warp-lang 1.0.1__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +108 -97
  2. warp/__init__.pyi +1 -1
  3. warp/bin/libwarp-clang.dylib +0 -0
  4. warp/bin/libwarp.dylib +0 -0
  5. warp/build.py +115 -113
  6. warp/build_dll.py +383 -375
  7. warp/builtins.py +3425 -3354
  8. warp/codegen.py +2878 -2792
  9. warp/config.py +40 -36
  10. warp/constants.py +45 -45
  11. warp/context.py +5194 -5102
  12. warp/dlpack.py +442 -442
  13. warp/examples/__init__.py +16 -16
  14. warp/examples/assets/bear.usd +0 -0
  15. warp/examples/assets/bunny.usd +0 -0
  16. warp/examples/assets/cartpole.urdf +110 -110
  17. warp/examples/assets/crazyflie.usd +0 -0
  18. warp/examples/assets/cube.usd +0 -0
  19. warp/examples/assets/nv_ant.xml +92 -92
  20. warp/examples/assets/nv_humanoid.xml +183 -183
  21. warp/examples/assets/quadruped.urdf +267 -267
  22. warp/examples/assets/rocks.nvdb +0 -0
  23. warp/examples/assets/rocks.usd +0 -0
  24. warp/examples/assets/sphere.usd +0 -0
  25. warp/examples/benchmarks/benchmark_api.py +383 -383
  26. warp/examples/benchmarks/benchmark_cloth.py +278 -279
  27. warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
  28. warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
  29. warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
  30. warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
  31. warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
  32. warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
  33. warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
  34. warp/examples/benchmarks/benchmark_launches.py +295 -295
  35. warp/examples/browse.py +29 -28
  36. warp/examples/core/example_dem.py +234 -221
  37. warp/examples/core/example_fluid.py +293 -267
  38. warp/examples/core/example_graph_capture.py +144 -129
  39. warp/examples/core/example_marching_cubes.py +188 -176
  40. warp/examples/core/example_mesh.py +174 -154
  41. warp/examples/core/example_mesh_intersect.py +205 -193
  42. warp/examples/core/example_nvdb.py +176 -169
  43. warp/examples/core/example_raycast.py +105 -89
  44. warp/examples/core/example_raymarch.py +199 -178
  45. warp/examples/core/example_render_opengl.py +185 -141
  46. warp/examples/core/example_sph.py +405 -389
  47. warp/examples/core/example_torch.py +222 -181
  48. warp/examples/core/example_wave.py +263 -249
  49. warp/examples/fem/bsr_utils.py +378 -380
  50. warp/examples/fem/example_apic_fluid.py +407 -391
  51. warp/examples/fem/example_convection_diffusion.py +182 -168
  52. warp/examples/fem/example_convection_diffusion_dg.py +219 -209
  53. warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
  54. warp/examples/fem/example_deformed_geometry.py +177 -159
  55. warp/examples/fem/example_diffusion.py +201 -173
  56. warp/examples/fem/example_diffusion_3d.py +177 -152
  57. warp/examples/fem/example_diffusion_mgpu.py +221 -214
  58. warp/examples/fem/example_mixed_elasticity.py +244 -222
  59. warp/examples/fem/example_navier_stokes.py +259 -243
  60. warp/examples/fem/example_stokes.py +220 -192
  61. warp/examples/fem/example_stokes_transfer.py +265 -249
  62. warp/examples/fem/mesh_utils.py +133 -109
  63. warp/examples/fem/plot_utils.py +292 -287
  64. warp/examples/optim/example_bounce.py +260 -248
  65. warp/examples/optim/example_cloth_throw.py +222 -210
  66. warp/examples/optim/example_diffray.py +566 -535
  67. warp/examples/optim/example_drone.py +864 -835
  68. warp/examples/optim/example_inverse_kinematics.py +176 -169
  69. warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
  70. warp/examples/optim/example_spring_cage.py +239 -234
  71. warp/examples/optim/example_trajectory.py +223 -201
  72. warp/examples/optim/example_walker.py +306 -292
  73. warp/examples/sim/example_cartpole.py +139 -128
  74. warp/examples/sim/example_cloth.py +196 -184
  75. warp/examples/sim/example_granular.py +124 -113
  76. warp/examples/sim/example_granular_collision_sdf.py +197 -185
  77. warp/examples/sim/example_jacobian_ik.py +236 -213
  78. warp/examples/sim/example_particle_chain.py +118 -106
  79. warp/examples/sim/example_quadruped.py +193 -179
  80. warp/examples/sim/example_rigid_chain.py +197 -189
  81. warp/examples/sim/example_rigid_contact.py +189 -176
  82. warp/examples/sim/example_rigid_force.py +127 -126
  83. warp/examples/sim/example_rigid_gyroscopic.py +109 -97
  84. warp/examples/sim/example_rigid_soft_contact.py +134 -124
  85. warp/examples/sim/example_soft_body.py +190 -178
  86. warp/fabric.py +337 -335
  87. warp/fem/__init__.py +60 -27
  88. warp/fem/cache.py +401 -388
  89. warp/fem/dirichlet.py +178 -179
  90. warp/fem/domain.py +262 -263
  91. warp/fem/field/__init__.py +100 -101
  92. warp/fem/field/field.py +148 -149
  93. warp/fem/field/nodal_field.py +298 -299
  94. warp/fem/field/restriction.py +22 -21
  95. warp/fem/field/test.py +180 -181
  96. warp/fem/field/trial.py +183 -183
  97. warp/fem/geometry/__init__.py +15 -19
  98. warp/fem/geometry/closest_point.py +69 -70
  99. warp/fem/geometry/deformed_geometry.py +270 -271
  100. warp/fem/geometry/element.py +744 -744
  101. warp/fem/geometry/geometry.py +184 -186
  102. warp/fem/geometry/grid_2d.py +380 -373
  103. warp/fem/geometry/grid_3d.py +441 -435
  104. warp/fem/geometry/hexmesh.py +953 -953
  105. warp/fem/geometry/partition.py +374 -376
  106. warp/fem/geometry/quadmesh_2d.py +532 -532
  107. warp/fem/geometry/tetmesh.py +840 -840
  108. warp/fem/geometry/trimesh_2d.py +577 -577
  109. warp/fem/integrate.py +1630 -1615
  110. warp/fem/operator.py +190 -191
  111. warp/fem/polynomial.py +214 -213
  112. warp/fem/quadrature/__init__.py +2 -2
  113. warp/fem/quadrature/pic_quadrature.py +243 -245
  114. warp/fem/quadrature/quadrature.py +295 -294
  115. warp/fem/space/__init__.py +294 -292
  116. warp/fem/space/basis_space.py +488 -489
  117. warp/fem/space/collocated_function_space.py +100 -105
  118. warp/fem/space/dof_mapper.py +236 -236
  119. warp/fem/space/function_space.py +148 -145
  120. warp/fem/space/grid_2d_function_space.py +267 -267
  121. warp/fem/space/grid_3d_function_space.py +305 -306
  122. warp/fem/space/hexmesh_function_space.py +350 -352
  123. warp/fem/space/partition.py +350 -350
  124. warp/fem/space/quadmesh_2d_function_space.py +368 -369
  125. warp/fem/space/restriction.py +158 -160
  126. warp/fem/space/shape/__init__.py +13 -15
  127. warp/fem/space/shape/cube_shape_function.py +738 -738
  128. warp/fem/space/shape/shape_function.py +102 -103
  129. warp/fem/space/shape/square_shape_function.py +611 -611
  130. warp/fem/space/shape/tet_shape_function.py +565 -567
  131. warp/fem/space/shape/triangle_shape_function.py +429 -429
  132. warp/fem/space/tetmesh_function_space.py +294 -292
  133. warp/fem/space/topology.py +297 -295
  134. warp/fem/space/trimesh_2d_function_space.py +223 -221
  135. warp/fem/types.py +77 -77
  136. warp/fem/utils.py +495 -495
  137. warp/jax.py +166 -141
  138. warp/jax_experimental.py +341 -339
  139. warp/native/array.h +1072 -1025
  140. warp/native/builtin.h +1560 -1560
  141. warp/native/bvh.cpp +398 -398
  142. warp/native/bvh.cu +525 -525
  143. warp/native/bvh.h +429 -429
  144. warp/native/clang/clang.cpp +495 -464
  145. warp/native/crt.cpp +31 -31
  146. warp/native/crt.h +334 -334
  147. warp/native/cuda_crt.h +1049 -1049
  148. warp/native/cuda_util.cpp +549 -540
  149. warp/native/cuda_util.h +288 -203
  150. warp/native/cutlass_gemm.cpp +34 -34
  151. warp/native/cutlass_gemm.cu +372 -372
  152. warp/native/error.cpp +66 -66
  153. warp/native/error.h +27 -27
  154. warp/native/fabric.h +228 -228
  155. warp/native/hashgrid.cpp +301 -278
  156. warp/native/hashgrid.cu +78 -77
  157. warp/native/hashgrid.h +227 -227
  158. warp/native/initializer_array.h +32 -32
  159. warp/native/intersect.h +1204 -1204
  160. warp/native/intersect_adj.h +365 -365
  161. warp/native/intersect_tri.h +322 -322
  162. warp/native/marching.cpp +2 -2
  163. warp/native/marching.cu +497 -497
  164. warp/native/marching.h +2 -2
  165. warp/native/mat.h +1498 -1498
  166. warp/native/matnn.h +333 -333
  167. warp/native/mesh.cpp +203 -203
  168. warp/native/mesh.cu +293 -293
  169. warp/native/mesh.h +1887 -1887
  170. warp/native/nanovdb/NanoVDB.h +4782 -4782
  171. warp/native/nanovdb/PNanoVDB.h +2553 -2553
  172. warp/native/nanovdb/PNanoVDBWrite.h +294 -294
  173. warp/native/noise.h +850 -850
  174. warp/native/quat.h +1084 -1084
  175. warp/native/rand.h +299 -299
  176. warp/native/range.h +108 -108
  177. warp/native/reduce.cpp +156 -156
  178. warp/native/reduce.cu +348 -348
  179. warp/native/runlength_encode.cpp +61 -61
  180. warp/native/runlength_encode.cu +46 -46
  181. warp/native/scan.cpp +30 -30
  182. warp/native/scan.cu +36 -36
  183. warp/native/scan.h +7 -7
  184. warp/native/solid_angle.h +442 -442
  185. warp/native/sort.cpp +94 -94
  186. warp/native/sort.cu +97 -97
  187. warp/native/sort.h +14 -14
  188. warp/native/sparse.cpp +337 -337
  189. warp/native/sparse.cu +544 -544
  190. warp/native/spatial.h +630 -630
  191. warp/native/svd.h +562 -562
  192. warp/native/temp_buffer.h +30 -30
  193. warp/native/vec.h +1132 -1132
  194. warp/native/volume.cpp +297 -297
  195. warp/native/volume.cu +32 -32
  196. warp/native/volume.h +538 -538
  197. warp/native/volume_builder.cu +425 -425
  198. warp/native/volume_builder.h +19 -19
  199. warp/native/warp.cpp +1057 -1052
  200. warp/native/warp.cu +2943 -2828
  201. warp/native/warp.h +313 -305
  202. warp/optim/__init__.py +9 -9
  203. warp/optim/adam.py +120 -120
  204. warp/optim/linear.py +1104 -939
  205. warp/optim/sgd.py +104 -92
  206. warp/render/__init__.py +10 -10
  207. warp/render/render_opengl.py +3217 -3204
  208. warp/render/render_usd.py +768 -749
  209. warp/render/utils.py +152 -150
  210. warp/sim/__init__.py +52 -59
  211. warp/sim/articulation.py +685 -685
  212. warp/sim/collide.py +1594 -1590
  213. warp/sim/import_mjcf.py +489 -481
  214. warp/sim/import_snu.py +220 -221
  215. warp/sim/import_urdf.py +536 -516
  216. warp/sim/import_usd.py +887 -881
  217. warp/sim/inertia.py +316 -317
  218. warp/sim/integrator.py +234 -233
  219. warp/sim/integrator_euler.py +1956 -1956
  220. warp/sim/integrator_featherstone.py +1910 -1991
  221. warp/sim/integrator_xpbd.py +3294 -3312
  222. warp/sim/model.py +4473 -4314
  223. warp/sim/particles.py +113 -112
  224. warp/sim/render.py +417 -403
  225. warp/sim/utils.py +413 -410
  226. warp/sparse.py +1227 -1227
  227. warp/stubs.py +2109 -2469
  228. warp/tape.py +1162 -225
  229. warp/tests/__init__.py +1 -1
  230. warp/tests/__main__.py +4 -4
  231. warp/tests/assets/torus.usda +105 -105
  232. warp/tests/aux_test_class_kernel.py +26 -26
  233. warp/tests/aux_test_compile_consts_dummy.py +10 -10
  234. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
  235. warp/tests/aux_test_dependent.py +22 -22
  236. warp/tests/aux_test_grad_customs.py +23 -23
  237. warp/tests/aux_test_reference.py +11 -11
  238. warp/tests/aux_test_reference_reference.py +10 -10
  239. warp/tests/aux_test_square.py +17 -17
  240. warp/tests/aux_test_unresolved_func.py +14 -14
  241. warp/tests/aux_test_unresolved_symbol.py +14 -14
  242. warp/tests/disabled_kinematics.py +239 -239
  243. warp/tests/run_coverage_serial.py +31 -31
  244. warp/tests/test_adam.py +157 -157
  245. warp/tests/test_arithmetic.py +1124 -1124
  246. warp/tests/test_array.py +2417 -2326
  247. warp/tests/test_array_reduce.py +150 -150
  248. warp/tests/test_async.py +668 -656
  249. warp/tests/test_atomic.py +141 -141
  250. warp/tests/test_bool.py +204 -149
  251. warp/tests/test_builtins_resolution.py +1292 -1292
  252. warp/tests/test_bvh.py +164 -171
  253. warp/tests/test_closest_point_edge_edge.py +228 -228
  254. warp/tests/test_codegen.py +566 -553
  255. warp/tests/test_compile_consts.py +97 -101
  256. warp/tests/test_conditional.py +246 -246
  257. warp/tests/test_copy.py +232 -215
  258. warp/tests/test_ctypes.py +632 -632
  259. warp/tests/test_dense.py +67 -67
  260. warp/tests/test_devices.py +91 -98
  261. warp/tests/test_dlpack.py +530 -529
  262. warp/tests/test_examples.py +400 -378
  263. warp/tests/test_fabricarray.py +955 -955
  264. warp/tests/test_fast_math.py +62 -54
  265. warp/tests/test_fem.py +1277 -1278
  266. warp/tests/test_fp16.py +130 -130
  267. warp/tests/test_func.py +338 -337
  268. warp/tests/test_generics.py +571 -571
  269. warp/tests/test_grad.py +746 -640
  270. warp/tests/test_grad_customs.py +333 -336
  271. warp/tests/test_hash_grid.py +210 -164
  272. warp/tests/test_import.py +39 -39
  273. warp/tests/test_indexedarray.py +1134 -1134
  274. warp/tests/test_intersect.py +67 -67
  275. warp/tests/test_jax.py +307 -307
  276. warp/tests/test_large.py +167 -164
  277. warp/tests/test_launch.py +354 -354
  278. warp/tests/test_lerp.py +261 -261
  279. warp/tests/test_linear_solvers.py +191 -171
  280. warp/tests/test_lvalue.py +421 -493
  281. warp/tests/test_marching_cubes.py +65 -65
  282. warp/tests/test_mat.py +1801 -1827
  283. warp/tests/test_mat_lite.py +115 -115
  284. warp/tests/test_mat_scalar_ops.py +2907 -2889
  285. warp/tests/test_math.py +126 -193
  286. warp/tests/test_matmul.py +500 -499
  287. warp/tests/test_matmul_lite.py +410 -410
  288. warp/tests/test_mempool.py +188 -190
  289. warp/tests/test_mesh.py +284 -324
  290. warp/tests/test_mesh_query_aabb.py +228 -241
  291. warp/tests/test_mesh_query_point.py +692 -702
  292. warp/tests/test_mesh_query_ray.py +292 -303
  293. warp/tests/test_mlp.py +276 -276
  294. warp/tests/test_model.py +110 -110
  295. warp/tests/test_modules_lite.py +39 -39
  296. warp/tests/test_multigpu.py +163 -163
  297. warp/tests/test_noise.py +248 -248
  298. warp/tests/test_operators.py +250 -250
  299. warp/tests/test_options.py +123 -125
  300. warp/tests/test_peer.py +133 -137
  301. warp/tests/test_pinned.py +78 -78
  302. warp/tests/test_print.py +54 -54
  303. warp/tests/test_quat.py +2086 -2086
  304. warp/tests/test_rand.py +288 -288
  305. warp/tests/test_reload.py +217 -217
  306. warp/tests/test_rounding.py +179 -179
  307. warp/tests/test_runlength_encode.py +190 -190
  308. warp/tests/test_sim_grad.py +243 -0
  309. warp/tests/test_sim_kinematics.py +91 -97
  310. warp/tests/test_smoothstep.py +168 -168
  311. warp/tests/test_snippet.py +305 -266
  312. warp/tests/test_sparse.py +468 -460
  313. warp/tests/test_spatial.py +2148 -2148
  314. warp/tests/test_streams.py +486 -473
  315. warp/tests/test_struct.py +710 -675
  316. warp/tests/test_tape.py +173 -148
  317. warp/tests/test_torch.py +743 -743
  318. warp/tests/test_transient_module.py +87 -87
  319. warp/tests/test_types.py +556 -659
  320. warp/tests/test_utils.py +490 -499
  321. warp/tests/test_vec.py +1264 -1268
  322. warp/tests/test_vec_lite.py +73 -73
  323. warp/tests/test_vec_scalar_ops.py +2099 -2099
  324. warp/tests/test_verify_fp.py +94 -94
  325. warp/tests/test_volume.py +737 -736
  326. warp/tests/test_volume_write.py +255 -265
  327. warp/tests/unittest_serial.py +37 -37
  328. warp/tests/unittest_suites.py +363 -359
  329. warp/tests/unittest_utils.py +603 -578
  330. warp/tests/unused_test_misc.py +71 -71
  331. warp/tests/walkthrough_debug.py +85 -85
  332. warp/thirdparty/appdirs.py +598 -598
  333. warp/thirdparty/dlpack.py +143 -143
  334. warp/thirdparty/unittest_parallel.py +566 -561
  335. warp/torch.py +321 -295
  336. warp/types.py +4504 -4450
  337. warp/utils.py +1008 -821
  338. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
  339. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
  340. warp_lang-1.1.0.dist-info/RECORD +352 -0
  341. warp/examples/assets/cube.usda +0 -42
  342. warp/examples/assets/sphere.usda +0 -56
  343. warp/examples/assets/torus.usda +0 -105
  344. warp_lang-1.0.1.dist-info/RECORD +0 -352
  345. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
  346. {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/jax_experimental.py CHANGED
@@ -1,339 +1,341 @@
1
- # Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
2
- # NVIDIA CORPORATION and its licensors retain all intellectual property
3
- # and proprietary rights in and to this software, related documentation
4
- # and any modifications thereto. Any use, reproduction, disclosure or
5
- # distribution of this software and related documentation without an express
6
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
-
8
- import ctypes
9
- import warp as wp
10
- from warp.types import array_t, launch_bounds_t, strides_from_shape
11
- from warp.context import type_str
12
- import jax
13
- import jax.numpy as jp
14
-
15
- _jax_warp_p = None
16
-
17
- # Holder for the custom callback to keep it alive.
18
- _cc_callback = None
19
- _registered_kernels = [None]
20
- _registered_kernel_to_id = {}
21
-
22
-
23
- def jax_kernel(wp_kernel):
24
- """Create a Jax primitive from a Warp kernel.
25
-
26
- NOTE: This is an experimental feature under development.
27
-
28
- Current limitations:
29
- - All kernel arguments must be arrays.
30
- - Kernel launch dimensions are inferred from the shape of the first argument.
31
- - Input arguments are followed by output arguments in the Warp kernel definition.
32
- - There must be at least one input argument and at least one output argument.
33
- - Output shapes must match the launch dimensions (i.e., output shapes must match the shape of the first argument).
34
- - All arrays must be contiguous.
35
- - Only the CUDA backend is supported.
36
- """
37
-
38
- if _jax_warp_p == None:
39
- # Create and register the primitive
40
- _create_jax_warp_primitive()
41
- if not wp_kernel in _registered_kernel_to_id:
42
- id = len(_registered_kernels)
43
- _registered_kernels.append(wp_kernel)
44
- _registered_kernel_to_id[wp_kernel] = id
45
- else:
46
- id = _registered_kernel_to_id[wp_kernel]
47
-
48
- def bind(*args):
49
- return _jax_warp_p.bind(*args, kernel=id)
50
-
51
- return bind
52
-
53
-
54
- def _warp_custom_callback(stream, buffers, opaque, opaque_len):
55
- # The descriptor is the form
56
- # <kernel-id>|<launch-dims>|<arg-dims-list>
57
- # Example: 42|16,32|16,32;100;16,32
58
- kernel_id_str, dim_str, args_str = opaque.decode().split("|")
59
-
60
- # Get the kernel from the registry.
61
- kernel_id = int(kernel_id_str)
62
- kernel = _registered_kernels[kernel_id]
63
-
64
- # Parse launch dimensions.
65
- dims = [int(d) for d in dim_str.split(",")]
66
- bounds = launch_bounds_t(dims)
67
-
68
- # Parse arguments.
69
- arg_strings = args_str.split(";")
70
- num_args = len(arg_strings)
71
- assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
72
-
73
- # First param is the launch bounds.
74
- kernel_params = (ctypes.c_void_p * (1 + num_args))()
75
- kernel_params[0] = ctypes.addressof(bounds)
76
-
77
- # Parse array descriptors.
78
- args = []
79
- for i in range(num_args):
80
- dtype = kernel.adj.args[i].type.dtype
81
- shape = [int(d) for d in arg_strings[i].split(",")]
82
- strides = strides_from_shape(shape, dtype)
83
-
84
- arr = array_t(buffers[i], 0, len(shape), shape, strides)
85
- args.append(arr) # keep a reference
86
- arg_ptr = ctypes.addressof(arr)
87
-
88
- kernel_params[i + 1] = arg_ptr
89
-
90
- # Get current device.
91
- device = wp.device_from_jax(_get_jax_device())
92
-
93
- # Get kernel hooks.
94
- # Note: module was loaded during jit lowering.
95
- hooks = kernel.module.get_kernel_hooks(kernel, device)
96
- assert hooks.forward, "Failed to find kernel entry point"
97
-
98
- # Launch the kernel.
99
- wp.context.runtime.core.cuda_launch_kernel(
100
- device.context, hooks.forward, bounds.size, 0, kernel_params, stream
101
- )
102
-
103
-
104
- # TODO: is there a simpler way of getting the Jax "current" device?
105
- def _get_jax_device():
106
- # check if jax.default_device() context manager is active
107
- device = jax.config.jax_default_device
108
- # if default device is not set, use first device
109
- if device is None:
110
- device = jax.devices()[0]
111
- return device
112
-
113
-
114
- def _create_jax_warp_primitive():
115
- from functools import reduce
116
- import jax
117
- from jax._src.interpreters import batching
118
- from jax.interpreters import mlir
119
- from jax.interpreters.mlir import ir
120
- from jaxlib.hlo_helpers import custom_call
121
-
122
- global _jax_warp_p
123
- global _cc_callback
124
-
125
- # Create and register the primitive.
126
- # TODO add default implementation that calls the kernel via warp.
127
- _jax_warp_p = jax.core.Primitive("jax_warp")
128
- _jax_warp_p.multiple_results = True
129
-
130
- # TODO Just launch the kernel directly, but make sure the argument
131
- # shapes are massaged the same way as below so that vmap works.
132
- def impl(*args):
133
- raise Exception("Not implemented")
134
-
135
- _jax_warp_p.def_impl(impl)
136
-
137
- # Auto-batching. Make sure all the arguments are fully broadcasted
138
- # so that Warp is not confused about dimensions.
139
- def vectorized_multi_batcher(args, dims, **params):
140
- # Figure out the number of outputs.
141
- wp_kernel = _registered_kernels[params["kernel"]]
142
- output_count = len(wp_kernel.adj.args) - len(args)
143
- shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
144
- size = shape[dim]
145
- args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
146
- # Create the batched primitive.
147
- return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
148
-
149
- batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
150
-
151
- def get_vecmat_shape(warp_type):
152
- if hasattr(warp_type.dtype, "_shape_"):
153
- return warp_type.dtype._shape_
154
- return []
155
-
156
- def strip_vecmat_dimensions(warp_arg, actual_shape):
157
- shape = get_vecmat_shape(warp_arg.type)
158
- for i, s in enumerate(reversed(shape)):
159
- item = actual_shape[-i - 1]
160
- if s != item:
161
- raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
162
- return actual_shape[: len(actual_shape) - len(shape)]
163
-
164
- def collapse_into_leading_dimension(warp_arg, actual_shape):
165
- if len(actual_shape) < warp_arg.type.ndim:
166
- raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
167
- index_rest = len(actual_shape) - warp_arg.type.ndim + 1
168
- leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
169
- return [leading_size] + actual_shape[index_rest:]
170
-
171
- # Infer array dimensions from input type.
172
- def infer_dimensions(warp_arg, actual_shape):
173
- actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
174
- return collapse_into_leading_dimension(warp_arg, actual_shape)
175
-
176
- def base_type_to_jax(warp_dtype):
177
- if hasattr(warp_dtype, "_wp_scalar_type_"):
178
- return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
179
- return wp.dtype_to_jax(warp_dtype)
180
-
181
- def base_type_to_jax_ir(warp_dtype):
182
- warp_to_jax_dict = {
183
- wp.float16: ir.F16Type.get(),
184
- wp.float32: ir.F32Type.get(),
185
- wp.float64: ir.F64Type.get(),
186
- wp.int8: ir.IntegerType.get_signless(8),
187
- wp.int16: ir.IntegerType.get_signless(16),
188
- wp.int32: ir.IntegerType.get_signless(32),
189
- wp.int64: ir.IntegerType.get_signless(64),
190
- wp.uint8: ir.IntegerType.get_unsigned(8),
191
- wp.uint16: ir.IntegerType.get_unsigned(16),
192
- wp.uint32: ir.IntegerType.get_unsigned(32),
193
- wp.uint64: ir.IntegerType.get_unsigned(64),
194
- }
195
- if hasattr(warp_dtype, "_wp_scalar_type_"):
196
- warp_dtype = warp_dtype._wp_scalar_type_
197
- jax_dtype = warp_to_jax_dict.get(warp_dtype)
198
- if jax_dtype is None:
199
- raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
200
- return jax_dtype
201
-
202
- def base_type_is_compatible(warp_type, jax_ir_type):
203
- jax_ir_to_warp = {
204
- "f16": wp.float16,
205
- "f32": wp.float32,
206
- "f64": wp.float64,
207
- "i8": wp.int8,
208
- "i16": wp.int16,
209
- "i32": wp.int32,
210
- "i64": wp.int64,
211
- "ui8": wp.uint8,
212
- "ui16": wp.uint16,
213
- "ui32": wp.uint32,
214
- "ui64": wp.uint64,
215
- }
216
- expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
217
- if expected_warp_type is not None:
218
- if hasattr(warp_type, "_wp_scalar_type_"):
219
- return warp_type._wp_scalar_type_ == expected_warp_type
220
- else:
221
- return warp_type == expected_warp_type
222
- else:
223
- raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
224
-
225
- # Abstract evaluation.
226
- def jax_warp_abstract(*args, kernel=None):
227
- wp_kernel = _registered_kernels[kernel]
228
- # All the extra arguments to the warp kernel are outputs.
229
- warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
230
- # TODO. Let's just use the first input dimension to infer the output's dimensions.
231
- dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
232
- jax_outputs = []
233
- for o in warp_outputs:
234
- shape = list(dims) + list(get_vecmat_shape(o))
235
- dtype = base_type_to_jax(o.dtype)
236
- jax_outputs.append(jax.core.ShapedArray(shape, dtype))
237
- return jax_outputs
238
-
239
- _jax_warp_p.def_abstract_eval(jax_warp_abstract)
240
-
241
- # Lowering to MLIR.
242
-
243
- # Create python-land custom call target.
244
- CCALLFUNC = ctypes.CFUNCTYPE(
245
- ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
246
- )
247
- _cc_callback = CCALLFUNC(_warp_custom_callback)
248
- ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
249
-
250
- # Put the custom call into a capsule, as required by XLA.
251
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
252
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
253
- PyCapsule_New.restype = ctypes.py_object
254
- PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
255
- capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
256
-
257
- # Register the callback in XLA.
258
- jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
259
-
260
- def default_layout(shape):
261
- return range(len(shape) - 1, -1, -1)
262
-
263
- def warp_call_lowering(ctx, *args, kernel=None):
264
- if not kernel:
265
- raise Exception("Unknown kernel id " + str(kernel))
266
- wp_kernel = _registered_kernels[kernel]
267
-
268
- # TODO This may not be necessary, but it is perhaps better not to be
269
- # mucking with kernel loading while already running the workload.
270
- module = wp_kernel.module
271
- device = wp.device_from_jax(_get_jax_device())
272
- if not module.load(device):
273
- raise Exception("Could not load kernel on device")
274
-
275
- # Infer dimensions from the first input.
276
- warp_arg0 = wp_kernel.adj.args[0]
277
- actual_shape0 = ir.RankedTensorType(args[0].type).shape
278
- dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
279
- warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
280
-
281
- # Figure out the types and shapes of the input arrays.
282
- arg_strings = []
283
- operand_layouts = []
284
- for actual, warg in zip(args, wp_kernel.adj.args):
285
- wtype = warg.type
286
- rtt = ir.RankedTensorType(actual.type)
287
-
288
- if not isinstance(wtype, wp.array):
289
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
290
-
291
- if not base_type_is_compatible(wtype.dtype, rtt.element_type):
292
- raise TypeError(f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}")
293
-
294
- # Infer array dimension (by removing the vector/matrix dimensions and
295
- # collapsing the initial dimensions).
296
- shape = infer_dimensions(warg, rtt.shape)
297
-
298
- if len(shape) != wtype.ndim:
299
- raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
300
-
301
- arg_strings.append(",".join([str(d) for d in shape]))
302
- operand_layouts.append(default_layout(rtt.shape))
303
-
304
- # Figure out the types and shapes of the output arrays.
305
- result_types = []
306
- result_layouts = []
307
- for warg in wp_kernel.adj.args[len(args) :]:
308
- wtype = warg.type
309
-
310
- if not isinstance(wtype, wp.array):
311
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
312
-
313
- # Infer dimensions from the first input.
314
- arg_strings.append(",".join([str(d) for d in warp_dims]))
315
-
316
- result_shape = list(dims) + list(get_vecmat_shape(wtype))
317
- result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
318
- result_layouts.append(default_layout(result_shape))
319
-
320
- # Build opaque descriptor for callback.
321
- shape_str = ",".join([str(d) for d in warp_dims])
322
- args_str = ";".join(arg_strings)
323
- descriptor = f"{kernel}|{shape_str}|{args_str}"
324
-
325
- out = custom_call(
326
- b"warp_call",
327
- result_types=result_types,
328
- operands=args,
329
- backend_config=descriptor.encode("utf-8"),
330
- operand_layouts=operand_layouts,
331
- result_layouts=result_layouts,
332
- ).results
333
- return out
334
-
335
- mlir.register_lowering(
336
- _jax_warp_p,
337
- warp_call_lowering,
338
- platform="gpu",
339
- )
1
+ # Copyright (c) 2024 NVIDIA CORPORATION. All rights reserved.
2
+ # NVIDIA CORPORATION and its licensors retain all intellectual property
3
+ # and proprietary rights in and to this software, related documentation
4
+ # and any modifications thereto. Any use, reproduction, disclosure or
5
+ # distribution of this software and related documentation without an express
6
+ # license agreement from NVIDIA CORPORATION is strictly prohibited.
7
+
8
+ import ctypes
9
+
10
+ import jax
11
+
12
+ import warp as wp
13
+ from warp.context import type_str
14
+ from warp.types import array_t, launch_bounds_t, strides_from_shape
15
+
16
+ _jax_warp_p = None
17
+
18
+ # Holder for the custom callback to keep it alive.
19
+ _cc_callback = None
20
+ _registered_kernels = [None]
21
+ _registered_kernel_to_id = {}
22
+
23
+
24
+ def jax_kernel(wp_kernel):
25
+ """Create a Jax primitive from a Warp kernel.
26
+
27
+ NOTE: This is an experimental feature under development.
28
+
29
+ Current limitations:
30
+ - All kernel arguments must be arrays.
31
+ - Kernel launch dimensions are inferred from the shape of the first argument.
32
+ - Input arguments are followed by output arguments in the Warp kernel definition.
33
+ - There must be at least one input argument and at least one output argument.
34
+ - Output shapes must match the launch dimensions (i.e., output shapes must match the shape of the first argument).
35
+ - All arrays must be contiguous.
36
+ - Only the CUDA backend is supported.
37
+ """
38
+
39
+ if _jax_warp_p is None:
40
+ # Create and register the primitive
41
+ _create_jax_warp_primitive()
42
+ if wp_kernel not in _registered_kernel_to_id:
43
+ id = len(_registered_kernels)
44
+ _registered_kernels.append(wp_kernel)
45
+ _registered_kernel_to_id[wp_kernel] = id
46
+ else:
47
+ id = _registered_kernel_to_id[wp_kernel]
48
+
49
+ def bind(*args):
50
+ return _jax_warp_p.bind(*args, kernel=id)
51
+
52
+ return bind
53
+
54
+
55
+ def _warp_custom_callback(stream, buffers, opaque, opaque_len):
56
+ # The descriptor is the form
57
+ # <kernel-id>|<launch-dims>|<arg-dims-list>
58
+ # Example: 42|16,32|16,32;100;16,32
59
+ kernel_id_str, dim_str, args_str = opaque.decode().split("|")
60
+
61
+ # Get the kernel from the registry.
62
+ kernel_id = int(kernel_id_str)
63
+ kernel = _registered_kernels[kernel_id]
64
+
65
+ # Parse launch dimensions.
66
+ dims = [int(d) for d in dim_str.split(",")]
67
+ bounds = launch_bounds_t(dims)
68
+
69
+ # Parse arguments.
70
+ arg_strings = args_str.split(";")
71
+ num_args = len(arg_strings)
72
+ assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
73
+
74
+ # First param is the launch bounds.
75
+ kernel_params = (ctypes.c_void_p * (1 + num_args))()
76
+ kernel_params[0] = ctypes.addressof(bounds)
77
+
78
+ # Parse array descriptors.
79
+ args = []
80
+ for i in range(num_args):
81
+ dtype = kernel.adj.args[i].type.dtype
82
+ shape = [int(d) for d in arg_strings[i].split(",")]
83
+ strides = strides_from_shape(shape, dtype)
84
+
85
+ arr = array_t(buffers[i], 0, len(shape), shape, strides)
86
+ args.append(arr) # keep a reference
87
+ arg_ptr = ctypes.addressof(arr)
88
+
89
+ kernel_params[i + 1] = arg_ptr
90
+
91
+ # Get current device.
92
+ device = wp.device_from_jax(_get_jax_device())
93
+
94
+ # Get kernel hooks.
95
+ # Note: module was loaded during jit lowering.
96
+ hooks = kernel.module.get_kernel_hooks(kernel, device)
97
+ assert hooks.forward, "Failed to find kernel entry point"
98
+
99
+ # Launch the kernel.
100
+ wp.context.runtime.core.cuda_launch_kernel(device.context, hooks.forward, bounds.size, 0, kernel_params, stream)
101
+
102
+
103
+ # TODO: is there a simpler way of getting the Jax "current" device?
104
+ def _get_jax_device():
105
+ # check if jax.default_device() context manager is active
106
+ device = jax.config.jax_default_device
107
+ # if default device is not set, use first device
108
+ if device is None:
109
+ device = jax.devices()[0]
110
+ return device
111
+
112
+
113
+ def _create_jax_warp_primitive():
114
+ from functools import reduce
115
+
116
+ import jax
117
+ from jax._src.interpreters import batching
118
+ from jax.interpreters import mlir
119
+ from jax.interpreters.mlir import ir
120
+ from jaxlib.hlo_helpers import custom_call
121
+
122
+ global _jax_warp_p
123
+ global _cc_callback
124
+
125
+ # Create and register the primitive.
126
+ # TODO add default implementation that calls the kernel via warp.
127
+ _jax_warp_p = jax.core.Primitive("jax_warp")
128
+ _jax_warp_p.multiple_results = True
129
+
130
+ # TODO Just launch the kernel directly, but make sure the argument
131
+ # shapes are massaged the same way as below so that vmap works.
132
+ def impl(*args):
133
+ raise Exception("Not implemented")
134
+
135
+ _jax_warp_p.def_impl(impl)
136
+
137
+ # Auto-batching. Make sure all the arguments are fully broadcasted
138
+ # so that Warp is not confused about dimensions.
139
+ def vectorized_multi_batcher(args, dims, **params):
140
+ # Figure out the number of outputs.
141
+ wp_kernel = _registered_kernels[params["kernel"]]
142
+ output_count = len(wp_kernel.adj.args) - len(args)
143
+ shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
144
+ size = shape[dim]
145
+ args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
146
+ # Create the batched primitive.
147
+ return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
148
+
149
+ batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
150
+
151
+ def get_vecmat_shape(warp_type):
152
+ if hasattr(warp_type.dtype, "_shape_"):
153
+ return warp_type.dtype._shape_
154
+ return []
155
+
156
+ def strip_vecmat_dimensions(warp_arg, actual_shape):
157
+ shape = get_vecmat_shape(warp_arg.type)
158
+ for i, s in enumerate(reversed(shape)):
159
+ item = actual_shape[-i - 1]
160
+ if s != item:
161
+ raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
162
+ return actual_shape[: len(actual_shape) - len(shape)]
163
+
164
+ def collapse_into_leading_dimension(warp_arg, actual_shape):
165
+ if len(actual_shape) < warp_arg.type.ndim:
166
+ raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
167
+ index_rest = len(actual_shape) - warp_arg.type.ndim + 1
168
+ leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
169
+ return [leading_size] + actual_shape[index_rest:]
170
+
171
+ # Infer array dimensions from input type.
172
+ def infer_dimensions(warp_arg, actual_shape):
173
+ actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
174
+ return collapse_into_leading_dimension(warp_arg, actual_shape)
175
+
176
+ def base_type_to_jax(warp_dtype):
177
+ if hasattr(warp_dtype, "_wp_scalar_type_"):
178
+ return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
179
+ return wp.dtype_to_jax(warp_dtype)
180
+
181
+ def base_type_to_jax_ir(warp_dtype):
182
+ warp_to_jax_dict = {
183
+ wp.float16: ir.F16Type.get(),
184
+ wp.float32: ir.F32Type.get(),
185
+ wp.float64: ir.F64Type.get(),
186
+ wp.int8: ir.IntegerType.get_signless(8),
187
+ wp.int16: ir.IntegerType.get_signless(16),
188
+ wp.int32: ir.IntegerType.get_signless(32),
189
+ wp.int64: ir.IntegerType.get_signless(64),
190
+ wp.uint8: ir.IntegerType.get_unsigned(8),
191
+ wp.uint16: ir.IntegerType.get_unsigned(16),
192
+ wp.uint32: ir.IntegerType.get_unsigned(32),
193
+ wp.uint64: ir.IntegerType.get_unsigned(64),
194
+ }
195
+ if hasattr(warp_dtype, "_wp_scalar_type_"):
196
+ warp_dtype = warp_dtype._wp_scalar_type_
197
+ jax_dtype = warp_to_jax_dict.get(warp_dtype)
198
+ if jax_dtype is None:
199
+ raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
200
+ return jax_dtype
201
+
202
+ def base_type_is_compatible(warp_type, jax_ir_type):
203
+ jax_ir_to_warp = {
204
+ "f16": wp.float16,
205
+ "f32": wp.float32,
206
+ "f64": wp.float64,
207
+ "i8": wp.int8,
208
+ "i16": wp.int16,
209
+ "i32": wp.int32,
210
+ "i64": wp.int64,
211
+ "ui8": wp.uint8,
212
+ "ui16": wp.uint16,
213
+ "ui32": wp.uint32,
214
+ "ui64": wp.uint64,
215
+ }
216
+ expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
217
+ if expected_warp_type is not None:
218
+ if hasattr(warp_type, "_wp_scalar_type_"):
219
+ return warp_type._wp_scalar_type_ == expected_warp_type
220
+ else:
221
+ return warp_type == expected_warp_type
222
+ else:
223
+ raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
224
+
225
+ # Abstract evaluation.
226
+ def jax_warp_abstract(*args, kernel=None):
227
+ wp_kernel = _registered_kernels[kernel]
228
+ # All the extra arguments to the warp kernel are outputs.
229
+ warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
230
+ # TODO. Let's just use the first input dimension to infer the output's dimensions.
231
+ dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
232
+ jax_outputs = []
233
+ for o in warp_outputs:
234
+ shape = list(dims) + list(get_vecmat_shape(o))
235
+ dtype = base_type_to_jax(o.dtype)
236
+ jax_outputs.append(jax.core.ShapedArray(shape, dtype))
237
+ return jax_outputs
238
+
239
+ _jax_warp_p.def_abstract_eval(jax_warp_abstract)
240
+
241
+ # Lowering to MLIR.
242
+
243
+ # Create python-land custom call target.
244
+ CCALLFUNC = ctypes.CFUNCTYPE(
245
+ ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
246
+ )
247
+ _cc_callback = CCALLFUNC(_warp_custom_callback)
248
+ ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
249
+
250
+ # Put the custom call into a capsule, as required by XLA.
251
+ PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
252
+ PyCapsule_New = ctypes.pythonapi.PyCapsule_New
253
+ PyCapsule_New.restype = ctypes.py_object
254
+ PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
255
+ capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
256
+
257
+ # Register the callback in XLA.
258
+ jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
259
+
260
+ def default_layout(shape):
261
+ return range(len(shape) - 1, -1, -1)
262
+
263
+ def warp_call_lowering(ctx, *args, kernel=None):
264
+ if not kernel:
265
+ raise Exception("Unknown kernel id " + str(kernel))
266
+ wp_kernel = _registered_kernels[kernel]
267
+
268
+ # TODO This may not be necessary, but it is perhaps better not to be
269
+ # mucking with kernel loading while already running the workload.
270
+ module = wp_kernel.module
271
+ device = wp.device_from_jax(_get_jax_device())
272
+ if not module.load(device):
273
+ raise Exception("Could not load kernel on device")
274
+
275
+ # Infer dimensions from the first input.
276
+ warp_arg0 = wp_kernel.adj.args[0]
277
+ actual_shape0 = ir.RankedTensorType(args[0].type).shape
278
+ dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
279
+ warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
280
+
281
+ # Figure out the types and shapes of the input arrays.
282
+ arg_strings = []
283
+ operand_layouts = []
284
+ for actual, warg in zip(args, wp_kernel.adj.args):
285
+ wtype = warg.type
286
+ rtt = ir.RankedTensorType(actual.type)
287
+
288
+ if not isinstance(wtype, wp.array):
289
+ raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
290
+
291
+ if not base_type_is_compatible(wtype.dtype, rtt.element_type):
292
+ raise TypeError(
293
+ f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}"
294
+ )
295
+
296
+ # Infer array dimension (by removing the vector/matrix dimensions and
297
+ # collapsing the initial dimensions).
298
+ shape = infer_dimensions(warg, rtt.shape)
299
+
300
+ if len(shape) != wtype.ndim:
301
+ raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
302
+
303
+ arg_strings.append(",".join([str(d) for d in shape]))
304
+ operand_layouts.append(default_layout(rtt.shape))
305
+
306
+ # Figure out the types and shapes of the output arrays.
307
+ result_types = []
308
+ result_layouts = []
309
+ for warg in wp_kernel.adj.args[len(args) :]:
310
+ wtype = warg.type
311
+
312
+ if not isinstance(wtype, wp.array):
313
+ raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
314
+
315
+ # Infer dimensions from the first input.
316
+ arg_strings.append(",".join([str(d) for d in warp_dims]))
317
+
318
+ result_shape = list(dims) + list(get_vecmat_shape(wtype))
319
+ result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
320
+ result_layouts.append(default_layout(result_shape))
321
+
322
+ # Build opaque descriptor for callback.
323
+ shape_str = ",".join([str(d) for d in warp_dims])
324
+ args_str = ";".join(arg_strings)
325
+ descriptor = f"{kernel}|{shape_str}|{args_str}"
326
+
327
+ out = custom_call(
328
+ b"warp_call",
329
+ result_types=result_types,
330
+ operands=args,
331
+ backend_config=descriptor.encode("utf-8"),
332
+ operand_layouts=operand_layouts,
333
+ result_layouts=result_layouts,
334
+ ).results
335
+ return out
336
+
337
+ mlir.register_lowering(
338
+ _jax_warp_p,
339
+ warp_call_lowering,
340
+ platform="gpu",
341
+ )