a2 = data2[indices]
|
|
888
|
-
a3 = data3[indices]
|
|
889
|
-
a4 = data4[indices]
|
|
890
|
-
|
|
891
|
-
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
892
|
-
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
893
|
-
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
894
|
-
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
895
|
-
|
|
896
|
-
# fill with scalar
|
|
897
|
-
fill_value = 42
|
|
898
|
-
|
|
899
|
-
a1.fill_(fill_value)
|
|
900
|
-
a2.fill_(fill_value)
|
|
901
|
-
a3.fill_(fill_value)
|
|
902
|
-
a4.fill_(fill_value)
|
|
903
|
-
|
|
904
|
-
assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
|
|
905
|
-
assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
|
|
906
|
-
assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
|
|
907
|
-
assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
|
|
908
|
-
|
|
909
|
-
# test zeroing
|
|
910
|
-
a1.zero_()
|
|
911
|
-
a2.zero_()
|
|
912
|
-
a3.zero_()
|
|
913
|
-
a4.zero_()
|
|
914
|
-
|
|
915
|
-
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
916
|
-
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
917
|
-
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
918
|
-
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
919
|
-
|
|
920
|
-
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
921
|
-
if wptype != wp.bool:
|
|
922
|
-
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
923
|
-
else:
|
|
924
|
-
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
925
|
-
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
926
|
-
fill_list1 = list(fill_arr1)
|
|
927
|
-
fill_list2 = [list(row) for row in fill_arr2]
|
|
928
|
-
fill_mat = mat_type(fill_arr1)
|
|
929
|
-
|
|
930
|
-
expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
|
|
931
|
-
expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
|
|
932
|
-
expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
|
|
933
|
-
expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
|
|
934
|
-
|
|
935
|
-
# fill with 1d numpy array
|
|
936
|
-
a1.fill_(fill_arr1)
|
|
937
|
-
a2.fill_(fill_arr1)
|
|
938
|
-
a3.fill_(fill_arr1)
|
|
939
|
-
a4.fill_(fill_arr1)
|
|
940
|
-
|
|
941
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
942
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
943
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
944
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
945
|
-
|
|
946
|
-
# clear
|
|
947
|
-
a1.zero_()
|
|
948
|
-
a2.zero_()
|
|
949
|
-
a3.zero_()
|
|
950
|
-
a4.zero_()
|
|
951
|
-
|
|
952
|
-
# fill with 2d numpy array
|
|
953
|
-
a1.fill_(fill_arr2)
|
|
954
|
-
a2.fill_(fill_arr2)
|
|
955
|
-
a3.fill_(fill_arr2)
|
|
956
|
-
a4.fill_(fill_arr2)
|
|
957
|
-
|
|
958
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
959
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
960
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
961
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
962
|
-
|
|
963
|
-
# clear
|
|
964
|
-
a1.zero_()
|
|
965
|
-
a2.zero_()
|
|
966
|
-
a3.zero_()
|
|
967
|
-
a4.zero_()
|
|
968
|
-
|
|
969
|
-
# fill with flat list
|
|
970
|
-
a1.fill_(fill_list1)
|
|
971
|
-
a2.fill_(fill_list1)
|
|
972
|
-
a3.fill_(fill_list1)
|
|
973
|
-
a4.fill_(fill_list1)
|
|
974
|
-
|
|
975
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
976
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
977
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
978
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
979
|
-
|
|
980
|
-
# clear
|
|
981
|
-
a1.zero_()
|
|
982
|
-
a2.zero_()
|
|
983
|
-
a3.zero_()
|
|
984
|
-
a4.zero_()
|
|
985
|
-
|
|
986
|
-
# fill with nested list
|
|
987
|
-
a1.fill_(fill_list2)
|
|
988
|
-
a2.fill_(fill_list2)
|
|
989
|
-
a3.fill_(fill_list2)
|
|
990
|
-
a4.fill_(fill_list2)
|
|
991
|
-
|
|
992
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
993
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
994
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
995
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
996
|
-
|
|
997
|
-
# clear
|
|
998
|
-
a1.zero_()
|
|
999
|
-
a2.zero_()
|
|
1000
|
-
a3.zero_()
|
|
1001
|
-
a4.zero_()
|
|
1002
|
-
|
|
1003
|
-
# fill with mat instance
|
|
1004
|
-
a1.fill_(fill_mat)
|
|
1005
|
-
a2.fill_(fill_mat)
|
|
1006
|
-
a3.fill_(fill_mat)
|
|
1007
|
-
a4.fill_(fill_mat)
|
|
1008
|
-
|
|
1009
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
1010
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
1011
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
1012
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
1013
|
-
|
|
1014
|
-
|
|
1015
|
-
def test_indexedarray_fill_struct(test, device):
|
|
1016
|
-
dim_x = 8
|
|
1017
|
-
|
|
1018
|
-
nptype = FillStruct.numpy_dtype()
|
|
1019
|
-
|
|
1020
|
-
data1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
|
|
1021
|
-
data2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1022
|
-
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1023
|
-
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1024
|
-
|
|
1025
|
-
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
1026
|
-
|
|
1027
|
-
a1 = data1[indices]
|
|
1028
|
-
a2 = data2[indices]
|
|
1029
|
-
a3 = data3[indices]
|
|
1030
|
-
a4 = data4[indices]
|
|
1031
|
-
|
|
1032
|
-
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1033
|
-
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1034
|
-
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1035
|
-
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1036
|
-
|
|
1037
|
-
s = FillStruct()
|
|
1038
|
-
|
|
1039
|
-
# fill with default struct value (should be all zeros)
|
|
1040
|
-
a1.fill_(s)
|
|
1041
|
-
a2.fill_(s)
|
|
1042
|
-
a3.fill_(s)
|
|
1043
|
-
a4.fill_(s)
|
|
1044
|
-
|
|
1045
|
-
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1046
|
-
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1047
|
-
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1048
|
-
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1049
|
-
|
|
1050
|
-
# scalars
|
|
1051
|
-
s.i1 = -17
|
|
1052
|
-
s.i2 = 42
|
|
1053
|
-
s.i4 = 99
|
|
1054
|
-
s.i8 = 101
|
|
1055
|
-
s.f2 = -1.25
|
|
1056
|
-
s.f4 = 13.37
|
|
1057
|
-
s.f8 = 0.125
|
|
1058
|
-
# vectors
|
|
1059
|
-
s.v2 = [21, 22]
|
|
1060
|
-
s.v3 = [31, 32, 33]
|
|
1061
|
-
s.v4 = [41, 42, 43, 44]
|
|
1062
|
-
s.v5 = [51, 52, 53, 54, 55]
|
|
1063
|
-
# matrices
|
|
1064
|
-
s.m2 = [[61, 62]] * 2
|
|
1065
|
-
s.m3 = [[71, 72, 73]] * 3
|
|
1066
|
-
s.m4 = [[81, 82, 83, 84]] * 4
|
|
1067
|
-
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
1068
|
-
# arrays
|
|
1069
|
-
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
1070
|
-
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
1071
|
-
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
1072
|
-
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
1073
|
-
|
|
1074
|
-
# fill with custom struct value
|
|
1075
|
-
a1.fill_(s)
|
|
1076
|
-
a2.fill_(s)
|
|
1077
|
-
a3.fill_(s)
|
|
1078
|
-
a4.fill_(s)
|
|
1079
|
-
|
|
1080
|
-
ns = s.numpy_value()
|
|
1081
|
-
|
|
1082
|
-
expected1 = np.empty(a1.shape, dtype=nptype)
|
|
1083
|
-
expected2 = np.empty(a2.shape, dtype=nptype)
|
|
1084
|
-
expected3 = np.empty(a3.shape, dtype=nptype)
|
|
1085
|
-
expected4 = np.empty(a4.shape, dtype=nptype)
|
|
1086
|
-
|
|
1087
|
-
expected1.fill(ns)
|
|
1088
|
-
expected2.fill(ns)
|
|
1089
|
-
expected3.fill(ns)
|
|
1090
|
-
expected4.fill(ns)
|
|
1091
|
-
|
|
1092
|
-
assert_np_equal(a1.numpy(), expected1)
|
|
1093
|
-
assert_np_equal(a2.numpy(), expected2)
|
|
1094
|
-
assert_np_equal(a3.numpy(), expected3)
|
|
1095
|
-
assert_np_equal(a4.numpy(), expected4)
|
|
1096
|
-
|
|
1097
|
-
# test clearing
|
|
1098
|
-
a1.zero_()
|
|
1099
|
-
a2.zero_()
|
|
1100
|
-
a3.zero_()
|
|
1101
|
-
a4.zero_()
|
|
1102
|
-
|
|
1103
|
-
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1104
|
-
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1105
|
-
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1106
|
-
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
devices = get_test_devices()
|
|
1110
|
-
|
|
1111
|
-
|
|
1112
|
-
class TestIndexedArray(unittest.TestCase):
|
|
1113
|
-
pass
|
|
1114
|
-
|
|
1115
|
-
|
|
1116
|
-
add_function_test(TestIndexedArray, "test_indexedarray_1d", test_indexedarray_1d, devices=devices)
|
|
1117
|
-
add_function_test(TestIndexedArray, "test_indexedarray_2d", test_indexedarray_2d, devices=devices)
|
|
1118
|
-
add_function_test(TestIndexedArray, "test_indexedarray_3d", test_indexedarray_3d, devices=devices)
|
|
1119
|
-
add_function_test(TestIndexedArray, "test_indexedarray_4d", test_indexedarray_4d, devices=devices)
|
|
1120
|
-
add_function_test(TestIndexedArray, "test_indexedarray_mixed", test_indexedarray_mixed, devices=devices)
|
|
1121
|
-
add_function_test(TestIndexedArray, "test_indexedarray_shape", test_indexedarray_shape, devices=devices)
|
|
1122
|
-
add_function_test(TestIndexedArray, "test_indexedarray_getitem", test_indexedarray_getitem, devices=devices)
|
|
1123
|
-
add_function_test(TestIndexedArray, "test_indexedarray_slicing", test_indexedarray_slicing, devices=devices)
|
|
1124
|
-
add_function_test(TestIndexedArray, "test_indexedarray_generics", test_indexedarray_generics, devices=devices)
|
|
1125
|
-
add_function_test(TestIndexedArray, "test_indexedarray_empty", test_indexedarray_empty, devices=devices)
|
|
1126
|
-
add_function_test(TestIndexedArray, "test_indexedarray_fill_scalar", test_indexedarray_fill_scalar, devices=devices)
|
|
1127
|
-
add_function_test(TestIndexedArray, "test_indexedarray_fill_vector", test_indexedarray_fill_vector, devices=devices)
|
|
1128
|
-
add_function_test(TestIndexedArray, "test_indexedarray_fill_matrix", test_indexedarray_fill_matrix, devices=devices)
|
|
1129
|
-
add_function_test(TestIndexedArray, "test_indexedarray_fill_struct", test_indexedarray_fill_struct, devices=devices)
|
|
1130
|
-
|
|
1131
|
-
|
|
1132
|
-
if __name__ == "__main__":
|
|
1133
|
-
wp.build.clear_kernel_cache()
|
|
1134
|
-
unittest.main(verbosity=2)
|
|
1
|
+
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import unittest
|
|
9
|
+
from typing import Any
|
|
10
|
+
|
|
11
|
+
import numpy as np
|
|
12
|
+
|
|
13
|
+
import warp as wp
|
|
14
|
+
from warp.tests.test_array import FillStruct
|
|
15
|
+
from warp.tests.unittest_utils import *
|
|
16
|
+
|
|
17
|
+
wp.init()
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@wp.kernel
|
|
21
|
+
def kernel_1d(a: wp.indexedarray(dtype=float), expected: wp.array(dtype=float)):
|
|
22
|
+
i = wp.tid()
|
|
23
|
+
|
|
24
|
+
wp.expect_eq(a[i], expected[i])
|
|
25
|
+
|
|
26
|
+
a[i] = 2.0 * a[i]
|
|
27
|
+
|
|
28
|
+
wp.atomic_add(a, i, 1.0)
|
|
29
|
+
|
|
30
|
+
wp.expect_eq(a[i], 2.0 * expected[i] + 1.0)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def test_indexedarray_1d(test, device):
|
|
34
|
+
values = np.arange(10, dtype=np.float32)
|
|
35
|
+
arr = wp.array(data=values, device=device)
|
|
36
|
+
|
|
37
|
+
indices = wp.array([1, 3, 5, 7, 9], dtype=int, device=device)
|
|
38
|
+
|
|
39
|
+
iarr = wp.indexedarray1d(arr, [indices])
|
|
40
|
+
|
|
41
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
42
|
+
test.assertEqual(iarr.ndim, 1)
|
|
43
|
+
test.assertEqual(iarr.shape, (5,))
|
|
44
|
+
test.assertEqual(iarr.size, 5)
|
|
45
|
+
|
|
46
|
+
expected_arr = wp.array(data=[1, 3, 5, 7, 9], dtype=float, device=device)
|
|
47
|
+
|
|
48
|
+
wp.launch(kernel_1d, dim=iarr.size, inputs=[iarr, expected_arr], device=device)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@wp.kernel
|
|
52
|
+
def kernel_2d(a: wp.indexedarray2d(dtype=float), expected: wp.array2d(dtype=float)):
|
|
53
|
+
i, j = wp.tid()
|
|
54
|
+
|
|
55
|
+
# check expected values
|
|
56
|
+
wp.expect_eq(a[i, j], expected[i, j])
|
|
57
|
+
|
|
58
|
+
# test wp.view()
|
|
59
|
+
wp.expect_eq(a[i][j], a[i, j])
|
|
60
|
+
|
|
61
|
+
a[i, j] = 2.0 * a[i, j]
|
|
62
|
+
|
|
63
|
+
wp.atomic_add(a, i, j, 1.0)
|
|
64
|
+
|
|
65
|
+
wp.expect_eq(a[i, j], 2.0 * expected[i, j] + 1.0)
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def test_indexedarray_2d(test, device):
|
|
69
|
+
values = np.arange(100, dtype=np.float32).reshape((10, 10))
|
|
70
|
+
arr = wp.array(data=values, device=device)
|
|
71
|
+
|
|
72
|
+
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
73
|
+
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
74
|
+
|
|
75
|
+
iarr = wp.indexedarray2d(arr, [indices0, indices1])
|
|
76
|
+
|
|
77
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
78
|
+
test.assertEqual(iarr.ndim, 2)
|
|
79
|
+
test.assertEqual(iarr.shape, (2, 3))
|
|
80
|
+
test.assertEqual(iarr.size, 6)
|
|
81
|
+
|
|
82
|
+
expected_values = [[12, 14, 18], [32, 34, 38]]
|
|
83
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
84
|
+
|
|
85
|
+
wp.launch(kernel_2d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
@wp.kernel
|
|
89
|
+
def kernel_3d(a: wp.indexedarray3d(dtype=float), expected: wp.array3d(dtype=float)):
|
|
90
|
+
i, j, k = wp.tid()
|
|
91
|
+
|
|
92
|
+
# check expected values
|
|
93
|
+
wp.expect_eq(a[i, j, k], expected[i, j, k])
|
|
94
|
+
|
|
95
|
+
# test wp.view()
|
|
96
|
+
wp.expect_eq(a[i][j][k], a[i, j, k])
|
|
97
|
+
wp.expect_eq(a[i, j][k], a[i, j, k])
|
|
98
|
+
wp.expect_eq(a[i][j, k], a[i, j, k])
|
|
99
|
+
|
|
100
|
+
a[i, j, k] = 2.0 * a[i, j, k]
|
|
101
|
+
|
|
102
|
+
wp.atomic_add(a, i, j, k, 1.0)
|
|
103
|
+
|
|
104
|
+
wp.expect_eq(a[i, j, k], 2.0 * expected[i, j, k] + 1.0)
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def test_indexedarray_3d(test, device):
|
|
108
|
+
values = np.arange(1000, dtype=np.float32).reshape((10, 10, 10))
|
|
109
|
+
arr = wp.array(data=values, device=device)
|
|
110
|
+
|
|
111
|
+
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
112
|
+
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
113
|
+
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
114
|
+
|
|
115
|
+
iarr = wp.indexedarray3d(arr, [indices0, indices1, indices2])
|
|
116
|
+
|
|
117
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
118
|
+
test.assertEqual(iarr.ndim, 3)
|
|
119
|
+
test.assertEqual(iarr.shape, (2, 3, 2))
|
|
120
|
+
test.assertEqual(iarr.size, 12)
|
|
121
|
+
|
|
122
|
+
expected_values = [
|
|
123
|
+
[[120, 125], [140, 145], [180, 185]],
|
|
124
|
+
[[320, 325], [340, 345], [380, 385]],
|
|
125
|
+
]
|
|
126
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
127
|
+
|
|
128
|
+
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
@wp.kernel
|
|
132
|
+
def kernel_4d(a: wp.indexedarray4d(dtype=float), expected: wp.array4d(dtype=float)):
|
|
133
|
+
i, j, k, l = wp.tid()
|
|
134
|
+
|
|
135
|
+
# check expected values
|
|
136
|
+
wp.expect_eq(a[i, j, k, l], expected[i, j, k, l])
|
|
137
|
+
|
|
138
|
+
# test wp.view()
|
|
139
|
+
wp.expect_eq(a[i][j][k][l], a[i, j, k, l])
|
|
140
|
+
wp.expect_eq(a[i][j, k, l], a[i, j, k, l])
|
|
141
|
+
wp.expect_eq(a[i, j][k, l], a[i, j, k, l])
|
|
142
|
+
wp.expect_eq(a[i, j, k][l], a[i, j, k, l])
|
|
143
|
+
|
|
144
|
+
a[i, j, k, l] = 2.0 * a[i, j, k, l]
|
|
145
|
+
|
|
146
|
+
wp.atomic_add(a, i, j, k, l, 1.0)
|
|
147
|
+
|
|
148
|
+
wp.expect_eq(a[i, j, k, l], 2.0 * expected[i, j, k, l] + 1.0)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def test_indexedarray_4d(test, device):
|
|
152
|
+
values = np.arange(10000, dtype=np.float32).reshape((10, 10, 10, 10))
|
|
153
|
+
arr = wp.array(data=values, device=device)
|
|
154
|
+
|
|
155
|
+
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
156
|
+
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
157
|
+
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
158
|
+
indices3 = wp.array([6, 7, 9], dtype=int, device=device)
|
|
159
|
+
|
|
160
|
+
iarr = wp.indexedarray4d(arr, [indices0, indices1, indices2, indices3])
|
|
161
|
+
|
|
162
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
163
|
+
test.assertEqual(iarr.ndim, 4)
|
|
164
|
+
test.assertEqual(iarr.shape, (2, 3, 2, 3))
|
|
165
|
+
test.assertEqual(iarr.size, 36)
|
|
166
|
+
|
|
167
|
+
expected_values = [
|
|
168
|
+
[
|
|
169
|
+
[[1206, 1207, 1209], [1256, 1257, 1259]],
|
|
170
|
+
[[1406, 1407, 1409], [1456, 1457, 1459]],
|
|
171
|
+
[[1806, 1807, 1809], [1856, 1857, 1859]],
|
|
172
|
+
],
|
|
173
|
+
[
|
|
174
|
+
[[3206, 3207, 3209], [3256, 3257, 3259]],
|
|
175
|
+
[[3406, 3407, 3409], [3456, 3457, 3459]],
|
|
176
|
+
[[3806, 3807, 3809], [3856, 3857, 3859]],
|
|
177
|
+
],
|
|
178
|
+
]
|
|
179
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
180
|
+
|
|
181
|
+
wp.launch(kernel_4d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
def test_indexedarray_mixed(test, device):
|
|
185
|
+
# [[[ 0, 1, 2, 3],
|
|
186
|
+
# [ 4, 5, 6, 7],
|
|
187
|
+
# [ 8, 9, 10, 11],
|
|
188
|
+
# [12, 13, 14, 15]],
|
|
189
|
+
# [[16, 17, 18, 19],
|
|
190
|
+
# [20, 21, 22, 23],
|
|
191
|
+
# [24, 25, 26, 27],
|
|
192
|
+
# [28, 29, 30, 31]],
|
|
193
|
+
# [[32, 33, 34, 35],
|
|
194
|
+
# [36, 37, 38, 39],
|
|
195
|
+
# [40, 41, 42, 43],
|
|
196
|
+
# [44, 45, 46, 47],
|
|
197
|
+
# [[48, 49, 50, 51],
|
|
198
|
+
# [52, 53, 54, 55],
|
|
199
|
+
# [56, 57, 58, 59],
|
|
200
|
+
# [60, 61, 62, 63]]]]
|
|
201
|
+
values = np.arange(64, dtype=np.float32).reshape((4, 4, 4))
|
|
202
|
+
|
|
203
|
+
indices = wp.array([0, 3], dtype=int, device=device)
|
|
204
|
+
|
|
205
|
+
# -----
|
|
206
|
+
|
|
207
|
+
arr = wp.array(data=values, device=device)
|
|
208
|
+
iarr = wp.indexedarray(arr, [indices, None, None])
|
|
209
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
210
|
+
test.assertEqual(iarr.ndim, 3)
|
|
211
|
+
test.assertEqual(iarr.shape, (2, 4, 4))
|
|
212
|
+
test.assertEqual(iarr.size, 32)
|
|
213
|
+
|
|
214
|
+
expected_values = [
|
|
215
|
+
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]],
|
|
216
|
+
[[48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61, 62, 63]],
|
|
217
|
+
]
|
|
218
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
219
|
+
|
|
220
|
+
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
221
|
+
|
|
222
|
+
# -----
|
|
223
|
+
|
|
224
|
+
arr = wp.array(data=values, device=device)
|
|
225
|
+
iarr = wp.indexedarray(arr, [indices, indices, None])
|
|
226
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
227
|
+
test.assertEqual(iarr.ndim, 3)
|
|
228
|
+
test.assertEqual(iarr.shape, (2, 2, 4))
|
|
229
|
+
test.assertEqual(iarr.size, 16)
|
|
230
|
+
|
|
231
|
+
expected_values = [[[0, 1, 2, 3], [12, 13, 14, 15]], [[48, 49, 50, 51], [60, 61, 62, 63]]]
|
|
232
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
233
|
+
|
|
234
|
+
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
235
|
+
|
|
236
|
+
# -----
|
|
237
|
+
|
|
238
|
+
arr = wp.array(data=values, device=device)
|
|
239
|
+
iarr = wp.indexedarray(arr, [indices, None, indices])
|
|
240
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
241
|
+
test.assertEqual(iarr.ndim, 3)
|
|
242
|
+
test.assertEqual(iarr.shape, (2, 4, 2))
|
|
243
|
+
test.assertEqual(iarr.size, 16)
|
|
244
|
+
|
|
245
|
+
expected_values = [[[0, 3], [4, 7], [8, 11], [12, 15]], [[48, 51], [52, 55], [56, 59], [60, 63]]]
|
|
246
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
247
|
+
|
|
248
|
+
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
249
|
+
|
|
250
|
+
# -----
|
|
251
|
+
|
|
252
|
+
arr = wp.array(data=values, device=device)
|
|
253
|
+
iarr = wp.indexedarray(arr, [None, indices, indices])
|
|
254
|
+
test.assertEqual(iarr.dtype, arr.dtype)
|
|
255
|
+
test.assertEqual(iarr.ndim, 3)
|
|
256
|
+
test.assertEqual(iarr.shape, (4, 2, 2))
|
|
257
|
+
test.assertEqual(iarr.size, 16)
|
|
258
|
+
|
|
259
|
+
expected_values = [[[0, 3], [12, 15]], [[16, 19], [28, 31]], [[32, 35], [44, 47]], [[48, 51], [60, 63]]]
|
|
260
|
+
expected_arr = wp.array(data=expected_values, dtype=float, device=device)
|
|
261
|
+
|
|
262
|
+
wp.launch(kernel_3d, dim=iarr.shape, inputs=[iarr, expected_arr], device=device)
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
vec2i = wp.types.vector(length=2, dtype=wp.int32)
|
|
266
|
+
vec3i = wp.types.vector(length=3, dtype=wp.int32)
|
|
267
|
+
vec4i = wp.types.vector(length=4, dtype=wp.int32)
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
@wp.kernel
|
|
271
|
+
def shape_kernel_1d(arr: wp.indexedarray1d(dtype=float), expected: int):
|
|
272
|
+
wp.expect_eq(arr.shape[0], expected)
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
@wp.kernel
|
|
276
|
+
def shape_kernel_2d(arr: wp.indexedarray2d(dtype=float), expected: vec2i):
|
|
277
|
+
wp.expect_eq(arr.shape[0], expected[0])
|
|
278
|
+
wp.expect_eq(arr.shape[1], expected[1])
|
|
279
|
+
|
|
280
|
+
# 1d slice
|
|
281
|
+
view = arr[0]
|
|
282
|
+
wp.expect_eq(view.shape[0], expected[1])
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
@wp.kernel
|
|
286
|
+
def shape_kernel_3d(arr: wp.indexedarray3d(dtype=float), expected: vec3i):
|
|
287
|
+
wp.expect_eq(arr.shape[0], expected[0])
|
|
288
|
+
wp.expect_eq(arr.shape[1], expected[1])
|
|
289
|
+
wp.expect_eq(arr.shape[2], expected[2])
|
|
290
|
+
|
|
291
|
+
# 2d slice
|
|
292
|
+
view2 = arr[0]
|
|
293
|
+
wp.expect_eq(view2.shape[0], expected[1])
|
|
294
|
+
wp.expect_eq(view2.shape[1], expected[2])
|
|
295
|
+
|
|
296
|
+
# 1d slice
|
|
297
|
+
view1 = arr[0, 0]
|
|
298
|
+
wp.expect_eq(view1.shape[0], expected[2])
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
@wp.kernel
|
|
302
|
+
def shape_kernel_4d(arr: wp.indexedarray4d(dtype=float), expected: vec4i):
|
|
303
|
+
wp.expect_eq(arr.shape[0], expected[0])
|
|
304
|
+
wp.expect_eq(arr.shape[1], expected[1])
|
|
305
|
+
wp.expect_eq(arr.shape[2], expected[2])
|
|
306
|
+
wp.expect_eq(arr.shape[3], expected[3])
|
|
307
|
+
|
|
308
|
+
# 3d slice
|
|
309
|
+
view3 = arr[0]
|
|
310
|
+
wp.expect_eq(view3.shape[0], expected[1])
|
|
311
|
+
wp.expect_eq(view3.shape[1], expected[2])
|
|
312
|
+
wp.expect_eq(view3.shape[2], expected[3])
|
|
313
|
+
|
|
314
|
+
# 2d slice
|
|
315
|
+
view2 = arr[0, 0]
|
|
316
|
+
wp.expect_eq(view2.shape[0], expected[2])
|
|
317
|
+
wp.expect_eq(view2.shape[1], expected[3])
|
|
318
|
+
|
|
319
|
+
# 1d slice
|
|
320
|
+
view1 = arr[0, 0, 0]
|
|
321
|
+
wp.expect_eq(view1.shape[0], expected[3])
|
|
322
|
+
|
|
323
|
+
|
|
324
|
+
def test_indexedarray_shape(test, device):
|
|
325
|
+
with wp.ScopedDevice(device):
|
|
326
|
+
data1 = wp.zeros(10, dtype=float)
|
|
327
|
+
data2 = wp.zeros((10, 20), dtype=float)
|
|
328
|
+
data3 = wp.zeros((10, 20, 30), dtype=float)
|
|
329
|
+
data4 = wp.zeros((10, 20, 30, 40), dtype=float)
|
|
330
|
+
|
|
331
|
+
indices1 = wp.array(data=[2, 7], dtype=int)
|
|
332
|
+
indices2 = wp.array(data=[2, 7, 12, 17], dtype=int)
|
|
333
|
+
indices3 = wp.array(data=[2, 7, 12, 17, 22, 27], dtype=int)
|
|
334
|
+
indices4 = wp.array(data=[2, 7, 12, 17, 22, 27, 32, 37], dtype=int)
|
|
335
|
+
|
|
336
|
+
ia1 = wp.indexedarray(data1, [indices1])
|
|
337
|
+
wp.launch(shape_kernel_1d, dim=1, inputs=[ia1, 2])
|
|
338
|
+
|
|
339
|
+
ia2_1 = wp.indexedarray(data2, [indices1, None])
|
|
340
|
+
ia2_2 = wp.indexedarray(data2, [None, indices2])
|
|
341
|
+
ia2_3 = wp.indexedarray(data2, [indices1, indices2])
|
|
342
|
+
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_1, vec2i(2, 20)])
|
|
343
|
+
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_2, vec2i(10, 4)])
|
|
344
|
+
wp.launch(shape_kernel_2d, dim=1, inputs=[ia2_3, vec2i(2, 4)])
|
|
345
|
+
|
|
346
|
+
ia3_1 = wp.indexedarray(data3, [indices1, None, None])
|
|
347
|
+
ia3_2 = wp.indexedarray(data3, [None, indices2, None])
|
|
348
|
+
ia3_3 = wp.indexedarray(data3, [None, None, indices3])
|
|
349
|
+
ia3_4 = wp.indexedarray(data3, [indices1, indices2, None])
|
|
350
|
+
ia3_5 = wp.indexedarray(data3, [indices1, None, indices3])
|
|
351
|
+
ia3_6 = wp.indexedarray(data3, [None, indices2, indices3])
|
|
352
|
+
ia3_7 = wp.indexedarray(data3, [indices1, indices2, indices3])
|
|
353
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_1, vec3i(2, 20, 30)])
|
|
354
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_2, vec3i(10, 4, 30)])
|
|
355
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_3, vec3i(10, 20, 6)])
|
|
356
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_4, vec3i(2, 4, 30)])
|
|
357
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_5, vec3i(2, 20, 6)])
|
|
358
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_6, vec3i(10, 4, 6)])
|
|
359
|
+
wp.launch(shape_kernel_3d, dim=1, inputs=[ia3_7, vec3i(2, 4, 6)])
|
|
360
|
+
|
|
361
|
+
ia4_1 = wp.indexedarray(data4, [indices1, None, None, None])
|
|
362
|
+
ia4_2 = wp.indexedarray(data4, [indices1, None, None, indices4])
|
|
363
|
+
ia4_3 = wp.indexedarray(data4, [None, indices2, indices3, None])
|
|
364
|
+
ia4_4 = wp.indexedarray(data4, [indices1, indices2, indices3, indices4])
|
|
365
|
+
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_1, vec4i(2, 20, 30, 40)])
|
|
366
|
+
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_2, vec4i(2, 20, 30, 8)])
|
|
367
|
+
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_3, vec4i(10, 4, 6, 40)])
|
|
368
|
+
wp.launch(shape_kernel_4d, dim=1, inputs=[ia4_4, vec4i(2, 4, 6, 8)])
|
|
369
|
+
|
|
370
|
+
wp.synchronize_device(device)
|
|
371
|
+
|
|
372
|
+
|
|
373
|
+
def test_indexedarray_getitem(test, device):
|
|
374
|
+
with wp.ScopedDevice(device):
|
|
375
|
+
data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
|
|
376
|
+
|
|
377
|
+
I = wp.array(data=[0, 1, 2], dtype=int)
|
|
378
|
+
|
|
379
|
+
# use constructor
|
|
380
|
+
a1 = wp.indexedarray(data, [None, None, I])
|
|
381
|
+
a2 = wp.indexedarray(data, [None, I])
|
|
382
|
+
a3 = wp.indexedarray(data, [None, I, I])
|
|
383
|
+
a4 = wp.indexedarray(data, [I])
|
|
384
|
+
a5 = wp.indexedarray(data, [I, None, I])
|
|
385
|
+
a6 = wp.indexedarray(data, [I, I])
|
|
386
|
+
a7 = wp.indexedarray(data, [I, I, I])
|
|
387
|
+
|
|
388
|
+
# use array.__getitem__()
|
|
389
|
+
b1 = data[:, :, I]
|
|
390
|
+
b2 = data[:, I]
|
|
391
|
+
b3 = data[:, I, I]
|
|
392
|
+
b4 = data[I]
|
|
393
|
+
b5 = data[I, :, I]
|
|
394
|
+
b6 = data[I, I]
|
|
395
|
+
b7 = data[I, I, I]
|
|
396
|
+
|
|
397
|
+
test.assertEqual(type(a1), type(b1))
|
|
398
|
+
test.assertEqual(type(a2), type(b2))
|
|
399
|
+
test.assertEqual(type(a3), type(b3))
|
|
400
|
+
test.assertEqual(type(a4), type(b4))
|
|
401
|
+
test.assertEqual(type(a5), type(b5))
|
|
402
|
+
test.assertEqual(type(a6), type(b6))
|
|
403
|
+
test.assertEqual(type(a7), type(b7))
|
|
404
|
+
|
|
405
|
+
assert_np_equal(a1.numpy(), b1.numpy())
|
|
406
|
+
assert_np_equal(a2.numpy(), b2.numpy())
|
|
407
|
+
assert_np_equal(a3.numpy(), b3.numpy())
|
|
408
|
+
assert_np_equal(a4.numpy(), b4.numpy())
|
|
409
|
+
assert_np_equal(a5.numpy(), b5.numpy())
|
|
410
|
+
assert_np_equal(a6.numpy(), b6.numpy())
|
|
411
|
+
assert_np_equal(a7.numpy(), b7.numpy())
|
|
412
|
+
|
|
413
|
+
|
|
414
|
+
def test_indexedarray_slicing(test, device):
|
|
415
|
+
with wp.ScopedDevice(device):
|
|
416
|
+
data = wp.array(data=np.arange(1000, dtype=np.int32).reshape((10, 10, 10)))
|
|
417
|
+
|
|
418
|
+
# test equivalence of slicing and indexing the same range
|
|
419
|
+
s = slice(0, 3)
|
|
420
|
+
I = wp.array(data=[0, 1, 2], dtype=int)
|
|
421
|
+
|
|
422
|
+
a0 = data[s, s, s]
|
|
423
|
+
test.assertEqual(type(a0), wp.array)
|
|
424
|
+
a1 = data[s, s, I]
|
|
425
|
+
test.assertEqual(type(a1), wp.indexedarray)
|
|
426
|
+
a2 = data[s, I, s]
|
|
427
|
+
test.assertEqual(type(a2), wp.indexedarray)
|
|
428
|
+
a3 = data[s, I, I]
|
|
429
|
+
test.assertEqual(type(a3), wp.indexedarray)
|
|
430
|
+
a4 = data[I, s, s]
|
|
431
|
+
test.assertEqual(type(a4), wp.indexedarray)
|
|
432
|
+
a5 = data[I, s, I]
|
|
433
|
+
test.assertEqual(type(a5), wp.indexedarray)
|
|
434
|
+
a6 = data[I, I, s]
|
|
435
|
+
test.assertEqual(type(a6), wp.indexedarray)
|
|
436
|
+
a7 = data[I, I, I]
|
|
437
|
+
test.assertEqual(type(a7), wp.indexedarray)
|
|
438
|
+
|
|
439
|
+
expected = a0.numpy()
|
|
440
|
+
|
|
441
|
+
assert_np_equal(a1.numpy(), expected)
|
|
442
|
+
assert_np_equal(a2.numpy(), expected)
|
|
443
|
+
assert_np_equal(a3.numpy(), expected)
|
|
444
|
+
assert_np_equal(a4.numpy(), expected)
|
|
445
|
+
assert_np_equal(a5.numpy(), expected)
|
|
446
|
+
assert_np_equal(a6.numpy(), expected)
|
|
447
|
+
assert_np_equal(a7.numpy(), expected)
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
# generic increment kernels that work with any array (regular or indexed)
|
|
451
|
+
@wp.kernel
|
|
452
|
+
def inc_1d(a: Any):
|
|
453
|
+
i = wp.tid()
|
|
454
|
+
a[i] = a[i] + 1
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
@wp.kernel
|
|
458
|
+
def inc_2d(a: Any):
|
|
459
|
+
i, j = wp.tid()
|
|
460
|
+
a[i, j] = a[i, j] + 1
|
|
461
|
+
|
|
462
|
+
|
|
463
|
+
@wp.kernel
|
|
464
|
+
def inc_3d(a: Any):
|
|
465
|
+
i, j, k = wp.tid()
|
|
466
|
+
a[i, j, k] = a[i, j, k] + 1
|
|
467
|
+
|
|
468
|
+
|
|
469
|
+
@wp.kernel
|
|
470
|
+
def inc_4d(a: Any):
|
|
471
|
+
i, j, k, l = wp.tid()
|
|
472
|
+
a[i, j, k, l] = a[i, j, k, l] + 1
|
|
473
|
+
|
|
474
|
+
|
|
475
|
+
# optional overloads to avoid module reloading
|
|
476
|
+
wp.overload(inc_1d, [wp.array1d(dtype=int)])
|
|
477
|
+
wp.overload(inc_2d, [wp.array2d(dtype=int)])
|
|
478
|
+
wp.overload(inc_3d, [wp.array3d(dtype=int)])
|
|
479
|
+
wp.overload(inc_4d, [wp.array4d(dtype=int)])
|
|
480
|
+
|
|
481
|
+
wp.overload(inc_1d, [wp.indexedarray1d(dtype=int)])
|
|
482
|
+
wp.overload(inc_2d, [wp.indexedarray2d(dtype=int)])
|
|
483
|
+
wp.overload(inc_3d, [wp.indexedarray3d(dtype=int)])
|
|
484
|
+
wp.overload(inc_4d, [wp.indexedarray4d(dtype=int)])
|
|
485
|
+
|
|
486
|
+
|
|
487
|
+
def test_indexedarray_generics(test, device):
|
|
488
|
+
with wp.ScopedDevice(device):
|
|
489
|
+
data1 = wp.zeros((5,), dtype=int)
|
|
490
|
+
data2 = wp.zeros((5, 5), dtype=int)
|
|
491
|
+
data3 = wp.zeros((5, 5, 5), dtype=int)
|
|
492
|
+
data4 = wp.zeros((5, 5, 5, 5), dtype=int)
|
|
493
|
+
|
|
494
|
+
indices = wp.array(data=[0, 4], dtype=int)
|
|
495
|
+
|
|
496
|
+
ia1 = wp.indexedarray(data1, [indices])
|
|
497
|
+
ia2 = wp.indexedarray(data2, [indices, indices])
|
|
498
|
+
ia3 = wp.indexedarray(data3, [indices, indices, indices])
|
|
499
|
+
ia4 = wp.indexedarray(data4, [indices, indices, indices, indices])
|
|
500
|
+
|
|
501
|
+
wp.launch(inc_1d, dim=data1.shape, inputs=[data1])
|
|
502
|
+
wp.launch(inc_2d, dim=data2.shape, inputs=[data2])
|
|
503
|
+
wp.launch(inc_3d, dim=data3.shape, inputs=[data3])
|
|
504
|
+
wp.launch(inc_4d, dim=data4.shape, inputs=[data4])
|
|
505
|
+
|
|
506
|
+
wp.launch(inc_1d, dim=ia1.shape, inputs=[ia1])
|
|
507
|
+
wp.launch(inc_2d, dim=ia2.shape, inputs=[ia2])
|
|
508
|
+
wp.launch(inc_3d, dim=ia3.shape, inputs=[ia3])
|
|
509
|
+
wp.launch(inc_4d, dim=ia4.shape, inputs=[ia4])
|
|
510
|
+
|
|
511
|
+
expected1 = np.ones(5, dtype=np.int32)
|
|
512
|
+
expected1[0] = 2
|
|
513
|
+
expected1[4] = 2
|
|
514
|
+
|
|
515
|
+
expected2 = np.ones((5, 5), dtype=np.int32)
|
|
516
|
+
expected2[0, 0] = 2
|
|
517
|
+
expected2[0, 4] = 2
|
|
518
|
+
expected2[4, 0] = 2
|
|
519
|
+
expected2[4, 4] = 2
|
|
520
|
+
|
|
521
|
+
expected3 = np.ones((5, 5, 5), dtype=np.int32)
|
|
522
|
+
expected3[0, 0, 0] = 2
|
|
523
|
+
expected3[0, 0, 4] = 2
|
|
524
|
+
expected3[0, 4, 0] = 2
|
|
525
|
+
expected3[0, 4, 4] = 2
|
|
526
|
+
expected3[4, 0, 0] = 2
|
|
527
|
+
expected3[4, 0, 4] = 2
|
|
528
|
+
expected3[4, 4, 0] = 2
|
|
529
|
+
expected3[4, 4, 4] = 2
|
|
530
|
+
|
|
531
|
+
expected4 = np.ones((5, 5, 5, 5), dtype=np.int32)
|
|
532
|
+
expected4[0, 0, 0, 0] = 2
|
|
533
|
+
expected4[0, 0, 0, 4] = 2
|
|
534
|
+
expected4[0, 0, 4, 0] = 2
|
|
535
|
+
expected4[0, 0, 4, 4] = 2
|
|
536
|
+
expected4[0, 4, 0, 0] = 2
|
|
537
|
+
expected4[0, 4, 0, 4] = 2
|
|
538
|
+
expected4[0, 4, 4, 0] = 2
|
|
539
|
+
expected4[0, 4, 4, 4] = 2
|
|
540
|
+
expected4[4, 0, 0, 0] = 2
|
|
541
|
+
expected4[4, 0, 0, 4] = 2
|
|
542
|
+
expected4[4, 0, 4, 0] = 2
|
|
543
|
+
expected4[4, 0, 4, 4] = 2
|
|
544
|
+
expected4[4, 4, 0, 0] = 2
|
|
545
|
+
expected4[4, 4, 0, 4] = 2
|
|
546
|
+
expected4[4, 4, 4, 0] = 2
|
|
547
|
+
expected4[4, 4, 4, 4] = 2
|
|
548
|
+
|
|
549
|
+
assert_np_equal(data1.numpy(), expected1)
|
|
550
|
+
assert_np_equal(data2.numpy(), expected2)
|
|
551
|
+
assert_np_equal(data3.numpy(), expected3)
|
|
552
|
+
assert_np_equal(data4.numpy(), expected4)
|
|
553
|
+
|
|
554
|
+
assert_np_equal(ia1.numpy(), np.full((2,), 2, dtype=np.int32))
|
|
555
|
+
assert_np_equal(ia2.numpy(), np.full((2, 2), 2, dtype=np.int32))
|
|
556
|
+
assert_np_equal(ia3.numpy(), np.full((2, 2, 2), 2, dtype=np.int32))
|
|
557
|
+
assert_np_equal(ia4.numpy(), np.full((2, 2, 2, 2), 2, dtype=np.int32))
|
|
558
|
+
|
|
559
|
+
|
|
560
|
+
def test_indexedarray_empty(test, device):
|
|
561
|
+
# Test whether common operations work with empty (zero-sized) indexed arrays
|
|
562
|
+
# without throwing exceptions.
|
|
563
|
+
|
|
564
|
+
def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
|
|
565
|
+
data_shape = (1,) * ndim
|
|
566
|
+
dtype_shape = ()
|
|
567
|
+
|
|
568
|
+
if wptype in wp.types.scalar_types:
|
|
569
|
+
# scalar, vector, or matrix
|
|
570
|
+
if ncols > 0:
|
|
571
|
+
if nrows > 0:
|
|
572
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
573
|
+
else:
|
|
574
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
575
|
+
dtype_shape = wptype._shape_
|
|
576
|
+
fill_value = wptype(42)
|
|
577
|
+
else:
|
|
578
|
+
# struct
|
|
579
|
+
fill_value = wptype()
|
|
580
|
+
|
|
581
|
+
# create a data array
|
|
582
|
+
data = wp.empty(data_shape, dtype=wptype, device=device, requires_grad=True)
|
|
583
|
+
|
|
584
|
+
# create a zero-sized array of indices
|
|
585
|
+
indices = wp.empty(0, dtype=int, device=device)
|
|
586
|
+
|
|
587
|
+
a = data[indices]
|
|
588
|
+
|
|
589
|
+
# we expect dim to be zero for the empty indexed array, unchanged otherwise
|
|
590
|
+
expected_shape = (0, *data_shape[1:])
|
|
591
|
+
|
|
592
|
+
test.assertEqual(a.size, 0)
|
|
593
|
+
test.assertEqual(a.shape, expected_shape)
|
|
594
|
+
|
|
595
|
+
# all of these methods should succeed with zero-sized arrays
|
|
596
|
+
a.zero_()
|
|
597
|
+
a.fill_(fill_value)
|
|
598
|
+
b = a.contiguous()
|
|
599
|
+
|
|
600
|
+
b = wp.empty_like(a)
|
|
601
|
+
b = wp.zeros_like(a)
|
|
602
|
+
b = wp.full_like(a, fill_value)
|
|
603
|
+
b = wp.clone(a)
|
|
604
|
+
|
|
605
|
+
wp.copy(a, b)
|
|
606
|
+
a.assign(b)
|
|
607
|
+
|
|
608
|
+
na = a.numpy()
|
|
609
|
+
test.assertEqual(na.size, 0)
|
|
610
|
+
test.assertEqual(na.shape, (*expected_shape, *dtype_shape))
|
|
611
|
+
test.assertEqual(na.dtype, nptype)
|
|
612
|
+
|
|
613
|
+
test.assertEqual(a.list(), [])
|
|
614
|
+
|
|
615
|
+
for ndim in range(1, 5):
|
|
616
|
+
# test with scalars, vectors, and matrices
|
|
617
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
618
|
+
# scalars
|
|
619
|
+
test_empty_ops(ndim, 0, 0, wptype, nptype)
|
|
620
|
+
|
|
621
|
+
for ncols in [2, 3, 4, 5]:
|
|
622
|
+
# vectors
|
|
623
|
+
test_empty_ops(ndim, 0, ncols, wptype, nptype)
|
|
624
|
+
# square matrices
|
|
625
|
+
test_empty_ops(ndim, ncols, ncols, wptype, nptype)
|
|
626
|
+
|
|
627
|
+
# non-square matrices
|
|
628
|
+
test_empty_ops(ndim, 2, 3, wptype, nptype)
|
|
629
|
+
test_empty_ops(ndim, 3, 2, wptype, nptype)
|
|
630
|
+
test_empty_ops(ndim, 3, 4, wptype, nptype)
|
|
631
|
+
test_empty_ops(ndim, 4, 3, wptype, nptype)
|
|
632
|
+
|
|
633
|
+
# test with structs
|
|
634
|
+
test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
|
|
635
|
+
|
|
636
|
+
|
|
637
|
+
def test_indexedarray_fill_scalar(test, device):
|
|
638
|
+
dim_x = 4
|
|
639
|
+
|
|
640
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
641
|
+
data1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
642
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
643
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
644
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
645
|
+
|
|
646
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
647
|
+
|
|
648
|
+
a1 = data1[indices]
|
|
649
|
+
a2 = data2[indices]
|
|
650
|
+
a3 = data3[indices]
|
|
651
|
+
a4 = data4[indices]
|
|
652
|
+
|
|
653
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
654
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
655
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
656
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
657
|
+
|
|
658
|
+
# fill with int value
|
|
659
|
+
fill_value = 42
|
|
660
|
+
|
|
661
|
+
a1.fill_(fill_value)
|
|
662
|
+
a2.fill_(fill_value)
|
|
663
|
+
a3.fill_(fill_value)
|
|
664
|
+
a4.fill_(fill_value)
|
|
665
|
+
|
|
666
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
667
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
668
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
669
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
670
|
+
|
|
671
|
+
a1.zero_()
|
|
672
|
+
a2.zero_()
|
|
673
|
+
a3.zero_()
|
|
674
|
+
a4.zero_()
|
|
675
|
+
|
|
676
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
677
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
678
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
679
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
680
|
+
|
|
681
|
+
if wptype in wp.types.float_types:
|
|
682
|
+
# fill with float value
|
|
683
|
+
fill_value = 13.37
|
|
684
|
+
|
|
685
|
+
a1.fill_(fill_value)
|
|
686
|
+
a2.fill_(fill_value)
|
|
687
|
+
a3.fill_(fill_value)
|
|
688
|
+
a4.fill_(fill_value)
|
|
689
|
+
|
|
690
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
691
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
692
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
693
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
694
|
+
|
|
695
|
+
# fill with Warp scalar value
|
|
696
|
+
fill_value = wptype(17)
|
|
697
|
+
|
|
698
|
+
a1.fill_(fill_value)
|
|
699
|
+
a2.fill_(fill_value)
|
|
700
|
+
a3.fill_(fill_value)
|
|
701
|
+
a4.fill_(fill_value)
|
|
702
|
+
|
|
703
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
|
|
704
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
|
|
705
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
|
|
706
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
def test_indexedarray_fill_vector(test, device):
|
|
710
|
+
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
711
|
+
|
|
712
|
+
dim_x = 4
|
|
713
|
+
|
|
714
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
715
|
+
# vector types
|
|
716
|
+
vector_types = [
|
|
717
|
+
wp.types.vector(2, wptype),
|
|
718
|
+
wp.types.vector(3, wptype),
|
|
719
|
+
wp.types.vector(4, wptype),
|
|
720
|
+
wp.types.vector(5, wptype),
|
|
721
|
+
]
|
|
722
|
+
|
|
723
|
+
for vec_type in vector_types:
|
|
724
|
+
vec_len = vec_type._length_
|
|
725
|
+
|
|
726
|
+
data1 = wp.zeros(dim_x, dtype=vec_type, device=device)
|
|
727
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
|
|
728
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
729
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
730
|
+
|
|
731
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
732
|
+
|
|
733
|
+
a1 = data1[indices]
|
|
734
|
+
a2 = data2[indices]
|
|
735
|
+
a3 = data3[indices]
|
|
736
|
+
a4 = data4[indices]
|
|
737
|
+
|
|
738
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
739
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
740
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
741
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
742
|
+
|
|
743
|
+
# fill with int scalar
|
|
744
|
+
fill_value = 42
|
|
745
|
+
|
|
746
|
+
a1.fill_(fill_value)
|
|
747
|
+
a2.fill_(fill_value)
|
|
748
|
+
a3.fill_(fill_value)
|
|
749
|
+
a4.fill_(fill_value)
|
|
750
|
+
|
|
751
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
752
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
753
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
754
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
755
|
+
|
|
756
|
+
# test zeroing
|
|
757
|
+
a1.zero_()
|
|
758
|
+
a2.zero_()
|
|
759
|
+
a3.zero_()
|
|
760
|
+
a4.zero_()
|
|
761
|
+
|
|
762
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
763
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
764
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
765
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
766
|
+
|
|
767
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
768
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
769
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
770
|
+
fill_vec = vec_type(fill_list)
|
|
771
|
+
|
|
772
|
+
expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
|
|
773
|
+
expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
|
|
774
|
+
expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
|
|
775
|
+
expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
|
|
776
|
+
|
|
777
|
+
# fill with list of vector length
|
|
778
|
+
a1.fill_(fill_list)
|
|
779
|
+
a2.fill_(fill_list)
|
|
780
|
+
a3.fill_(fill_list)
|
|
781
|
+
a4.fill_(fill_list)
|
|
782
|
+
|
|
783
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
784
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
785
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
786
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
787
|
+
|
|
788
|
+
# clear
|
|
789
|
+
a1.zero_()
|
|
790
|
+
a2.zero_()
|
|
791
|
+
a3.zero_()
|
|
792
|
+
a4.zero_()
|
|
793
|
+
|
|
794
|
+
# fill with numpy array of vector length
|
|
795
|
+
a1.fill_(fill_arr)
|
|
796
|
+
a2.fill_(fill_arr)
|
|
797
|
+
a3.fill_(fill_arr)
|
|
798
|
+
a4.fill_(fill_arr)
|
|
799
|
+
|
|
800
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
801
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
802
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
803
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
804
|
+
|
|
805
|
+
# clear
|
|
806
|
+
a1.zero_()
|
|
807
|
+
a2.zero_()
|
|
808
|
+
a3.zero_()
|
|
809
|
+
a4.zero_()
|
|
810
|
+
|
|
811
|
+
# fill with vec instance
|
|
812
|
+
a1.fill_(fill_vec)
|
|
813
|
+
a2.fill_(fill_vec)
|
|
814
|
+
a3.fill_(fill_vec)
|
|
815
|
+
a4.fill_(fill_vec)
|
|
816
|
+
|
|
817
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
818
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
819
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
820
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
821
|
+
|
|
822
|
+
if wptype in wp.types.float_types:
|
|
823
|
+
# fill with float scalar
|
|
824
|
+
fill_value = 13.37
|
|
825
|
+
|
|
826
|
+
a1.fill_(fill_value)
|
|
827
|
+
a2.fill_(fill_value)
|
|
828
|
+
a3.fill_(fill_value)
|
|
829
|
+
a4.fill_(fill_value)
|
|
830
|
+
|
|
831
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
832
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
833
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
834
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
835
|
+
|
|
836
|
+
# fill with float list of vector length
|
|
837
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
838
|
+
|
|
839
|
+
a1.fill_(fill_list)
|
|
840
|
+
a2.fill_(fill_list)
|
|
841
|
+
a3.fill_(fill_list)
|
|
842
|
+
a4.fill_(fill_list)
|
|
843
|
+
|
|
844
|
+
expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
|
|
845
|
+
expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
|
|
846
|
+
expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
|
|
847
|
+
expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
|
|
848
|
+
|
|
849
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
850
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
851
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
852
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
853
|
+
|
|
854
|
+
|
|
855
|
+
def test_indexedarray_fill_matrix(test, device):
|
|
856
|
+
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
857
|
+
|
|
858
|
+
dim_x = 4
|
|
859
|
+
|
|
860
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
861
|
+
# matrix types
|
|
862
|
+
matrix_types = [
|
|
863
|
+
# square matrices
|
|
864
|
+
wp.types.matrix((2, 2), wptype),
|
|
865
|
+
wp.types.matrix((3, 3), wptype),
|
|
866
|
+
wp.types.matrix((4, 4), wptype),
|
|
867
|
+
wp.types.matrix((5, 5), wptype),
|
|
868
|
+
# non-square matrices
|
|
869
|
+
wp.types.matrix((2, 3), wptype),
|
|
870
|
+
wp.types.matrix((3, 2), wptype),
|
|
871
|
+
wp.types.matrix((3, 4), wptype),
|
|
872
|
+
wp.types.matrix((4, 3), wptype),
|
|
873
|
+
]
|
|
874
|
+
|
|
875
|
+
for mat_type in matrix_types:
|
|
876
|
+
mat_len = mat_type._length_
|
|
877
|
+
mat_shape = mat_type._shape_
|
|
878
|
+
|
|
879
|
+
data1 = wp.zeros(dim_x, dtype=mat_type, device=device)
|
|
880
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
|
|
881
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
882
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
883
|
+
|
|
884
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
885
|
+
|
|
886
|
+
a1 = data1[indices]
|
|
887
|
+
a2 = data2[indices]
|
|
888
|
+
a3 = data3[indices]
|
|
889
|
+
a4 = data4[indices]
|
|
890
|
+
|
|
891
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
892
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
893
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
894
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
895
|
+
|
|
896
|
+
# fill with scalar
|
|
897
|
+
fill_value = 42
|
|
898
|
+
|
|
899
|
+
a1.fill_(fill_value)
|
|
900
|
+
a2.fill_(fill_value)
|
|
901
|
+
a3.fill_(fill_value)
|
|
902
|
+
a4.fill_(fill_value)
|
|
903
|
+
|
|
904
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
|
|
905
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
|
|
906
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
|
|
907
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
|
|
908
|
+
|
|
909
|
+
# test zeroing
|
|
910
|
+
a1.zero_()
|
|
911
|
+
a2.zero_()
|
|
912
|
+
a3.zero_()
|
|
913
|
+
a4.zero_()
|
|
914
|
+
|
|
915
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
916
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
917
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
918
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
919
|
+
|
|
920
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
921
|
+
if wptype != wp.bool:
|
|
922
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
923
|
+
else:
|
|
924
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
925
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
926
|
+
fill_list1 = list(fill_arr1)
|
|
927
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
928
|
+
fill_mat = mat_type(fill_arr1)
|
|
929
|
+
|
|
930
|
+
expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
|
|
931
|
+
expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
|
|
932
|
+
expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
|
|
933
|
+
expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
|
|
934
|
+
|
|
935
|
+
# fill with 1d numpy array
|
|
936
|
+
a1.fill_(fill_arr1)
|
|
937
|
+
a2.fill_(fill_arr1)
|
|
938
|
+
a3.fill_(fill_arr1)
|
|
939
|
+
a4.fill_(fill_arr1)
|
|
940
|
+
|
|
941
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
942
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
943
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
944
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
945
|
+
|
|
946
|
+
# clear
|
|
947
|
+
a1.zero_()
|
|
948
|
+
a2.zero_()
|
|
949
|
+
a3.zero_()
|
|
950
|
+
a4.zero_()
|
|
951
|
+
|
|
952
|
+
# fill with 2d numpy array
|
|
953
|
+
a1.fill_(fill_arr2)
|
|
954
|
+
a2.fill_(fill_arr2)
|
|
955
|
+
a3.fill_(fill_arr2)
|
|
956
|
+
a4.fill_(fill_arr2)
|
|
957
|
+
|
|
958
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
959
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
960
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
961
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
962
|
+
|
|
963
|
+
# clear
|
|
964
|
+
a1.zero_()
|
|
965
|
+
a2.zero_()
|
|
966
|
+
a3.zero_()
|
|
967
|
+
a4.zero_()
|
|
968
|
+
|
|
969
|
+
# fill with flat list
|
|
970
|
+
a1.fill_(fill_list1)
|
|
971
|
+
a2.fill_(fill_list1)
|
|
972
|
+
a3.fill_(fill_list1)
|
|
973
|
+
a4.fill_(fill_list1)
|
|
974
|
+
|
|
975
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
976
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
977
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
978
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
979
|
+
|
|
980
|
+
# clear
|
|
981
|
+
a1.zero_()
|
|
982
|
+
a2.zero_()
|
|
983
|
+
a3.zero_()
|
|
984
|
+
a4.zero_()
|
|
985
|
+
|
|
986
|
+
# fill with nested list
|
|
987
|
+
a1.fill_(fill_list2)
|
|
988
|
+
a2.fill_(fill_list2)
|
|
989
|
+
a3.fill_(fill_list2)
|
|
990
|
+
a4.fill_(fill_list2)
|
|
991
|
+
|
|
992
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
993
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
994
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
995
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
996
|
+
|
|
997
|
+
# clear
|
|
998
|
+
a1.zero_()
|
|
999
|
+
a2.zero_()
|
|
1000
|
+
a3.zero_()
|
|
1001
|
+
a4.zero_()
|
|
1002
|
+
|
|
1003
|
+
# fill with mat instance
|
|
1004
|
+
a1.fill_(fill_mat)
|
|
1005
|
+
a2.fill_(fill_mat)
|
|
1006
|
+
a3.fill_(fill_mat)
|
|
1007
|
+
a4.fill_(fill_mat)
|
|
1008
|
+
|
|
1009
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
1010
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
1011
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
1012
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
1013
|
+
|
|
1014
|
+
|
|
1015
|
+
def test_indexedarray_fill_struct(test, device):
|
|
1016
|
+
dim_x = 8
|
|
1017
|
+
|
|
1018
|
+
nptype = FillStruct.numpy_dtype()
|
|
1019
|
+
|
|
1020
|
+
data1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
|
|
1021
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1022
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1023
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1024
|
+
|
|
1025
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
1026
|
+
|
|
1027
|
+
a1 = data1[indices]
|
|
1028
|
+
a2 = data2[indices]
|
|
1029
|
+
a3 = data3[indices]
|
|
1030
|
+
a4 = data4[indices]
|
|
1031
|
+
|
|
1032
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1033
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1034
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1035
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1036
|
+
|
|
1037
|
+
s = FillStruct()
|
|
1038
|
+
|
|
1039
|
+
# fill with default struct value (should be all zeros)
|
|
1040
|
+
a1.fill_(s)
|
|
1041
|
+
a2.fill_(s)
|
|
1042
|
+
a3.fill_(s)
|
|
1043
|
+
a4.fill_(s)
|
|
1044
|
+
|
|
1045
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1046
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1047
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1048
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1049
|
+
|
|
1050
|
+
# scalars
|
|
1051
|
+
s.i1 = -17
|
|
1052
|
+
s.i2 = 42
|
|
1053
|
+
s.i4 = 99
|
|
1054
|
+
s.i8 = 101
|
|
1055
|
+
s.f2 = -1.25
|
|
1056
|
+
s.f4 = 13.37
|
|
1057
|
+
s.f8 = 0.125
|
|
1058
|
+
# vectors
|
|
1059
|
+
s.v2 = [21, 22]
|
|
1060
|
+
s.v3 = [31, 32, 33]
|
|
1061
|
+
s.v4 = [41, 42, 43, 44]
|
|
1062
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
1063
|
+
# matrices
|
|
1064
|
+
s.m2 = [[61, 62]] * 2
|
|
1065
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
1066
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
1067
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
1068
|
+
# arrays
|
|
1069
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
1070
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
1071
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
1072
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
1073
|
+
|
|
1074
|
+
# fill with custom struct value
|
|
1075
|
+
a1.fill_(s)
|
|
1076
|
+
a2.fill_(s)
|
|
1077
|
+
a3.fill_(s)
|
|
1078
|
+
a4.fill_(s)
|
|
1079
|
+
|
|
1080
|
+
ns = s.numpy_value()
|
|
1081
|
+
|
|
1082
|
+
expected1 = np.empty(a1.shape, dtype=nptype)
|
|
1083
|
+
expected2 = np.empty(a2.shape, dtype=nptype)
|
|
1084
|
+
expected3 = np.empty(a3.shape, dtype=nptype)
|
|
1085
|
+
expected4 = np.empty(a4.shape, dtype=nptype)
|
|
1086
|
+
|
|
1087
|
+
expected1.fill(ns)
|
|
1088
|
+
expected2.fill(ns)
|
|
1089
|
+
expected3.fill(ns)
|
|
1090
|
+
expected4.fill(ns)
|
|
1091
|
+
|
|
1092
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
1093
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
1094
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
1095
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
1096
|
+
|
|
1097
|
+
# test clearing
|
|
1098
|
+
a1.zero_()
|
|
1099
|
+
a2.zero_()
|
|
1100
|
+
a3.zero_()
|
|
1101
|
+
a4.zero_()
|
|
1102
|
+
|
|
1103
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1104
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1105
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1106
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1107
|
+
|
|
1108
|
+
|
|
1109
|
+
devices = get_test_devices()
|
|
1110
|
+
|
|
1111
|
+
|
|
1112
|
+
class TestIndexedArray(unittest.TestCase):
|
|
1113
|
+
pass
|
|
1114
|
+
|
|
1115
|
+
|
|
1116
|
+
add_function_test(TestIndexedArray, "test_indexedarray_1d", test_indexedarray_1d, devices=devices)
|
|
1117
|
+
add_function_test(TestIndexedArray, "test_indexedarray_2d", test_indexedarray_2d, devices=devices)
|
|
1118
|
+
add_function_test(TestIndexedArray, "test_indexedarray_3d", test_indexedarray_3d, devices=devices)
|
|
1119
|
+
add_function_test(TestIndexedArray, "test_indexedarray_4d", test_indexedarray_4d, devices=devices)
|
|
1120
|
+
add_function_test(TestIndexedArray, "test_indexedarray_mixed", test_indexedarray_mixed, devices=devices)
|
|
1121
|
+
add_function_test(TestIndexedArray, "test_indexedarray_shape", test_indexedarray_shape, devices=devices)
|
|
1122
|
+
add_function_test(TestIndexedArray, "test_indexedarray_getitem", test_indexedarray_getitem, devices=devices)
|
|
1123
|
+
add_function_test(TestIndexedArray, "test_indexedarray_slicing", test_indexedarray_slicing, devices=devices)
|
|
1124
|
+
add_function_test(TestIndexedArray, "test_indexedarray_generics", test_indexedarray_generics, devices=devices)
|
|
1125
|
+
add_function_test(TestIndexedArray, "test_indexedarray_empty", test_indexedarray_empty, devices=devices)
|
|
1126
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_scalar", test_indexedarray_fill_scalar, devices=devices)
|
|
1127
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_vector", test_indexedarray_fill_vector, devices=devices)
|
|
1128
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_matrix", test_indexedarray_fill_matrix, devices=devices)
|
|
1129
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_struct", test_indexedarray_fill_struct, devices=devices)
|
|
1130
|
+
|
|
1131
|
+
|
|
1132
|
+
if __name__ == "__main__":
|
|
1133
|
+
wp.build.clear_kernel_cache()
|
|
1134
|
+
unittest.main(verbosity=2)
|