warp-lang 1.0.1__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -279
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -28
  36. warp/examples/core/example_dem.py +234 -221
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -129
  39. warp/examples/core/example_marching_cubes.py +188 -176
  40. warp/examples/core/example_mesh.py +174 -154
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -169
  43. warp/examples/core/example_raycast.py +105 -89
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -389
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -249
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -391
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -248
  65. warp/examples/optim/example_cloth_throw.py +222 -210
  66. warp/examples/optim/example_diffray.py +566 -535
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -169
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
  70. warp/examples/optim/example_spring_cage.py +239 -234
  71. warp/examples/optim/example_trajectory.py +223 -201
  72. warp/examples/optim/example_walker.py +306 -292
  73. warp/examples/sim/example_cartpole.py +139 -128
  74. warp/examples/sim/example_cloth.py +196 -184
  75. warp/examples/sim/example_granular.py +124 -113
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -185
  77. warp/examples/sim/example_jacobian_ik.py +236 -213
  78. warp/examples/sim/example_particle_chain.py +118 -106
  79. warp/examples/sim/example_quadruped.py +193 -179
  80. warp/examples/sim/example_rigid_chain.py +197 -189
  81. warp/examples/sim/example_rigid_contact.py +189 -176
  82. warp/examples/sim/example_rigid_force.py +127 -126
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -97
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -124
  85. warp/examples/sim/example_soft_body.py +190 -178
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.1.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
@@ -1,611 +1,611 @@
1
- import math
2
-
3
- import warp as wp
4
- import numpy as np
5
-
6
- from warp.fem.polynomial import Polynomial, quadrature_1d, lagrange_scales, is_closed
7
- from warp.fem.types import Coords
8
- from warp.fem import cache
9
-
10
- from .triangle_shape_function import Triangle2DPolynomialShapeFunctions
11
-
12
-
13
- class SquareBipolynomialShapeFunctions:
14
- def __init__(self, degree: int, family: Polynomial):
15
- self.family = family
16
-
17
- self.ORDER = wp.constant(degree)
18
- self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1))
19
- self.NODES_PER_SIDE = wp.constant(degree + 1)
20
-
21
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
22
- lagrange_scale = lagrange_scales(lobatto_coords)
23
-
24
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
25
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
26
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
27
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
28
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
29
-
30
- @property
31
- def name(self) -> str:
32
- return f"Square_Q{self.ORDER}_{self.family}"
33
-
34
- def make_node_coords_in_element(self):
35
- ORDER = self.ORDER
36
- LOBATTO_COORDS = self.LOBATTO_COORDS
37
-
38
- @cache.dynamic_func(suffix=self.name)
39
- def node_coords_in_element(
40
- node_index_in_elt: int,
41
- ):
42
- node_i = node_index_in_elt // (ORDER + 1)
43
- node_j = node_index_in_elt - (ORDER + 1) * node_i
44
- return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
45
-
46
- return node_coords_in_element
47
-
48
- def make_node_quadrature_weight(self):
49
- ORDER = self.ORDER
50
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
51
-
52
- def node_quadrature_weight(
53
- node_index_in_elt: int,
54
- ):
55
- node_i = node_index_in_elt // (ORDER + 1)
56
- node_j = node_index_in_elt - (ORDER + 1) * node_i
57
- return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
58
-
59
- def node_quadrature_weight_linear(
60
- node_index_in_elt: int,
61
- ):
62
- return 0.25
63
-
64
- if ORDER == 1:
65
- return cache.get_func(node_quadrature_weight_linear, self.name)
66
-
67
- return cache.get_func(node_quadrature_weight, self.name)
68
-
69
- @wp.func
70
- def _vertex_coords_f(vidx_in_cell: int):
71
- x = vidx_in_cell // 2
72
- y = vidx_in_cell - 2 * x
73
- return wp.vec2(float(x), float(y))
74
-
75
- def make_trace_node_quadrature_weight(self):
76
- ORDER = self.ORDER
77
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
78
-
79
- def trace_node_quadrature_weight(
80
- node_index_in_elt: int,
81
- ):
82
- # We're either on a side interior or at a vertex
83
- # I.e., either both indices are at extrema, or only one is
84
- # Pick the interior one if possible, if both are at extrema pick any one
85
- node_i = node_index_in_elt // (ORDER + 1)
86
- if node_i > 0 and node_i < ORDER:
87
- return LOBATTO_WEIGHT[node_i]
88
-
89
- node_j = node_index_in_elt - (ORDER + 1) * node_i
90
- return LOBATTO_WEIGHT[node_j]
91
-
92
- def trace_node_quadrature_weight_linear(
93
- node_index_in_elt: int,
94
- ):
95
- return 0.5
96
-
97
- def trace_node_quadrature_weight_open(
98
- node_index_in_elt: int,
99
- ):
100
- return 0.0
101
-
102
- if not is_closed(self.family):
103
- return cache.get_func(trace_node_quadrature_weight_open, self.name)
104
-
105
- if ORDER == 1:
106
- return cache.get_func(trace_node_quadrature_weight_linear, self.name)
107
-
108
- return cache.get_func(trace_node_quadrature_weight, self.name)
109
-
110
- def make_element_inner_weight(self):
111
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
112
- LOBATTO_COORDS = self.LOBATTO_COORDS
113
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
114
-
115
- def element_inner_weight(
116
- coords: Coords,
117
- node_index_in_elt: int,
118
- ):
119
- node_i = node_index_in_elt // ORDER_PLUS_ONE
120
- node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
121
-
122
- w = float(1.0)
123
- for k in range(ORDER_PLUS_ONE):
124
- if k != node_i:
125
- w *= coords[0] - LOBATTO_COORDS[k]
126
- if k != node_j:
127
- w *= coords[1] - LOBATTO_COORDS[k]
128
-
129
- w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j]
130
-
131
- return w
132
-
133
- def element_inner_weight_linear(
134
- coords: Coords,
135
- node_index_in_elt: int,
136
- ):
137
- v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
138
-
139
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
140
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
141
- return wx * wy
142
-
143
- if self.ORDER == 1 and is_closed(self.family):
144
- return cache.get_func(element_inner_weight_linear, self.name)
145
-
146
- return cache.get_func(element_inner_weight, self.name)
147
-
148
- def make_element_inner_weight_gradient(self):
149
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
150
- LOBATTO_COORDS = self.LOBATTO_COORDS
151
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
152
-
153
- def element_inner_weight_gradient(
154
- coords: Coords,
155
- node_index_in_elt: int,
156
- ):
157
- node_i = node_index_in_elt // ORDER_PLUS_ONE
158
- node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
159
-
160
- prefix_x = float(1.0)
161
- prefix_y = float(1.0)
162
- for k in range(ORDER_PLUS_ONE):
163
- if k != node_i:
164
- prefix_y *= coords[0] - LOBATTO_COORDS[k]
165
- if k != node_j:
166
- prefix_x *= coords[1] - LOBATTO_COORDS[k]
167
-
168
- grad_x = float(0.0)
169
- grad_y = float(0.0)
170
-
171
- for k in range(ORDER_PLUS_ONE):
172
- if k != node_i:
173
- delta_x = coords[0] - LOBATTO_COORDS[k]
174
- grad_x = grad_x * delta_x + prefix_x
175
- prefix_x *= delta_x
176
- if k != node_j:
177
- delta_y = coords[1] - LOBATTO_COORDS[k]
178
- grad_y = grad_y * delta_y + prefix_y
179
- prefix_y *= delta_y
180
-
181
- grad = LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x, grad_y)
182
-
183
- return grad
184
-
185
- def element_inner_weight_gradient_linear(
186
- coords: Coords,
187
- node_index_in_elt: int,
188
- ):
189
- v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
190
-
191
- wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
192
- wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
193
-
194
- dx = 2.0 * v[0] - 1.0
195
- dy = 2.0 * v[1] - 1.0
196
-
197
- return wp.vec2(dx * wy, dy * wx)
198
-
199
- if self.ORDER == 1 and is_closed(self.family):
200
- return cache.get_func(element_inner_weight_gradient_linear, self.name)
201
-
202
- return cache.get_func(element_inner_weight_gradient, self.name)
203
-
204
- def element_node_triangulation(self):
205
- from warp.fem.utils import grid_to_tris
206
-
207
- return grid_to_tris(self.ORDER, self.ORDER)
208
-
209
-
210
- class SquareSerendipityShapeFunctions:
211
- """
212
- Serendipity element ~ tensor product space without interior nodes
213
- Side shape functions are usual Lagrange shape functions times a linear function in the normal direction
214
- Corner shape functions are bilinear shape functions times a function of (x^{d-1} + y^{d-1})
215
- """
216
-
217
- # Node categories
218
- VERTEX = wp.constant(0)
219
- EDGE_X = wp.constant(1)
220
- EDGE_Y = wp.constant(2)
221
-
222
- def __init__(self, degree: int, family: Polynomial):
223
- if not is_closed(family):
224
- raise ValueError("A closed polynomial family is required to define serendipity elements")
225
-
226
- if degree not in [2, 3]:
227
- raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
228
-
229
- self.family = family
230
-
231
- self.ORDER = wp.constant(degree)
232
- self.NODES_PER_ELEMENT = wp.constant(4 * degree)
233
- self.NODES_PER_SIDE = wp.constant(degree + 1)
234
-
235
- lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
236
- lagrange_scale = lagrange_scales(lobatto_coords)
237
-
238
- NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
239
- self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
240
- self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
241
- self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
242
- self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
243
-
244
- self.node_type_and_type_index = self._get_node_type_and_type_index()
245
- self._node_lobatto_indices = self._get_node_lobatto_indices()
246
-
247
- @property
248
- def name(self) -> str:
249
- return f"Square_S{self.ORDER}_{self.family}"
250
-
251
- def _get_node_type_and_type_index(self):
252
- @cache.dynamic_func(suffix=self.name)
253
- def node_type_and_index(
254
- node_index_in_elt: int,
255
- ):
256
- if node_index_in_elt < 4:
257
- return SquareSerendipityShapeFunctions.VERTEX, node_index_in_elt
258
-
259
- type_index = (node_index_in_elt - 4) // 2
260
- side = node_index_in_elt - 4 - 2 * type_index
261
- return SquareSerendipityShapeFunctions.EDGE_X + side, type_index
262
-
263
- return node_type_and_index
264
-
265
- @wp.func
266
- def side_offset_and_index(type_index: int):
267
- index_in_side = type_index // 2
268
- side_offset = type_index - 2 * index_in_side
269
-
270
- return side_offset, index_in_side
271
-
272
- def _get_node_lobatto_indices(self):
273
- ORDER = self.ORDER
274
-
275
- @cache.dynamic_func(suffix=self.name)
276
- def node_lobatto_indices(node_type: int, type_index: int):
277
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
278
- node_i = type_index // 2
279
- node_j = type_index - 2 * node_i
280
- return node_i * ORDER, node_j * ORDER
281
-
282
- side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
283
-
284
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
285
- node_i = 1 + index_in_side
286
- node_j = side_offset * ORDER
287
- else:
288
- node_j = 1 + index_in_side
289
- node_i = side_offset * ORDER
290
-
291
- return node_i, node_j
292
-
293
- return node_lobatto_indices
294
-
295
- def make_node_coords_in_element(self):
296
- LOBATTO_COORDS = self.LOBATTO_COORDS
297
-
298
- @cache.dynamic_func(suffix=self.name)
299
- def node_coords_in_element(
300
- node_index_in_elt: int,
301
- ):
302
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
303
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
304
- return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
305
-
306
- return node_coords_in_element
307
-
308
- def make_node_quadrature_weight(self):
309
- ORDER = self.ORDER
310
-
311
- @cache.dynamic_func(suffix=self.name)
312
- def node_quadrature_weight(
313
- node_index_in_elt: int,
314
- ):
315
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
316
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
317
- return 0.25 / float(ORDER * ORDER)
318
-
319
- return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
320
-
321
- return node_quadrature_weight
322
-
323
- def make_trace_node_quadrature_weight(self):
324
- LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
325
-
326
- @cache.dynamic_func(suffix=self.name)
327
- def trace_node_quadrature_weight(
328
- node_index_in_elt: int,
329
- ):
330
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
331
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
332
- return LOBATTO_WEIGHT[0]
333
-
334
- side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
335
- return LOBATTO_WEIGHT[1 + index_in_side]
336
-
337
- return trace_node_quadrature_weight
338
-
339
- def make_element_inner_weight(self):
340
- ORDER = self.ORDER
341
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
342
-
343
- LOBATTO_COORDS = self.LOBATTO_COORDS
344
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
345
-
346
- DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
347
- DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
348
-
349
- @cache.dynamic_func(suffix=self.name)
350
- def element_inner_weight(
351
- coords: Coords,
352
- node_index_in_elt: int,
353
- ):
354
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
355
-
356
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
357
-
358
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
359
- cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
360
- cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
361
-
362
- w = cx * cy
363
-
364
- if ORDER == 2:
365
- w *= cx + cy - 2.0 + LOBATTO_COORDS[1]
366
- return w * LAGRANGE_SCALE[0]
367
- if ORDER == 3:
368
- w *= (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
369
- return w * DEGREE_3_CIRCLE_SCALE
370
-
371
- w = float(1.0)
372
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
373
- w *= wp.select(node_i == 0, coords[0], 1.0 - coords[0])
374
- else:
375
- for k in range(ORDER_PLUS_ONE):
376
- if k != node_i:
377
- w *= coords[0] - LOBATTO_COORDS[k]
378
-
379
- w *= LAGRANGE_SCALE[node_i]
380
-
381
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
382
- w *= wp.select(node_j == 0, coords[1], 1.0 - coords[1])
383
- else:
384
- for k in range(ORDER_PLUS_ONE):
385
- if k != node_j:
386
- w *= coords[1] - LOBATTO_COORDS[k]
387
- w *= LAGRANGE_SCALE[node_j]
388
-
389
- return w
390
-
391
- return element_inner_weight
392
-
393
- def make_element_inner_weight_gradient(self):
394
- ORDER = self.ORDER
395
- ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
396
- LOBATTO_COORDS = self.LOBATTO_COORDS
397
- LAGRANGE_SCALE = self.LAGRANGE_SCALE
398
-
399
- DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
400
- DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
401
-
402
- @cache.dynamic_func(suffix=self.name)
403
- def element_inner_weight_gradient(
404
- coords: Coords,
405
- node_index_in_elt: int,
406
- ):
407
- node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
408
-
409
- node_i, node_j = self._node_lobatto_indices(node_type, type_index)
410
-
411
- if node_type == SquareSerendipityShapeFunctions.VERTEX:
412
- cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
413
- cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
414
-
415
- gx = wp.select(node_i == 0, 1.0, -1.0)
416
- gy = wp.select(node_j == 0, 1.0, -1.0)
417
-
418
- if ORDER == 2:
419
- w = cx + cy - 2.0 + LOBATTO_COORDS[1]
420
- grad_x = cy * gx * (w + cx)
421
- grad_y = cx * gy * (w + cy)
422
-
423
- return wp.vec2(grad_x, grad_y) * LAGRANGE_SCALE[0]
424
-
425
- if ORDER == 3:
426
- w = (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
427
-
428
- dw_dcx = 2.0 * cx - 1.0
429
- dw_dcy = 2.0 * cy - 1.0
430
- grad_x = cy * gx * (w + cx * dw_dcx)
431
- grad_y = cx * gy * (w + cy * dw_dcy)
432
-
433
- return wp.vec2(grad_x, grad_y) * DEGREE_3_CIRCLE_SCALE
434
-
435
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
436
- prefix_x = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
437
- else:
438
- prefix_x = LAGRANGE_SCALE[node_j]
439
- for k in range(ORDER_PLUS_ONE):
440
- if k != node_j:
441
- prefix_x *= coords[1] - LOBATTO_COORDS[k]
442
-
443
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
444
- prefix_y = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
445
- else:
446
- prefix_y = LAGRANGE_SCALE[node_i]
447
- for k in range(ORDER_PLUS_ONE):
448
- if k != node_i:
449
- prefix_y *= coords[0] - LOBATTO_COORDS[k]
450
-
451
- if node_type == SquareSerendipityShapeFunctions.EDGE_X:
452
- grad_y = wp.select(node_j == 0, 1.0, -1.0) * prefix_y
453
- else:
454
- prefix_y *= LAGRANGE_SCALE[node_j]
455
- grad_y = float(0.0)
456
- for k in range(ORDER_PLUS_ONE):
457
- if k != node_j:
458
- delta_y = coords[1] - LOBATTO_COORDS[k]
459
- grad_y = grad_y * delta_y + prefix_y
460
- prefix_y *= delta_y
461
-
462
- if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
463
- grad_x = wp.select(node_i == 0, 1.0, -1.0) * prefix_x
464
- else:
465
- prefix_x *= LAGRANGE_SCALE[node_i]
466
- grad_x = float(0.0)
467
- for k in range(ORDER_PLUS_ONE):
468
- if k != node_i:
469
- delta_x = coords[0] - LOBATTO_COORDS[k]
470
- grad_x = grad_x * delta_x + prefix_x
471
- prefix_x *= delta_x
472
-
473
- grad = wp.vec2(grad_x, grad_y)
474
- return grad
475
-
476
- return element_inner_weight_gradient
477
-
478
- def element_node_triangulation(self):
479
- if self.ORDER == 2:
480
- element_triangles = [
481
- [0, 4, 5],
482
- [5, 4, 6],
483
- [5, 6, 1],
484
- [4, 2, 7],
485
- [4, 7, 6],
486
- [6, 7, 3],
487
- ]
488
- else:
489
- element_triangles = [
490
- [0, 4, 5],
491
- [2, 7, 8],
492
- [3, 10, 11],
493
- [1, 9, 6],
494
- [5, 6, 9],
495
- [5, 4, 6],
496
- [8, 11, 10],
497
- [8, 7, 11],
498
- [4, 8, 10],
499
- [4, 10, 6],
500
- ]
501
-
502
- return element_triangles
503
-
504
-
505
- class SquareNonConformingPolynomialShapeFunctions:
506
- # embeds the largest equilateral triangle centered at (0.5, 0.5) into the reference square
507
- _tri_height = 0.75
508
- _tri_side = 2.0 / math.sqrt(3.0) * _tri_height
509
- _tri_to_square = np.array([[_tri_side, _tri_side / 2.0], [0.0, _tri_height]])
510
-
511
- _TRI_OFFSET = wp.constant(wp.vec2(0.5 - 0.5 * _tri_side, 0.5 - _tri_height / 3.0))
512
-
513
- def __init__(self, degree: int):
514
- self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree)
515
- self.ORDER = self._tri_shape.ORDER
516
- self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT
517
-
518
- self.element_node_triangulation = self._tri_shape.element_node_triangulation
519
-
520
- @property
521
- def name(self) -> str:
522
- return f"Square_P{self.ORDER}d"
523
-
524
- def make_node_coords_in_element(self):
525
- node_coords_in_tet = self._tri_shape.make_node_coords_in_element()
526
-
527
- TRI_TO_SQUARE = wp.constant(wp.mat22(self._tri_to_square))
528
-
529
- @cache.dynamic_func(suffix=self.name)
530
- def node_coords_in_element(
531
- node_index_in_elt: int,
532
- ):
533
- tri_coords = node_coords_in_tet(node_index_in_elt)
534
- coords = (
535
- TRI_TO_SQUARE * wp.vec2(tri_coords[1], tri_coords[2])
536
- ) + SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
537
- return Coords(coords[0], coords[1], 0.0)
538
-
539
- return node_coords_in_element
540
-
541
- def make_node_quadrature_weight(self):
542
- NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
543
-
544
- if self.ORDER == 2:
545
- # Intrinsic quadrature (order 2)
546
- @cache.dynamic_func(suffix=self.name)
547
- def node_quadrature_weight_quadratic(
548
- node_index_in_elt: int,
549
- ):
550
- node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_elt)
551
- if node_type == Triangle2DPolynomialShapeFunctions.VERTEX:
552
- return 0.18518521
553
- return 0.14814811
554
-
555
- return node_quadrature_weight_quadratic
556
-
557
- @cache.dynamic_func(suffix=self.name)
558
- def node_uniform_quadrature_weight(
559
- node_index_in_elt: int,
560
- ):
561
- return 1.0 / float(NODES_PER_ELEMENT)
562
-
563
- return node_uniform_quadrature_weight
564
-
565
- def make_trace_node_quadrature_weight(self):
566
- # Non-conforming, zero measure on sides
567
-
568
- @wp.func
569
- def zero(node_index_in_elt: int):
570
- return 0.0
571
-
572
- return zero
573
-
574
- def make_element_inner_weight(self):
575
- tri_inner_weight = self._tri_shape.make_element_inner_weight()
576
-
577
- SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
578
-
579
- @cache.dynamic_func(suffix=self.name)
580
- def element_inner_weight(
581
- coords: Coords,
582
- node_index_in_elt: int,
583
- ):
584
- tri_param = SQUARE_TO_TRI * (
585
- wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
586
- )
587
- tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
588
-
589
- return tri_inner_weight(tri_coords, node_index_in_elt)
590
-
591
- return element_inner_weight
592
-
593
- def make_element_inner_weight_gradient(self):
594
- tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient()
595
-
596
- SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
597
-
598
- @cache.dynamic_func(suffix=self.name)
599
- def element_inner_weight_gradient(
600
- coords: Coords,
601
- node_index_in_elt: int,
602
- ):
603
- tri_param = SQUARE_TO_TRI * (
604
- wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
605
- )
606
- tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
607
-
608
- grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt)
609
- return wp.transpose(SQUARE_TO_TRI) * grad
610
-
611
- return element_inner_weight_gradient
1
+ import math
2
+
3
+ import numpy as np
4
+
5
+ import warp as wp
6
+ from warp.fem import cache
7
+ from warp.fem.polynomial import Polynomial, is_closed, lagrange_scales, quadrature_1d
8
+ from warp.fem.types import Coords
9
+
10
+ from .triangle_shape_function import Triangle2DPolynomialShapeFunctions
11
+
12
+
13
+ class SquareBipolynomialShapeFunctions:
14
+ def __init__(self, degree: int, family: Polynomial):
15
+ self.family = family
16
+
17
+ self.ORDER = wp.constant(degree)
18
+ self.NODES_PER_ELEMENT = wp.constant((degree + 1) * (degree + 1))
19
+ self.NODES_PER_SIDE = wp.constant(degree + 1)
20
+
21
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
22
+ lagrange_scale = lagrange_scales(lobatto_coords)
23
+
24
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
25
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
26
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
27
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
28
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
29
+
30
+ @property
31
+ def name(self) -> str:
32
+ return f"Square_Q{self.ORDER}_{self.family}"
33
+
34
+ def make_node_coords_in_element(self):
35
+ ORDER = self.ORDER
36
+ LOBATTO_COORDS = self.LOBATTO_COORDS
37
+
38
+ @cache.dynamic_func(suffix=self.name)
39
+ def node_coords_in_element(
40
+ node_index_in_elt: int,
41
+ ):
42
+ node_i = node_index_in_elt // (ORDER + 1)
43
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
44
+ return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
45
+
46
+ return node_coords_in_element
47
+
48
+ def make_node_quadrature_weight(self):
49
+ ORDER = self.ORDER
50
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
51
+
52
+ def node_quadrature_weight(
53
+ node_index_in_elt: int,
54
+ ):
55
+ node_i = node_index_in_elt // (ORDER + 1)
56
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
57
+ return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
58
+
59
+ def node_quadrature_weight_linear(
60
+ node_index_in_elt: int,
61
+ ):
62
+ return 0.25
63
+
64
+ if ORDER == 1:
65
+ return cache.get_func(node_quadrature_weight_linear, self.name)
66
+
67
+ return cache.get_func(node_quadrature_weight, self.name)
68
+
69
+ @wp.func
70
+ def _vertex_coords_f(vidx_in_cell: int):
71
+ x = vidx_in_cell // 2
72
+ y = vidx_in_cell - 2 * x
73
+ return wp.vec2(float(x), float(y))
74
+
75
+ def make_trace_node_quadrature_weight(self):
76
+ ORDER = self.ORDER
77
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
78
+
79
+ def trace_node_quadrature_weight(
80
+ node_index_in_elt: int,
81
+ ):
82
+ # We're either on a side interior or at a vertex
83
+ # I.e., either both indices are at extrema, or only one is
84
+ # Pick the interior one if possible, if both are at extrema pick any one
85
+ node_i = node_index_in_elt // (ORDER + 1)
86
+ if node_i > 0 and node_i < ORDER:
87
+ return LOBATTO_WEIGHT[node_i]
88
+
89
+ node_j = node_index_in_elt - (ORDER + 1) * node_i
90
+ return LOBATTO_WEIGHT[node_j]
91
+
92
+ def trace_node_quadrature_weight_linear(
93
+ node_index_in_elt: int,
94
+ ):
95
+ return 0.5
96
+
97
+ def trace_node_quadrature_weight_open(
98
+ node_index_in_elt: int,
99
+ ):
100
+ return 0.0
101
+
102
+ if not is_closed(self.family):
103
+ return cache.get_func(trace_node_quadrature_weight_open, self.name)
104
+
105
+ if ORDER == 1:
106
+ return cache.get_func(trace_node_quadrature_weight_linear, self.name)
107
+
108
+ return cache.get_func(trace_node_quadrature_weight, self.name)
109
+
110
+ def make_element_inner_weight(self):
111
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
112
+ LOBATTO_COORDS = self.LOBATTO_COORDS
113
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
114
+
115
+ def element_inner_weight(
116
+ coords: Coords,
117
+ node_index_in_elt: int,
118
+ ):
119
+ node_i = node_index_in_elt // ORDER_PLUS_ONE
120
+ node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
121
+
122
+ w = float(1.0)
123
+ for k in range(ORDER_PLUS_ONE):
124
+ if k != node_i:
125
+ w *= coords[0] - LOBATTO_COORDS[k]
126
+ if k != node_j:
127
+ w *= coords[1] - LOBATTO_COORDS[k]
128
+
129
+ w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j]
130
+
131
+ return w
132
+
133
+ def element_inner_weight_linear(
134
+ coords: Coords,
135
+ node_index_in_elt: int,
136
+ ):
137
+ v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
138
+
139
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
140
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
141
+ return wx * wy
142
+
143
+ if self.ORDER == 1 and is_closed(self.family):
144
+ return cache.get_func(element_inner_weight_linear, self.name)
145
+
146
+ return cache.get_func(element_inner_weight, self.name)
147
+
148
+ def make_element_inner_weight_gradient(self):
149
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
150
+ LOBATTO_COORDS = self.LOBATTO_COORDS
151
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
152
+
153
+ def element_inner_weight_gradient(
154
+ coords: Coords,
155
+ node_index_in_elt: int,
156
+ ):
157
+ node_i = node_index_in_elt // ORDER_PLUS_ONE
158
+ node_j = node_index_in_elt - ORDER_PLUS_ONE * node_i
159
+
160
+ prefix_x = float(1.0)
161
+ prefix_y = float(1.0)
162
+ for k in range(ORDER_PLUS_ONE):
163
+ if k != node_i:
164
+ prefix_y *= coords[0] - LOBATTO_COORDS[k]
165
+ if k != node_j:
166
+ prefix_x *= coords[1] - LOBATTO_COORDS[k]
167
+
168
+ grad_x = float(0.0)
169
+ grad_y = float(0.0)
170
+
171
+ for k in range(ORDER_PLUS_ONE):
172
+ if k != node_i:
173
+ delta_x = coords[0] - LOBATTO_COORDS[k]
174
+ grad_x = grad_x * delta_x + prefix_x
175
+ prefix_x *= delta_x
176
+ if k != node_j:
177
+ delta_y = coords[1] - LOBATTO_COORDS[k]
178
+ grad_y = grad_y * delta_y + prefix_y
179
+ prefix_y *= delta_y
180
+
181
+ grad = LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * wp.vec2(grad_x, grad_y)
182
+
183
+ return grad
184
+
185
+ def element_inner_weight_gradient_linear(
186
+ coords: Coords,
187
+ node_index_in_elt: int,
188
+ ):
189
+ v = SquareBipolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
190
+
191
+ wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
192
+ wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
193
+
194
+ dx = 2.0 * v[0] - 1.0
195
+ dy = 2.0 * v[1] - 1.0
196
+
197
+ return wp.vec2(dx * wy, dy * wx)
198
+
199
+ if self.ORDER == 1 and is_closed(self.family):
200
+ return cache.get_func(element_inner_weight_gradient_linear, self.name)
201
+
202
+ return cache.get_func(element_inner_weight_gradient, self.name)
203
+
204
+ def element_node_triangulation(self):
205
+ from warp.fem.utils import grid_to_tris
206
+
207
+ return grid_to_tris(self.ORDER, self.ORDER)
208
+
209
+
210
+ class SquareSerendipityShapeFunctions:
211
+ """
212
+ Serendipity element ~ tensor product space without interior nodes
213
+ Side shape functions are usual Lagrange shape functions times a linear function in the normal direction
214
+ Corner shape functions are bilinear shape functions times a function of (x^{d-1} + y^{d-1})
215
+ """
216
+
217
+ # Node categories
218
+ VERTEX = wp.constant(0)
219
+ EDGE_X = wp.constant(1)
220
+ EDGE_Y = wp.constant(2)
221
+
222
+ def __init__(self, degree: int, family: Polynomial):
223
+ if not is_closed(family):
224
+ raise ValueError("A closed polynomial family is required to define serendipity elements")
225
+
226
+ if degree not in [2, 3]:
227
+ raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
228
+
229
+ self.family = family
230
+
231
+ self.ORDER = wp.constant(degree)
232
+ self.NODES_PER_ELEMENT = wp.constant(4 * degree)
233
+ self.NODES_PER_SIDE = wp.constant(degree + 1)
234
+
235
+ lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
236
+ lagrange_scale = lagrange_scales(lobatto_coords)
237
+
238
+ NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
239
+ self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
240
+ self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
241
+ self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
242
+ self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
243
+
244
+ self.node_type_and_type_index = self._get_node_type_and_type_index()
245
+ self._node_lobatto_indices = self._get_node_lobatto_indices()
246
+
247
+ @property
248
+ def name(self) -> str:
249
+ return f"Square_S{self.ORDER}_{self.family}"
250
+
251
+ def _get_node_type_and_type_index(self):
252
+ @cache.dynamic_func(suffix=self.name)
253
+ def node_type_and_index(
254
+ node_index_in_elt: int,
255
+ ):
256
+ if node_index_in_elt < 4:
257
+ return SquareSerendipityShapeFunctions.VERTEX, node_index_in_elt
258
+
259
+ type_index = (node_index_in_elt - 4) // 2
260
+ side = node_index_in_elt - 4 - 2 * type_index
261
+ return SquareSerendipityShapeFunctions.EDGE_X + side, type_index
262
+
263
+ return node_type_and_index
264
+
265
+ @wp.func
266
+ def side_offset_and_index(type_index: int):
267
+ index_in_side = type_index // 2
268
+ side_offset = type_index - 2 * index_in_side
269
+
270
+ return side_offset, index_in_side
271
+
272
+ def _get_node_lobatto_indices(self):
273
+ ORDER = self.ORDER
274
+
275
+ @cache.dynamic_func(suffix=self.name)
276
+ def node_lobatto_indices(node_type: int, type_index: int):
277
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
278
+ node_i = type_index // 2
279
+ node_j = type_index - 2 * node_i
280
+ return node_i * ORDER, node_j * ORDER
281
+
282
+ side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
283
+
284
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
285
+ node_i = 1 + index_in_side
286
+ node_j = side_offset * ORDER
287
+ else:
288
+ node_j = 1 + index_in_side
289
+ node_i = side_offset * ORDER
290
+
291
+ return node_i, node_j
292
+
293
+ return node_lobatto_indices
294
+
295
+ def make_node_coords_in_element(self):
296
+ LOBATTO_COORDS = self.LOBATTO_COORDS
297
+
298
+ @cache.dynamic_func(suffix=self.name)
299
+ def node_coords_in_element(
300
+ node_index_in_elt: int,
301
+ ):
302
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
303
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
304
+ return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], 0.0)
305
+
306
+ return node_coords_in_element
307
+
308
+ def make_node_quadrature_weight(self):
309
+ ORDER = self.ORDER
310
+
311
+ @cache.dynamic_func(suffix=self.name)
312
+ def node_quadrature_weight(
313
+ node_index_in_elt: int,
314
+ ):
315
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
316
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
317
+ return 0.25 / float(ORDER * ORDER)
318
+
319
+ return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
320
+
321
+ return node_quadrature_weight
322
+
323
+ def make_trace_node_quadrature_weight(self):
324
+ LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
325
+
326
+ @cache.dynamic_func(suffix=self.name)
327
+ def trace_node_quadrature_weight(
328
+ node_index_in_elt: int,
329
+ ):
330
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
331
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
332
+ return LOBATTO_WEIGHT[0]
333
+
334
+ side_offset, index_in_side = SquareSerendipityShapeFunctions.side_offset_and_index(type_index)
335
+ return LOBATTO_WEIGHT[1 + index_in_side]
336
+
337
+ return trace_node_quadrature_weight
338
+
339
+ def make_element_inner_weight(self):
340
+ ORDER = self.ORDER
341
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
342
+
343
+ LOBATTO_COORDS = self.LOBATTO_COORDS
344
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
345
+
346
+ DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
347
+ DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
348
+
349
+ @cache.dynamic_func(suffix=self.name)
350
+ def element_inner_weight(
351
+ coords: Coords,
352
+ node_index_in_elt: int,
353
+ ):
354
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
355
+
356
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
357
+
358
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
359
+ cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
360
+ cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
361
+
362
+ w = cx * cy
363
+
364
+ if ORDER == 2:
365
+ w *= cx + cy - 2.0 + LOBATTO_COORDS[1]
366
+ return w * LAGRANGE_SCALE[0]
367
+ if ORDER == 3:
368
+ w *= (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
369
+ return w * DEGREE_3_CIRCLE_SCALE
370
+
371
+ w = float(1.0)
372
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
373
+ w *= wp.select(node_i == 0, coords[0], 1.0 - coords[0])
374
+ else:
375
+ for k in range(ORDER_PLUS_ONE):
376
+ if k != node_i:
377
+ w *= coords[0] - LOBATTO_COORDS[k]
378
+
379
+ w *= LAGRANGE_SCALE[node_i]
380
+
381
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
382
+ w *= wp.select(node_j == 0, coords[1], 1.0 - coords[1])
383
+ else:
384
+ for k in range(ORDER_PLUS_ONE):
385
+ if k != node_j:
386
+ w *= coords[1] - LOBATTO_COORDS[k]
387
+ w *= LAGRANGE_SCALE[node_j]
388
+
389
+ return w
390
+
391
+ return element_inner_weight
392
+
393
+ def make_element_inner_weight_gradient(self):
394
+ ORDER = self.ORDER
395
+ ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
396
+ LOBATTO_COORDS = self.LOBATTO_COORDS
397
+ LAGRANGE_SCALE = self.LAGRANGE_SCALE
398
+
399
+ DEGREE_3_CIRCLE_RAD = wp.constant(0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
400
+ DEGREE_3_CIRCLE_SCALE = 1.0 / (0.5 - DEGREE_3_CIRCLE_RAD)
401
+
402
+ @cache.dynamic_func(suffix=self.name)
403
+ def element_inner_weight_gradient(
404
+ coords: Coords,
405
+ node_index_in_elt: int,
406
+ ):
407
+ node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
408
+
409
+ node_i, node_j = self._node_lobatto_indices(node_type, type_index)
410
+
411
+ if node_type == SquareSerendipityShapeFunctions.VERTEX:
412
+ cx = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
413
+ cy = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
414
+
415
+ gx = wp.select(node_i == 0, 1.0, -1.0)
416
+ gy = wp.select(node_j == 0, 1.0, -1.0)
417
+
418
+ if ORDER == 2:
419
+ w = cx + cy - 2.0 + LOBATTO_COORDS[1]
420
+ grad_x = cy * gx * (w + cx)
421
+ grad_y = cx * gy * (w + cy)
422
+
423
+ return wp.vec2(grad_x, grad_y) * LAGRANGE_SCALE[0]
424
+
425
+ if ORDER == 3:
426
+ w = (cx - 0.5) * (cx - 0.5) + (cy - 0.5) * (cy - 0.5) - DEGREE_3_CIRCLE_RAD
427
+
428
+ dw_dcx = 2.0 * cx - 1.0
429
+ dw_dcy = 2.0 * cy - 1.0
430
+ grad_x = cy * gx * (w + cx * dw_dcx)
431
+ grad_y = cx * gy * (w + cy * dw_dcy)
432
+
433
+ return wp.vec2(grad_x, grad_y) * DEGREE_3_CIRCLE_SCALE
434
+
435
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
436
+ prefix_x = wp.select(node_j == 0, coords[1], 1.0 - coords[1])
437
+ else:
438
+ prefix_x = LAGRANGE_SCALE[node_j]
439
+ for k in range(ORDER_PLUS_ONE):
440
+ if k != node_j:
441
+ prefix_x *= coords[1] - LOBATTO_COORDS[k]
442
+
443
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
444
+ prefix_y = wp.select(node_i == 0, coords[0], 1.0 - coords[0])
445
+ else:
446
+ prefix_y = LAGRANGE_SCALE[node_i]
447
+ for k in range(ORDER_PLUS_ONE):
448
+ if k != node_i:
449
+ prefix_y *= coords[0] - LOBATTO_COORDS[k]
450
+
451
+ if node_type == SquareSerendipityShapeFunctions.EDGE_X:
452
+ grad_y = wp.select(node_j == 0, 1.0, -1.0) * prefix_y
453
+ else:
454
+ prefix_y *= LAGRANGE_SCALE[node_j]
455
+ grad_y = float(0.0)
456
+ for k in range(ORDER_PLUS_ONE):
457
+ if k != node_j:
458
+ delta_y = coords[1] - LOBATTO_COORDS[k]
459
+ grad_y = grad_y * delta_y + prefix_y
460
+ prefix_y *= delta_y
461
+
462
+ if node_type == SquareSerendipityShapeFunctions.EDGE_Y:
463
+ grad_x = wp.select(node_i == 0, 1.0, -1.0) * prefix_x
464
+ else:
465
+ prefix_x *= LAGRANGE_SCALE[node_i]
466
+ grad_x = float(0.0)
467
+ for k in range(ORDER_PLUS_ONE):
468
+ if k != node_i:
469
+ delta_x = coords[0] - LOBATTO_COORDS[k]
470
+ grad_x = grad_x * delta_x + prefix_x
471
+ prefix_x *= delta_x
472
+
473
+ grad = wp.vec2(grad_x, grad_y)
474
+ return grad
475
+
476
+ return element_inner_weight_gradient
477
+
478
+ def element_node_triangulation(self):
479
+ if self.ORDER == 2:
480
+ element_triangles = [
481
+ [0, 4, 5],
482
+ [5, 4, 6],
483
+ [5, 6, 1],
484
+ [4, 2, 7],
485
+ [4, 7, 6],
486
+ [6, 7, 3],
487
+ ]
488
+ else:
489
+ element_triangles = [
490
+ [0, 4, 5],
491
+ [2, 7, 8],
492
+ [3, 10, 11],
493
+ [1, 9, 6],
494
+ [5, 6, 9],
495
+ [5, 4, 6],
496
+ [8, 11, 10],
497
+ [8, 7, 11],
498
+ [4, 8, 10],
499
+ [4, 10, 6],
500
+ ]
501
+
502
+ return element_triangles
503
+
504
+
505
+ class SquareNonConformingPolynomialShapeFunctions:
506
+ # embeds the largest equilateral triangle centered at (0.5, 0.5) into the reference square
507
+ _tri_height = 0.75
508
+ _tri_side = 2.0 / math.sqrt(3.0) * _tri_height
509
+ _tri_to_square = np.array([[_tri_side, _tri_side / 2.0], [0.0, _tri_height]])
510
+
511
+ _TRI_OFFSET = wp.constant(wp.vec2(0.5 - 0.5 * _tri_side, 0.5 - _tri_height / 3.0))
512
+
513
+ def __init__(self, degree: int):
514
+ self._tri_shape = Triangle2DPolynomialShapeFunctions(degree=degree)
515
+ self.ORDER = self._tri_shape.ORDER
516
+ self.NODES_PER_ELEMENT = self._tri_shape.NODES_PER_ELEMENT
517
+
518
+ self.element_node_triangulation = self._tri_shape.element_node_triangulation
519
+
520
+ @property
521
+ def name(self) -> str:
522
+ return f"Square_P{self.ORDER}d"
523
+
524
+ def make_node_coords_in_element(self):
525
+ node_coords_in_tet = self._tri_shape.make_node_coords_in_element()
526
+
527
+ TRI_TO_SQUARE = wp.constant(wp.mat22(self._tri_to_square))
528
+
529
+ @cache.dynamic_func(suffix=self.name)
530
+ def node_coords_in_element(
531
+ node_index_in_elt: int,
532
+ ):
533
+ tri_coords = node_coords_in_tet(node_index_in_elt)
534
+ coords = (
535
+ TRI_TO_SQUARE * wp.vec2(tri_coords[1], tri_coords[2])
536
+ ) + SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
537
+ return Coords(coords[0], coords[1], 0.0)
538
+
539
+ return node_coords_in_element
540
+
541
+ def make_node_quadrature_weight(self):
542
+ NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
543
+
544
+ if self.ORDER == 2:
545
+ # Intrinsic quadrature (order 2)
546
+ @cache.dynamic_func(suffix=self.name)
547
+ def node_quadrature_weight_quadratic(
548
+ node_index_in_elt: int,
549
+ ):
550
+ node_type, type_index = self._tri_shape.node_type_and_type_index(node_index_in_elt)
551
+ if node_type == Triangle2DPolynomialShapeFunctions.VERTEX:
552
+ return 0.18518521
553
+ return 0.14814811
554
+
555
+ return node_quadrature_weight_quadratic
556
+
557
+ @cache.dynamic_func(suffix=self.name)
558
+ def node_uniform_quadrature_weight(
559
+ node_index_in_elt: int,
560
+ ):
561
+ return 1.0 / float(NODES_PER_ELEMENT)
562
+
563
+ return node_uniform_quadrature_weight
564
+
565
+ def make_trace_node_quadrature_weight(self):
566
+ # Non-conforming, zero measure on sides
567
+
568
+ @wp.func
569
+ def zero(node_index_in_elt: int):
570
+ return 0.0
571
+
572
+ return zero
573
+
574
+ def make_element_inner_weight(self):
575
+ tri_inner_weight = self._tri_shape.make_element_inner_weight()
576
+
577
+ SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
578
+
579
+ @cache.dynamic_func(suffix=self.name)
580
+ def element_inner_weight(
581
+ coords: Coords,
582
+ node_index_in_elt: int,
583
+ ):
584
+ tri_param = SQUARE_TO_TRI * (
585
+ wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
586
+ )
587
+ tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
588
+
589
+ return tri_inner_weight(tri_coords, node_index_in_elt)
590
+
591
+ return element_inner_weight
592
+
593
+ def make_element_inner_weight_gradient(self):
594
+ tri_inner_weight_gradient = self._tri_shape.make_element_inner_weight_gradient()
595
+
596
+ SQUARE_TO_TRI = wp.constant(wp.mat22(np.linalg.inv(self._tri_to_square)))
597
+
598
+ @cache.dynamic_func(suffix=self.name)
599
+ def element_inner_weight_gradient(
600
+ coords: Coords,
601
+ node_index_in_elt: int,
602
+ ):
603
+ tri_param = SQUARE_TO_TRI * (
604
+ wp.vec2(coords[0], coords[1]) - SquareNonConformingPolynomialShapeFunctions._TRI_OFFSET
605
+ )
606
+ tri_coords = Coords(1.0 - tri_param[0] - tri_param[1], tri_param[0], tri_param[1])
607
+
608
+ grad = tri_inner_weight_gradient(tri_coords, node_index_in_elt)
609
+ return wp.transpose(SQUARE_TO_TRI) * grad
610
+
611
+ return element_inner_weight_gradient