warp-lang 1.0.1__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +115 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3425 -3354
- warp/codegen.py +2878 -2792
- warp/config.py +40 -36
- warp/constants.py +45 -45
- warp/context.py +5194 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +383 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -279
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
- warp/examples/benchmarks/benchmark_launches.py +295 -295
- warp/examples/browse.py +29 -28
- warp/examples/core/example_dem.py +234 -221
- warp/examples/core/example_fluid.py +293 -267
- warp/examples/core/example_graph_capture.py +144 -129
- warp/examples/core/example_marching_cubes.py +188 -176
- warp/examples/core/example_mesh.py +174 -154
- warp/examples/core/example_mesh_intersect.py +205 -193
- warp/examples/core/example_nvdb.py +176 -169
- warp/examples/core/example_raycast.py +105 -89
- warp/examples/core/example_raymarch.py +199 -178
- warp/examples/core/example_render_opengl.py +185 -141
- warp/examples/core/example_sph.py +405 -389
- warp/examples/core/example_torch.py +222 -181
- warp/examples/core/example_wave.py +263 -249
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +407 -391
- warp/examples/fem/example_convection_diffusion.py +182 -168
- warp/examples/fem/example_convection_diffusion_dg.py +219 -209
- warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
- warp/examples/fem/example_deformed_geometry.py +177 -159
- warp/examples/fem/example_diffusion.py +201 -173
- warp/examples/fem/example_diffusion_3d.py +177 -152
- warp/examples/fem/example_diffusion_mgpu.py +221 -214
- warp/examples/fem/example_mixed_elasticity.py +244 -222
- warp/examples/fem/example_navier_stokes.py +259 -243
- warp/examples/fem/example_stokes.py +220 -192
- warp/examples/fem/example_stokes_transfer.py +265 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +260 -248
- warp/examples/optim/example_cloth_throw.py +222 -210
- warp/examples/optim/example_diffray.py +566 -535
- warp/examples/optim/example_drone.py +864 -835
- warp/examples/optim/example_inverse_kinematics.py +176 -169
- warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
- warp/examples/optim/example_spring_cage.py +239 -234
- warp/examples/optim/example_trajectory.py +223 -201
- warp/examples/optim/example_walker.py +306 -292
- warp/examples/sim/example_cartpole.py +139 -128
- warp/examples/sim/example_cloth.py +196 -184
- warp/examples/sim/example_granular.py +124 -113
- warp/examples/sim/example_granular_collision_sdf.py +197 -185
- warp/examples/sim/example_jacobian_ik.py +236 -213
- warp/examples/sim/example_particle_chain.py +118 -106
- warp/examples/sim/example_quadruped.py +193 -179
- warp/examples/sim/example_rigid_chain.py +197 -189
- warp/examples/sim/example_rigid_contact.py +189 -176
- warp/examples/sim/example_rigid_force.py +127 -126
- warp/examples/sim/example_rigid_gyroscopic.py +109 -97
- warp/examples/sim/example_rigid_soft_contact.py +134 -124
- warp/examples/sim/example_soft_body.py +190 -178
- warp/fabric.py +337 -335
- warp/fem/__init__.py +60 -27
- warp/fem/cache.py +401 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +15 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +744 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +441 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1630 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +294 -292
- warp/fem/space/basis_space.py +488 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +267 -267
- warp/fem/space/grid_3d_function_space.py +305 -306
- warp/fem/space/hexmesh_function_space.py +350 -352
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +368 -369
- warp/fem/space/restriction.py +158 -160
- warp/fem/space/shape/__init__.py +13 -15
- warp/fem/space/shape/cube_shape_function.py +738 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +294 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +223 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1072 -1025
- warp/native/builtin.h +1560 -1560
- warp/native/bvh.cpp +398 -398
- warp/native/bvh.cu +525 -525
- warp/native/bvh.h +429 -429
- warp/native/clang/clang.cpp +495 -464
- warp/native/crt.cpp +31 -31
- warp/native/crt.h +334 -334
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1498 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +293 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/NanoVDB.h +4782 -4782
- warp/native/nanovdb/PNanoVDB.h +2553 -2553
- warp/native/nanovdb/PNanoVDBWrite.h +294 -294
- warp/native/noise.h +850 -850
- warp/native/quat.h +1084 -1084
- warp/native/rand.h +299 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1132 -1132
- warp/native/volume.cpp +297 -297
- warp/native/volume.cu +32 -32
- warp/native/volume.h +538 -538
- warp/native/volume_builder.cu +425 -425
- warp/native/volume_builder.h +19 -19
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2943 -2828
- warp/native/warp.h +313 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3217 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1910 -1991
- warp/sim/integrator_xpbd.py +3294 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1227 -1227
- warp/stubs.py +2109 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +22 -22
- warp/tests/aux_test_grad_customs.py +23 -23
- warp/tests/aux_test_reference.py +11 -11
- warp/tests/aux_test_reference_reference.py +10 -10
- warp/tests/aux_test_square.py +17 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +239 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +157 -157
- warp/tests/test_arithmetic.py +1124 -1124
- warp/tests/test_array.py +2417 -2326
- warp/tests/test_array_reduce.py +150 -150
- warp/tests/test_async.py +668 -656
- warp/tests/test_atomic.py +141 -141
- warp/tests/test_bool.py +204 -149
- warp/tests/test_builtins_resolution.py +1292 -1292
- warp/tests/test_bvh.py +164 -171
- warp/tests/test_closest_point_edge_edge.py +228 -228
- warp/tests/test_codegen.py +566 -553
- warp/tests/test_compile_consts.py +97 -101
- warp/tests/test_conditional.py +246 -246
- warp/tests/test_copy.py +232 -215
- warp/tests/test_ctypes.py +632 -632
- warp/tests/test_dense.py +67 -67
- warp/tests/test_devices.py +91 -98
- warp/tests/test_dlpack.py +530 -529
- warp/tests/test_examples.py +400 -378
- warp/tests/test_fabricarray.py +955 -955
- warp/tests/test_fast_math.py +62 -54
- warp/tests/test_fem.py +1277 -1278
- warp/tests/test_fp16.py +130 -130
- warp/tests/test_func.py +338 -337
- warp/tests/test_generics.py +571 -571
- warp/tests/test_grad.py +746 -640
- warp/tests/test_grad_customs.py +333 -336
- warp/tests/test_hash_grid.py +210 -164
- warp/tests/test_import.py +39 -39
- warp/tests/test_indexedarray.py +1134 -1134
- warp/tests/test_intersect.py +67 -67
- warp/tests/test_jax.py +307 -307
- warp/tests/test_large.py +167 -164
- warp/tests/test_launch.py +354 -354
- warp/tests/test_lerp.py +261 -261
- warp/tests/test_linear_solvers.py +191 -171
- warp/tests/test_lvalue.py +421 -493
- warp/tests/test_marching_cubes.py +65 -65
- warp/tests/test_mat.py +1801 -1827
- warp/tests/test_mat_lite.py +115 -115
- warp/tests/test_mat_scalar_ops.py +2907 -2889
- warp/tests/test_math.py +126 -193
- warp/tests/test_matmul.py +500 -499
- warp/tests/test_matmul_lite.py +410 -410
- warp/tests/test_mempool.py +188 -190
- warp/tests/test_mesh.py +284 -324
- warp/tests/test_mesh_query_aabb.py +228 -241
- warp/tests/test_mesh_query_point.py +692 -702
- warp/tests/test_mesh_query_ray.py +292 -303
- warp/tests/test_mlp.py +276 -276
- warp/tests/test_model.py +110 -110
- warp/tests/test_modules_lite.py +39 -39
- warp/tests/test_multigpu.py +163 -163
- warp/tests/test_noise.py +248 -248
- warp/tests/test_operators.py +250 -250
- warp/tests/test_options.py +123 -125
- warp/tests/test_peer.py +133 -137
- warp/tests/test_pinned.py +78 -78
- warp/tests/test_print.py +54 -54
- warp/tests/test_quat.py +2086 -2086
- warp/tests/test_rand.py +288 -288
- warp/tests/test_reload.py +217 -217
- warp/tests/test_rounding.py +179 -179
- warp/tests/test_runlength_encode.py +190 -190
- warp/tests/test_sim_grad.py +243 -0
- warp/tests/test_sim_kinematics.py +91 -97
- warp/tests/test_smoothstep.py +168 -168
- warp/tests/test_snippet.py +305 -266
- warp/tests/test_sparse.py +468 -460
- warp/tests/test_spatial.py +2148 -2148
- warp/tests/test_streams.py +486 -473
- warp/tests/test_struct.py +710 -675
- warp/tests/test_tape.py +173 -148
- warp/tests/test_torch.py +743 -743
- warp/tests/test_transient_module.py +87 -87
- warp/tests/test_types.py +556 -659
- warp/tests/test_utils.py +490 -499
- warp/tests/test_vec.py +1264 -1268
- warp/tests/test_vec_lite.py +73 -73
- warp/tests/test_vec_scalar_ops.py +2099 -2099
- warp/tests/test_verify_fp.py +94 -94
- warp/tests/test_volume.py +737 -736
- warp/tests/test_volume_write.py +255 -265
- warp/tests/unittest_serial.py +37 -37
- warp/tests/unittest_suites.py +363 -359
- warp/tests/unittest_utils.py +603 -578
- warp/tests/unused_test_misc.py +71 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +566 -561
- warp/torch.py +321 -295
- warp/types.py +4504 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
- warp_lang-1.1.0.dist-info/RECORD +352 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp_lang-1.0.1.dist-info/RECORD +0 -352
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/native/noise.h
CHANGED
|
@@ -1,850 +1,850 @@
|
|
|
1
|
-
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
* and proprietary rights in and to this software, related documentation
|
|
4
|
-
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
* distribution of this software and related documentation without an express
|
|
6
|
-
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
*/
|
|
8
|
-
|
|
9
|
-
#pragma once
|
|
10
|
-
|
|
11
|
-
#ifndef M_PI_F
|
|
12
|
-
#define M_PI_F 3.14159265358979323846f
|
|
13
|
-
#endif
|
|
14
|
-
|
|
15
|
-
namespace wp
|
|
16
|
-
{
|
|
17
|
-
|
|
18
|
-
inline CUDA_CALLABLE float smootherstep(float t)
|
|
19
|
-
{
|
|
20
|
-
return t * t * t * (t * (t * 6.f - 15.f) + 10.f);
|
|
21
|
-
}
|
|
22
|
-
|
|
23
|
-
inline CUDA_CALLABLE float smootherstep_gradient(float t)
|
|
24
|
-
{
|
|
25
|
-
return 30.f * t * t * (t * (t - 2.f) + 1.f);
|
|
26
|
-
}
|
|
27
|
-
|
|
28
|
-
inline CUDA_CALLABLE float smoothstep(float t)
|
|
29
|
-
{
|
|
30
|
-
return t * t * (3.f - t * 2.f);
|
|
31
|
-
}
|
|
32
|
-
|
|
33
|
-
inline CUDA_CALLABLE float smoothstep_gradient(float t)
|
|
34
|
-
{
|
|
35
|
-
return 6.f * t * (1.f - t);
|
|
36
|
-
}
|
|
37
|
-
|
|
38
|
-
inline CUDA_CALLABLE float interpolate(float a0, float a1, float t)
|
|
39
|
-
{
|
|
40
|
-
return (a1 - a0) * smootherstep(t) + a0;
|
|
41
|
-
// return (a1 - a0) * smoothstep(t) + a0;
|
|
42
|
-
// return (a1 - a0) * t + a0;
|
|
43
|
-
}
|
|
44
|
-
|
|
45
|
-
inline CUDA_CALLABLE float interpolate_gradient(float a0, float a1, float t, float d_a0, float d_a1, float d_t)
|
|
46
|
-
{
|
|
47
|
-
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
48
|
-
// return (d_a1 - d_a0) * smoothstep(t) + (a1 - a0) * smoothstep_gradient(t) * d_t + d_a0;
|
|
49
|
-
// return (d_a1 - d_a0) * t + (a1 - a0) * d_t + d_a0;
|
|
50
|
-
}
|
|
51
|
-
|
|
52
|
-
inline CUDA_CALLABLE vec2 interpolate_gradient_2d(float a0, float a1, float t, vec2& d_a0, vec2& d_a1, vec2& d_t)
|
|
53
|
-
{
|
|
54
|
-
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
55
|
-
}
|
|
56
|
-
|
|
57
|
-
inline CUDA_CALLABLE vec3 interpolate_gradient_3d(float a0, float a1, float t, vec3& d_a0, vec3& d_a1, vec3& d_t)
|
|
58
|
-
{
|
|
59
|
-
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
60
|
-
}
|
|
61
|
-
|
|
62
|
-
inline CUDA_CALLABLE vec4 interpolate_gradient_4d(float a0, float a1, float t, vec4& d_a0, vec4& d_a1, vec4& d_t)
|
|
63
|
-
{
|
|
64
|
-
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
65
|
-
}
|
|
66
|
-
|
|
67
|
-
inline CUDA_CALLABLE float random_gradient_1d(uint32 state, int ix)
|
|
68
|
-
{
|
|
69
|
-
const uint32 p1 = 73856093;
|
|
70
|
-
uint32 idx = ix*p1 + state;
|
|
71
|
-
return randf(idx, -1.f, 1.f);
|
|
72
|
-
}
|
|
73
|
-
|
|
74
|
-
inline CUDA_CALLABLE vec2 random_gradient_2d(uint32 state, int ix, int iy)
|
|
75
|
-
{
|
|
76
|
-
const uint32 p1 = 73856093;
|
|
77
|
-
const uint32 p2 = 19349663;
|
|
78
|
-
uint32 idx = ix*p1 ^ iy*p2 + state;
|
|
79
|
-
|
|
80
|
-
return normalize(sample_unit_square(idx));
|
|
81
|
-
}
|
|
82
|
-
|
|
83
|
-
inline CUDA_CALLABLE vec3 random_gradient_3d(uint32 state, int ix, int iy, int iz)
|
|
84
|
-
{
|
|
85
|
-
const uint32 p1 = 73856093;
|
|
86
|
-
const uint32 p2 = 19349663;
|
|
87
|
-
const uint32 p3 = 53471161;
|
|
88
|
-
uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 + state;
|
|
89
|
-
|
|
90
|
-
return normalize(sample_unit_cube(idx));
|
|
91
|
-
}
|
|
92
|
-
|
|
93
|
-
inline CUDA_CALLABLE vec4 random_gradient_4d(uint32 state, int ix, int iy, int iz, int it)
|
|
94
|
-
{
|
|
95
|
-
const uint32 p1 = 73856093;
|
|
96
|
-
const uint32 p2 = 19349663;
|
|
97
|
-
const uint32 p3 = 53471161;
|
|
98
|
-
const uint32 p4 = 10000019;
|
|
99
|
-
uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 ^ it*p4 + state;
|
|
100
|
-
|
|
101
|
-
return normalize(sample_unit_hypercube(idx));
|
|
102
|
-
}
|
|
103
|
-
|
|
104
|
-
inline CUDA_CALLABLE float dot_grid_gradient_1d(uint32 state, int ix, float dx)
|
|
105
|
-
{
|
|
106
|
-
float gradient = random_gradient_1d(state, ix);
|
|
107
|
-
return dx*gradient;
|
|
108
|
-
}
|
|
109
|
-
|
|
110
|
-
inline CUDA_CALLABLE float dot_grid_gradient_2d(uint32 state, int ix, int iy, float dx, float dy)
|
|
111
|
-
{
|
|
112
|
-
vec2 gradient = random_gradient_2d(state, ix, iy);
|
|
113
|
-
return (dx*gradient[0] + dy*gradient[1]);
|
|
114
|
-
}
|
|
115
|
-
|
|
116
|
-
inline CUDA_CALLABLE float dot_grid_gradient_3d(uint32 state, int ix, int iy, int iz, float dx, float dy, float dz)
|
|
117
|
-
{
|
|
118
|
-
vec3 gradient = random_gradient_3d(state, ix, iy, iz);
|
|
119
|
-
return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2]);
|
|
120
|
-
}
|
|
121
|
-
|
|
122
|
-
inline CUDA_CALLABLE float dot_grid_gradient_4d(uint32 state, int ix, int iy, int iz, int it, float dx, float dy, float dz, float dt)
|
|
123
|
-
{
|
|
124
|
-
vec4 gradient = random_gradient_4d(state, ix, iy, iz, it);
|
|
125
|
-
return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2] + dt*gradient[3]);
|
|
126
|
-
}
|
|
127
|
-
|
|
128
|
-
inline CUDA_CALLABLE float noise_1d(uint32 state, int x0, int x1, float dx)
|
|
129
|
-
{
|
|
130
|
-
//vX
|
|
131
|
-
float v0 = dot_grid_gradient_1d(state, x0, dx);
|
|
132
|
-
float v1 = dot_grid_gradient_1d(state, x1, dx-1.f);
|
|
133
|
-
|
|
134
|
-
return interpolate(v0, v1, dx);
|
|
135
|
-
}
|
|
136
|
-
|
|
137
|
-
inline CUDA_CALLABLE float noise_1d_gradient(uint32 state, int x0, int x1, float dx)
|
|
138
|
-
{
|
|
139
|
-
float gradient_x0 = random_gradient_1d(state, x0);
|
|
140
|
-
float v0 = dx * gradient_x0;
|
|
141
|
-
|
|
142
|
-
float gradient_x1 = random_gradient_1d(state, x1);
|
|
143
|
-
float v1 = (dx-1.f) * gradient_x1;
|
|
144
|
-
|
|
145
|
-
return interpolate_gradient(v0, v1, dx, gradient_x0, gradient_x1, 1.f);
|
|
146
|
-
}
|
|
147
|
-
|
|
148
|
-
inline CUDA_CALLABLE float noise_2d(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
|
|
149
|
-
{
|
|
150
|
-
//vXY
|
|
151
|
-
float v00 = dot_grid_gradient_2d(state, x0, y0, dx, dy);
|
|
152
|
-
float v10 = dot_grid_gradient_2d(state, x1, y0, dx-1.f, dy);
|
|
153
|
-
float xi0 = interpolate(v00, v10, dx);
|
|
154
|
-
|
|
155
|
-
float v01 = dot_grid_gradient_2d(state, x0, y1, dx, dy-1.f);
|
|
156
|
-
float v11 = dot_grid_gradient_2d(state, x1, y1, dx-1.f, dy-1.f);
|
|
157
|
-
float xi1 = interpolate(v01, v11, dx);
|
|
158
|
-
|
|
159
|
-
return interpolate(xi0, xi1, dy);
|
|
160
|
-
}
|
|
161
|
-
|
|
162
|
-
inline CUDA_CALLABLE vec2 noise_2d_gradient(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
|
|
163
|
-
{
|
|
164
|
-
vec2 d00 = vec2(dx, dy);
|
|
165
|
-
vec2 gradient_v00 = random_gradient_2d(state, x0, y0);
|
|
166
|
-
float v00 = dot(d00, gradient_v00);
|
|
167
|
-
|
|
168
|
-
vec2 d10 = vec2(dx-1.f, dy);
|
|
169
|
-
vec2 gradient_v10 = random_gradient_2d(state, x1, y0);
|
|
170
|
-
float v10 = dot(d10, gradient_v10);
|
|
171
|
-
|
|
172
|
-
vec2 d01 = vec2(dx, dy-1.f);
|
|
173
|
-
vec2 gradient_v01 = random_gradient_2d(state, x0, y1);
|
|
174
|
-
float v01 = dot(d01, gradient_v01);
|
|
175
|
-
|
|
176
|
-
vec2 d11 = vec2(dx-1.f, dy-1.f);
|
|
177
|
-
vec2 gradient_v11 = random_gradient_2d(state, x1, y1);
|
|
178
|
-
float v11 = dot(d11, gradient_v11);
|
|
179
|
-
|
|
180
|
-
vec2 dx_dt = vec2(1.f, 0.f);
|
|
181
|
-
|
|
182
|
-
float xi0 = interpolate(v00, v10, dx);
|
|
183
|
-
vec2 gradient_xi0 = interpolate_gradient_2d(v00, v10, dx, gradient_v00, gradient_v10, dx_dt);
|
|
184
|
-
|
|
185
|
-
float xi1 = interpolate(v01, v11, dx);
|
|
186
|
-
vec2 gradient_xi1 = interpolate_gradient_2d(v01, v11, dx, gradient_v01, gradient_v11, dx_dt);
|
|
187
|
-
|
|
188
|
-
vec2 dy_dt = vec2(0.f, 1.f);
|
|
189
|
-
|
|
190
|
-
vec2 gradient = interpolate_gradient_2d(xi0, xi1, dy, gradient_xi0, gradient_xi1, dy_dt);
|
|
191
|
-
|
|
192
|
-
return gradient;
|
|
193
|
-
}
|
|
194
|
-
|
|
195
|
-
inline CUDA_CALLABLE float noise_3d(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
|
|
196
|
-
{
|
|
197
|
-
//vXYZ
|
|
198
|
-
float v000 = dot_grid_gradient_3d(state, x0, y0, z0, dx, dy, dz);
|
|
199
|
-
float v100 = dot_grid_gradient_3d(state, x1, y0, z0, dx-1.f, dy, dz);
|
|
200
|
-
float xi00 = interpolate(v000, v100, dx);
|
|
201
|
-
|
|
202
|
-
float v010 = dot_grid_gradient_3d(state, x0, y1, z0, dx, dy-1.f, dz);
|
|
203
|
-
float v110 = dot_grid_gradient_3d(state, x1, y1, z0, dx-1.f, dy-1.f, dz);
|
|
204
|
-
float xi10 = interpolate(v010, v110, dx);
|
|
205
|
-
|
|
206
|
-
float yi0 = interpolate(xi00, xi10, dy);
|
|
207
|
-
|
|
208
|
-
float v001 = dot_grid_gradient_3d(state, x0, y0, z1, dx, dy, dz-1.f);
|
|
209
|
-
float v101 = dot_grid_gradient_3d(state, x1, y0, z1, dx-1.f, dy, dz-1.f);
|
|
210
|
-
float xi01 = interpolate(v001, v101, dx);
|
|
211
|
-
|
|
212
|
-
float v011 = dot_grid_gradient_3d(state, x0, y1, z1, dx, dy-1.f, dz-1.f);
|
|
213
|
-
float v111 = dot_grid_gradient_3d(state, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f);
|
|
214
|
-
float xi11 = interpolate(v011, v111, dx);
|
|
215
|
-
|
|
216
|
-
float yi1 = interpolate(xi01, xi11, dy);
|
|
217
|
-
|
|
218
|
-
return interpolate(yi0, yi1, dz);
|
|
219
|
-
}
|
|
220
|
-
|
|
221
|
-
inline CUDA_CALLABLE vec3 noise_3d_gradient(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
|
|
222
|
-
{
|
|
223
|
-
vec3 d000 = vec3(dx, dy, dz);
|
|
224
|
-
vec3 gradient_v000 = random_gradient_3d(state, x0, y0, z0);
|
|
225
|
-
float v000 = dot(d000, gradient_v000);
|
|
226
|
-
|
|
227
|
-
vec3 d100 = vec3(dx-1.f, dy, dz);
|
|
228
|
-
vec3 gradient_v100 = random_gradient_3d(state, x1, y0, z0);
|
|
229
|
-
float v100 = dot(d100, gradient_v100);
|
|
230
|
-
|
|
231
|
-
vec3 d010 = vec3(dx, dy-1.f, dz);
|
|
232
|
-
vec3 gradient_v010 = random_gradient_3d(state, x0, y1, z0);
|
|
233
|
-
float v010 = dot(d010, gradient_v010);
|
|
234
|
-
|
|
235
|
-
vec3 d110 = vec3(dx-1.f, dy-1.f, dz);
|
|
236
|
-
vec3 gradient_v110 = random_gradient_3d(state, x1, y1, z0);
|
|
237
|
-
float v110 = dot(d110, gradient_v110);
|
|
238
|
-
|
|
239
|
-
vec3 d001 = vec3(dx, dy, dz-1.f);
|
|
240
|
-
vec3 gradient_v001 = random_gradient_3d(state, x0, y0, z1);
|
|
241
|
-
float v001 = dot(d001, gradient_v001);
|
|
242
|
-
|
|
243
|
-
vec3 d101 = vec3(dx-1.f, dy, dz-1.f);
|
|
244
|
-
vec3 gradient_v101 = random_gradient_3d(state, x1, y0, z1);
|
|
245
|
-
float v101 = dot(d101, gradient_v101);
|
|
246
|
-
|
|
247
|
-
vec3 d011 = vec3(dx, dy-1.f, dz-1.f);
|
|
248
|
-
vec3 gradient_v011 = random_gradient_3d(state, x0, y1, z1);
|
|
249
|
-
float v011 = dot(d011, gradient_v011);
|
|
250
|
-
|
|
251
|
-
vec3 d111 = vec3(dx-1.f, dy-1.f, dz-1.f);
|
|
252
|
-
vec3 gradient_v111 = random_gradient_3d(state, x1, y1, z1);
|
|
253
|
-
float v111 = dot(d111, gradient_v111);
|
|
254
|
-
|
|
255
|
-
vec3 dx_dt = vec3(1.f, 0.f, 0.f);
|
|
256
|
-
|
|
257
|
-
float xi00 = interpolate(v000, v100, dx);
|
|
258
|
-
vec3 gradient_xi00 = interpolate_gradient_3d(v000, v100, dx, gradient_v000, gradient_v100, dx_dt);
|
|
259
|
-
|
|
260
|
-
float xi10 = interpolate(v010, v110, dx);
|
|
261
|
-
vec3 gradient_xi10 = interpolate_gradient_3d(v010, v110, dx, gradient_v010, gradient_v110, dx_dt);
|
|
262
|
-
|
|
263
|
-
float xi01 = interpolate(v001, v101, dx);
|
|
264
|
-
vec3 gradient_xi01 = interpolate_gradient_3d(v001, v101, dx, gradient_v001, gradient_v101, dx_dt);
|
|
265
|
-
|
|
266
|
-
float xi11 = interpolate(v011, v111, dx);
|
|
267
|
-
vec3 gradient_xi11 = interpolate_gradient_3d(v011, v111, dx, gradient_v011, gradient_v111, dx_dt);
|
|
268
|
-
|
|
269
|
-
vec3 dy_dt = vec3(0.f, 1.f, 0.f);
|
|
270
|
-
|
|
271
|
-
float yi0 = interpolate(xi00, xi10, dy);
|
|
272
|
-
vec3 gradient_yi0 = interpolate_gradient_3d(xi00, xi10, dy, gradient_xi00, gradient_xi10, dy_dt);
|
|
273
|
-
|
|
274
|
-
float yi1 = interpolate(xi01, xi11, dy);
|
|
275
|
-
vec3 gradient_yi1 = interpolate_gradient_3d(xi01, xi11, dy, gradient_xi01, gradient_xi11, dy_dt);
|
|
276
|
-
|
|
277
|
-
vec3 dz_dt = vec3(0.f, 0.f, 1.f);
|
|
278
|
-
|
|
279
|
-
vec3 gradient = interpolate_gradient_3d(yi0, yi1, dz, gradient_yi0, gradient_yi1, dz_dt);
|
|
280
|
-
|
|
281
|
-
return gradient;
|
|
282
|
-
}
|
|
283
|
-
|
|
284
|
-
inline CUDA_CALLABLE float noise_4d(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
|
|
285
|
-
{
|
|
286
|
-
//vXYZT
|
|
287
|
-
float v0000 = dot_grid_gradient_4d(state, x0, y0, z0, t0, dx, dy, dz, dt);
|
|
288
|
-
float v1000 = dot_grid_gradient_4d(state, x1, y0, z0, t0, dx-1.f, dy, dz, dt);
|
|
289
|
-
float xi000 = interpolate(v0000, v1000, dx);
|
|
290
|
-
|
|
291
|
-
float v0100 = dot_grid_gradient_4d(state, x0, y1, z0, t0, dx, dy-1.f, dz, dt);
|
|
292
|
-
float v1100 = dot_grid_gradient_4d(state, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt);
|
|
293
|
-
float xi100 = interpolate(v0100, v1100, dx);
|
|
294
|
-
|
|
295
|
-
float yi00 = interpolate(xi000, xi100, dy);
|
|
296
|
-
|
|
297
|
-
float v0010 = dot_grid_gradient_4d(state, x0, y0, z1, t0, dx, dy, dz-1.f, dt);
|
|
298
|
-
float v1010 = dot_grid_gradient_4d(state, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt);
|
|
299
|
-
float xi010 = interpolate(v0010, v1010, dx);
|
|
300
|
-
|
|
301
|
-
float v0110 = dot_grid_gradient_4d(state, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt);
|
|
302
|
-
float v1110 = dot_grid_gradient_4d(state, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt);
|
|
303
|
-
float xi110 = interpolate(v0110, v1110, dx);
|
|
304
|
-
|
|
305
|
-
float yi10 = interpolate(xi010, xi110, dy);
|
|
306
|
-
|
|
307
|
-
float zi0 = interpolate(yi00, yi10, dz);
|
|
308
|
-
|
|
309
|
-
float v0001 = dot_grid_gradient_4d(state, x0, y0, z0, t1, dx, dy, dz, dt-1.f);
|
|
310
|
-
float v1001 = dot_grid_gradient_4d(state, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f);
|
|
311
|
-
float xi001 = interpolate(v0001, v1001, dx);
|
|
312
|
-
|
|
313
|
-
float v0101 = dot_grid_gradient_4d(state, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f);
|
|
314
|
-
float v1101 = dot_grid_gradient_4d(state, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f);
|
|
315
|
-
float xi101 = interpolate(v0101, v1101, dx);
|
|
316
|
-
|
|
317
|
-
float yi01 = interpolate(xi001, xi101, dy);
|
|
318
|
-
|
|
319
|
-
float v0011 = dot_grid_gradient_4d(state, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f);
|
|
320
|
-
float v1011 = dot_grid_gradient_4d(state, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f);
|
|
321
|
-
float xi011 = interpolate(v0011, v1011, dx);
|
|
322
|
-
|
|
323
|
-
float v0111 = dot_grid_gradient_4d(state, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f);
|
|
324
|
-
float v1111 = dot_grid_gradient_4d(state, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f);
|
|
325
|
-
float xi111 = interpolate(v0111, v1111, dx);
|
|
326
|
-
|
|
327
|
-
float yi11 = interpolate(xi011, xi111, dy);
|
|
328
|
-
|
|
329
|
-
float zi1 = interpolate(yi01, yi11, dz);
|
|
330
|
-
|
|
331
|
-
return interpolate(zi0, zi1, dt);
|
|
332
|
-
}
|
|
333
|
-
|
|
334
|
-
inline CUDA_CALLABLE vec4 noise_4d_gradient(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
|
|
335
|
-
{
|
|
336
|
-
vec4 d0000 = vec4(dx, dy, dz, dt);
|
|
337
|
-
vec4 gradient_v0000 = random_gradient_4d(state, x0, y0, z0, t0);
|
|
338
|
-
float v0000 = dot(d0000, gradient_v0000);
|
|
339
|
-
|
|
340
|
-
vec4 d1000 = vec4(dx-1.f, dy, dz, dt);
|
|
341
|
-
vec4 gradient_v1000 = random_gradient_4d(state, x1, y0, z0, t0);
|
|
342
|
-
float v1000 = dot(d1000, gradient_v1000);
|
|
343
|
-
|
|
344
|
-
vec4 d0100 = vec4(dx, dy-1.f, dz, dt);
|
|
345
|
-
vec4 gradient_v0100 = random_gradient_4d(state, x0, y1, z0, t0);
|
|
346
|
-
float v0100 = dot(d0100, gradient_v0100);
|
|
347
|
-
|
|
348
|
-
vec4 d1100 = vec4(dx-1.f, dy-1.f, dz, dt);
|
|
349
|
-
vec4 gradient_v1100 = random_gradient_4d(state, x1, y1, z0, t0);
|
|
350
|
-
float v1100 = dot(d1100, gradient_v1100);
|
|
351
|
-
|
|
352
|
-
vec4 d0010 = vec4(dx, dy, dz-1.f, dt);
|
|
353
|
-
vec4 gradient_v0010 = random_gradient_4d(state, x0, y0, z1, t0);
|
|
354
|
-
float v0010 = dot(d0010, gradient_v0010);
|
|
355
|
-
|
|
356
|
-
vec4 d1010 = vec4(dx-1.f, dy, dz-1.f, dt);
|
|
357
|
-
vec4 gradient_v1010 = random_gradient_4d(state, x1, y0, z1, t0);
|
|
358
|
-
float v1010 = dot(d1010, gradient_v1010);
|
|
359
|
-
|
|
360
|
-
vec4 d0110 = vec4(dx, dy-1.f, dz-1.f, dt);
|
|
361
|
-
vec4 gradient_v0110 = random_gradient_4d(state, x0, y1, z1, t0);
|
|
362
|
-
float v0110 = dot(d0110, gradient_v0110);
|
|
363
|
-
|
|
364
|
-
vec4 d1110 = vec4(dx-1.f, dy-1.f, dz-1.f, dt);
|
|
365
|
-
vec4 gradient_v1110 = random_gradient_4d(state, x1, y1, z1, t0);
|
|
366
|
-
float v1110 = dot(d1110, gradient_v1110);
|
|
367
|
-
|
|
368
|
-
vec4 d0001 = vec4(dx, dy, dz, dt-1.f);
|
|
369
|
-
vec4 gradient_v0001 = random_gradient_4d(state, x0, y0, z0, t1);
|
|
370
|
-
float v0001 = dot(d0001, gradient_v0001);
|
|
371
|
-
|
|
372
|
-
vec4 d1001 = vec4(dx-1.f, dy, dz, dt-1.f);
|
|
373
|
-
vec4 gradient_v1001 = random_gradient_4d(state, x1, y0, z0, t1);
|
|
374
|
-
float v1001 = dot(d1001, gradient_v1001);
|
|
375
|
-
|
|
376
|
-
vec4 d0101 = vec4(dx, dy-1.f, dz, dt-1.f);
|
|
377
|
-
vec4 gradient_v0101 = random_gradient_4d(state, x0, y1, z0, t1);
|
|
378
|
-
float v0101 = dot(d0101, gradient_v0101);
|
|
379
|
-
|
|
380
|
-
vec4 d1101 = vec4(dx-1.f, dy-1.f, dz, dt-1.f);
|
|
381
|
-
vec4 gradient_v1101 = random_gradient_4d(state, x1, y1, z0, t1);
|
|
382
|
-
float v1101 = dot(d1101, gradient_v1101);
|
|
383
|
-
|
|
384
|
-
vec4 d0011 = vec4(dx, dy, dz-1.f, dt-1.f);
|
|
385
|
-
vec4 gradient_v0011 = random_gradient_4d(state, x0, y0, z1, t1);
|
|
386
|
-
float v0011 = dot(d0011, gradient_v0011);
|
|
387
|
-
|
|
388
|
-
vec4 d1011 = vec4(dx-1.f, dy, dz-1.f, dt-1.f);
|
|
389
|
-
vec4 gradient_v1011 = random_gradient_4d(state, x1, y0, z1, t1);
|
|
390
|
-
float v1011 = dot(d1011, gradient_v1011);
|
|
391
|
-
|
|
392
|
-
vec4 d0111 = vec4(dx, dy-1.f, dz-1.f, dt-1.f);
|
|
393
|
-
vec4 gradient_v0111 = random_gradient_4d(state, x0, y1, z1, t1);
|
|
394
|
-
float v0111 = dot(d0111, gradient_v0111);
|
|
395
|
-
|
|
396
|
-
vec4 d1111 = vec4(dx-1.f, dy-1.f, dz-1.f, dt-1.f);
|
|
397
|
-
vec4 gradient_v1111 = random_gradient_4d(state, x1, y1, z1, t1);
|
|
398
|
-
float v1111 = dot(d1111, gradient_v1111);
|
|
399
|
-
|
|
400
|
-
vec4 dx_dt = vec4(1.f, 0.f, 0.f, 0.f);
|
|
401
|
-
|
|
402
|
-
float xi000 = interpolate(v0000, v1000, dx);
|
|
403
|
-
vec4 gradient_xi000 = interpolate_gradient_4d(v0000, v1000, dx, gradient_v0000, gradient_v1000, dx_dt);
|
|
404
|
-
|
|
405
|
-
float xi100 = interpolate(v0100, v1100, dx);
|
|
406
|
-
vec4 gradient_xi100 = interpolate_gradient_4d(v0100, v1100, dx, gradient_v0100, gradient_v1100, dx_dt);
|
|
407
|
-
|
|
408
|
-
float xi010 = interpolate(v0010, v1010, dx);
|
|
409
|
-
vec4 gradient_xi010 = interpolate_gradient_4d(v0010, v1010, dx, gradient_v0010, gradient_v1010, dx_dt);
|
|
410
|
-
|
|
411
|
-
float xi110 = interpolate(v0110, v1110, dx);
|
|
412
|
-
vec4 gradient_xi110 = interpolate_gradient_4d(v0110, v1110, dx, gradient_v0110, gradient_v1110, dx_dt);
|
|
413
|
-
|
|
414
|
-
float xi001 = interpolate(v0001, v1001, dx);
|
|
415
|
-
vec4 gradient_xi001 = interpolate_gradient_4d(v0001, v1001, dx, gradient_v0001, gradient_v1001, dx_dt);
|
|
416
|
-
|
|
417
|
-
float xi101 = interpolate(v0101, v1101, dx);
|
|
418
|
-
vec4 gradient_xi101 = interpolate_gradient_4d(v0101, v1101, dx, gradient_v0101, gradient_v1101, dx_dt);
|
|
419
|
-
|
|
420
|
-
float xi011 = interpolate(v0011, v1011, dx);
|
|
421
|
-
vec4 gradient_xi011 = interpolate_gradient_4d(v0011, v1011, dx, gradient_v0011, gradient_v1011, dx_dt);
|
|
422
|
-
|
|
423
|
-
float xi111 = interpolate(v0111, v1111, dx);
|
|
424
|
-
vec4 gradient_xi111 = interpolate_gradient_4d(v0111, v1111, dx, gradient_v0111, gradient_v1111, dx_dt);
|
|
425
|
-
|
|
426
|
-
vec4 dy_dt = vec4(0.f, 1.f, 0.f, 0.f);
|
|
427
|
-
|
|
428
|
-
float yi00 = interpolate(xi000, xi100, dy);
|
|
429
|
-
vec4 gradient_yi00 = interpolate_gradient_4d(xi000, xi100, dy, gradient_xi000, gradient_xi100, dy_dt);
|
|
430
|
-
|
|
431
|
-
float yi10 = interpolate(xi010, xi110, dy);
|
|
432
|
-
vec4 gradient_yi10 = interpolate_gradient_4d(xi010, xi110, dy, gradient_xi010, gradient_xi110, dy_dt);
|
|
433
|
-
|
|
434
|
-
float yi01 = interpolate(xi001, xi101, dy);
|
|
435
|
-
vec4 gradient_yi01 = interpolate_gradient_4d(xi001, xi101, dy, gradient_xi001, gradient_xi101, dy_dt);
|
|
436
|
-
|
|
437
|
-
float yi11 = interpolate(xi011, xi111, dy);
|
|
438
|
-
vec4 gradient_yi11 = interpolate_gradient_4d(xi011, xi111, dy, gradient_xi011, gradient_xi111, dy_dt);
|
|
439
|
-
|
|
440
|
-
vec4 dz_dt = vec4(0.f, 0.f, 1.f, 0.f);
|
|
441
|
-
|
|
442
|
-
float zi0 = interpolate(yi00, yi10, dz);
|
|
443
|
-
vec4 gradient_zi0 = interpolate_gradient_4d(yi00, yi10, dz, gradient_yi00, gradient_yi10, dz_dt);
|
|
444
|
-
|
|
445
|
-
float zi1 = interpolate(yi01, yi11, dz);
|
|
446
|
-
vec4 gradient_zi1 = interpolate_gradient_4d(yi01, yi11, dz, gradient_yi01, gradient_yi11, dz_dt);
|
|
447
|
-
|
|
448
|
-
vec4 dt_dt = vec4(0.f, 0.f, 0.f, 1.f);
|
|
449
|
-
|
|
450
|
-
vec4 gradient = interpolate_gradient_4d(zi0, zi1, dt, gradient_zi0, gradient_zi1, dt_dt);
|
|
451
|
-
|
|
452
|
-
return gradient;
|
|
453
|
-
}
|
|
454
|
-
|
|
455
|
-
// non-periodic Perlin noise
|
|
456
|
-
|
|
457
|
-
inline CUDA_CALLABLE float noise(uint32 state, float x)
|
|
458
|
-
{
|
|
459
|
-
float dx = x - floor(x);
|
|
460
|
-
|
|
461
|
-
int x0 = (int)floor(x);
|
|
462
|
-
int x1 = x0 + 1;
|
|
463
|
-
|
|
464
|
-
return noise_1d(state, x0, x1, dx);
|
|
465
|
-
}
|
|
466
|
-
|
|
467
|
-
inline CUDA_CALLABLE void adj_noise(uint32 state, float x, uint32& adj_state, float& adj_x, const float adj_ret)
|
|
468
|
-
{
|
|
469
|
-
float dx = x - floor(x);
|
|
470
|
-
|
|
471
|
-
int x0 = (int)floor(x);
|
|
472
|
-
int x1 = x0 + 1;
|
|
473
|
-
|
|
474
|
-
float gradient = noise_1d_gradient(state, x0, x1, dx);
|
|
475
|
-
adj_x += gradient * adj_ret;
|
|
476
|
-
}
|
|
477
|
-
|
|
478
|
-
inline CUDA_CALLABLE float noise(uint32 state, const vec2& xy)
|
|
479
|
-
{
|
|
480
|
-
float dx = xy[0] - floor(xy[0]);
|
|
481
|
-
float dy = xy[1] - floor(xy[1]);
|
|
482
|
-
|
|
483
|
-
int x0 = (int)floor(xy[0]);
|
|
484
|
-
int y0 = (int)floor(xy[1]);
|
|
485
|
-
|
|
486
|
-
int x1 = x0 + 1;
|
|
487
|
-
int y1 = y0 + 1;
|
|
488
|
-
|
|
489
|
-
return noise_2d(state, x0, y0, x1, y1, dx, dy);
|
|
490
|
-
}
|
|
491
|
-
|
|
492
|
-
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec2& xy, uint32& adj_state, vec2& adj_xy, const float adj_ret)
|
|
493
|
-
{
|
|
494
|
-
float dx = xy[0] - floor(xy[0]);
|
|
495
|
-
float dy = xy[1] - floor(xy[1]);
|
|
496
|
-
|
|
497
|
-
int x0 = (int)floor(xy[0]);
|
|
498
|
-
int y0 = (int)floor(xy[1]);
|
|
499
|
-
|
|
500
|
-
int x1 = x0 + 1;
|
|
501
|
-
int y1 = y0 + 1;
|
|
502
|
-
|
|
503
|
-
vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
504
|
-
|
|
505
|
-
adj_xy[0] += gradient[0] * adj_ret;
|
|
506
|
-
adj_xy[1] += gradient[1] * adj_ret;
|
|
507
|
-
}
|
|
508
|
-
|
|
509
|
-
inline CUDA_CALLABLE float noise(uint32 state, const vec3& xyz)
|
|
510
|
-
{
|
|
511
|
-
float dx = xyz[0] - floor(xyz[0]);
|
|
512
|
-
float dy = xyz[1] - floor(xyz[1]);
|
|
513
|
-
float dz = xyz[2] - floor(xyz[2]);
|
|
514
|
-
|
|
515
|
-
int x0 = (int)floor(xyz[0]);
|
|
516
|
-
int y0 = (int)floor(xyz[1]);
|
|
517
|
-
int z0 = (int)floor(xyz[2]);
|
|
518
|
-
|
|
519
|
-
int x1 = x0 + 1;
|
|
520
|
-
int y1 = y0 + 1;
|
|
521
|
-
int z1 = z0 + 1;
|
|
522
|
-
|
|
523
|
-
return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
524
|
-
}
|
|
525
|
-
|
|
526
|
-
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec3& xyz, uint32& adj_state, vec3& adj_xyz, const float adj_ret)
|
|
527
|
-
{
|
|
528
|
-
float dx = xyz[0] - floor(xyz[0]);
|
|
529
|
-
float dy = xyz[1] - floor(xyz[1]);
|
|
530
|
-
float dz = xyz[2] - floor(xyz[2]);
|
|
531
|
-
|
|
532
|
-
int x0 = (int)floor(xyz[0]);
|
|
533
|
-
int y0 = (int)floor(xyz[1]);
|
|
534
|
-
int z0 = (int)floor(xyz[2]);
|
|
535
|
-
|
|
536
|
-
int x1 = x0 + 1;
|
|
537
|
-
int y1 = y0 + 1;
|
|
538
|
-
int z1 = z0 + 1;
|
|
539
|
-
|
|
540
|
-
vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
541
|
-
adj_xyz[0] += gradient[0] * adj_ret;
|
|
542
|
-
adj_xyz[1] += gradient[1] * adj_ret;
|
|
543
|
-
adj_xyz[2] += gradient[2] * adj_ret;
|
|
544
|
-
}
|
|
545
|
-
|
|
546
|
-
inline CUDA_CALLABLE float noise(uint32 state, const vec4& xyzt)
|
|
547
|
-
{
|
|
548
|
-
float dx = xyzt[0] - floor(xyzt[0]);
|
|
549
|
-
float dy = xyzt[1] - floor(xyzt[1]);
|
|
550
|
-
float dz = xyzt[2] - floor(xyzt[2]);
|
|
551
|
-
float dt = xyzt[3] - floor(xyzt[3]);
|
|
552
|
-
|
|
553
|
-
int x0 = (int)floor(xyzt[0]);
|
|
554
|
-
int y0 = (int)floor(xyzt[1]);
|
|
555
|
-
int z0 = (int)floor(xyzt[2]);
|
|
556
|
-
int t0 = (int)floor(xyzt[3]);
|
|
557
|
-
|
|
558
|
-
int x1 = x0 + 1;
|
|
559
|
-
int y1 = y0 + 1;
|
|
560
|
-
int z1 = z0 + 1;
|
|
561
|
-
int t1 = t0 + 1;
|
|
562
|
-
|
|
563
|
-
return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
564
|
-
}
|
|
565
|
-
|
|
566
|
-
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec4& xyzt, uint32& adj_state, vec4& adj_xyzt, const float adj_ret)
|
|
567
|
-
{
|
|
568
|
-
float dx = xyzt[0] - floor(xyzt[0]);
|
|
569
|
-
float dy = xyzt[1] - floor(xyzt[1]);
|
|
570
|
-
float dz = xyzt[2] - floor(xyzt[2]);
|
|
571
|
-
float dt = xyzt[3] - floor(xyzt[3]);
|
|
572
|
-
|
|
573
|
-
int x0 = (int)floor(xyzt[0]);
|
|
574
|
-
int y0 = (int)floor(xyzt[1]);
|
|
575
|
-
int z0 = (int)floor(xyzt[2]);
|
|
576
|
-
int t0 = (int)floor(xyzt[3]);
|
|
577
|
-
|
|
578
|
-
int x1 = x0 + 1;
|
|
579
|
-
int y1 = y0 + 1;
|
|
580
|
-
int z1 = z0 + 1;
|
|
581
|
-
int t1 = t0 + 1;
|
|
582
|
-
|
|
583
|
-
vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
584
|
-
|
|
585
|
-
adj_xyzt[0] += gradient[0] * adj_ret;
|
|
586
|
-
adj_xyzt[1] += gradient[1] * adj_ret;
|
|
587
|
-
adj_xyzt[2] += gradient[2] * adj_ret;
|
|
588
|
-
adj_xyzt[3] += gradient[3] * adj_ret;
|
|
589
|
-
}
|
|
590
|
-
|
|
591
|
-
// periodic Perlin noise
|
|
592
|
-
|
|
593
|
-
inline CUDA_CALLABLE float pnoise(uint32 state, float x, int px)
|
|
594
|
-
{
|
|
595
|
-
float dx = x - floor(x);
|
|
596
|
-
|
|
597
|
-
int x0 = mod(((int)floor(x)), px);
|
|
598
|
-
int x1 = mod((x0 + 1), px);
|
|
599
|
-
|
|
600
|
-
return noise_1d(state, x0, x1, dx);
|
|
601
|
-
}
|
|
602
|
-
|
|
603
|
-
inline CUDA_CALLABLE void adj_pnoise(uint32 state, float x, int px, uint32& adj_state, float& adj_x, int& adj_px, const float adj_ret)
|
|
604
|
-
{
|
|
605
|
-
float dx = x - floor(x);
|
|
606
|
-
|
|
607
|
-
int x0 = mod(((int)floor(x)), px);
|
|
608
|
-
int x1 = mod((x0 + 1), px);
|
|
609
|
-
|
|
610
|
-
float gradient = noise_1d_gradient(state, x0, x1, dx);
|
|
611
|
-
adj_x += gradient * adj_ret;
|
|
612
|
-
}
|
|
613
|
-
|
|
614
|
-
inline CUDA_CALLABLE float pnoise(uint32 state, const vec2& xy, int px, int py)
|
|
615
|
-
{
|
|
616
|
-
float dx = xy[0] - floor(xy[0]);
|
|
617
|
-
float dy = xy[1] - floor(xy[1]);
|
|
618
|
-
|
|
619
|
-
int x0 = mod(((int)floor(xy[0])), px);
|
|
620
|
-
int y0 = mod(((int)floor(xy[1])), py);
|
|
621
|
-
|
|
622
|
-
int x1 = mod((x0 + 1), px);
|
|
623
|
-
int y1 = mod((y0 + 1), py);
|
|
624
|
-
|
|
625
|
-
return noise_2d(state, x0, y0, x1, y1, dx, dy);
|
|
626
|
-
}
|
|
627
|
-
|
|
628
|
-
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec2& xy, int px, int py, uint32& adj_state, vec2& adj_xy, int& adj_px, int& adj_py, const float adj_ret)
|
|
629
|
-
{
|
|
630
|
-
float dx = xy[0] - floor(xy[0]);
|
|
631
|
-
float dy = xy[1] - floor(xy[1]);
|
|
632
|
-
|
|
633
|
-
int x0 = mod(((int)floor(xy[0])), px);
|
|
634
|
-
int y0 = mod(((int)floor(xy[1])), py);
|
|
635
|
-
|
|
636
|
-
int x1 = mod((x0 + 1), px);
|
|
637
|
-
int y1 = mod((y0 + 1), py);
|
|
638
|
-
|
|
639
|
-
vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
640
|
-
|
|
641
|
-
adj_xy[0] += gradient[0] * adj_ret;
|
|
642
|
-
adj_xy[1] += gradient[1] * adj_ret;
|
|
643
|
-
}
|
|
644
|
-
|
|
645
|
-
inline CUDA_CALLABLE float pnoise(uint32 state, const vec3& xyz, int px, int py, int pz)
|
|
646
|
-
{
|
|
647
|
-
float dx = xyz[0] - floor(xyz[0]);
|
|
648
|
-
float dy = xyz[1] - floor(xyz[1]);
|
|
649
|
-
float dz = xyz[2] - floor(xyz[2]);
|
|
650
|
-
|
|
651
|
-
int x0 = mod(((int)floor(xyz[0])), px);
|
|
652
|
-
int y0 = mod(((int)floor(xyz[1])), py);
|
|
653
|
-
int z0 = mod(((int)floor(xyz[2])), pz);
|
|
654
|
-
|
|
655
|
-
int x1 = mod((x0 + 1), px);
|
|
656
|
-
int y1 = mod((y0 + 1), py);
|
|
657
|
-
int z1 = mod((z0 + 1), pz);
|
|
658
|
-
|
|
659
|
-
return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
660
|
-
}
|
|
661
|
-
|
|
662
|
-
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec3& xyz, int px, int py, int pz, uint32& adj_state, vec3& adj_xyz, int& adj_px, int& adj_py, int& adj_pz, const float adj_ret)
|
|
663
|
-
{
|
|
664
|
-
float dx = xyz[0] - floor(xyz[0]);
|
|
665
|
-
float dy = xyz[1] - floor(xyz[1]);
|
|
666
|
-
float dz = xyz[2] - floor(xyz[2]);
|
|
667
|
-
|
|
668
|
-
int x0 = mod(((int)floor(xyz[0])), px);
|
|
669
|
-
int y0 = mod(((int)floor(xyz[1])), py);
|
|
670
|
-
int z0 = mod(((int)floor(xyz[2])), pz);
|
|
671
|
-
|
|
672
|
-
int x1 = mod((x0 + 1), px);
|
|
673
|
-
int y1 = mod((y0 + 1), py);
|
|
674
|
-
int z1 = mod((z0 + 1), pz);
|
|
675
|
-
|
|
676
|
-
vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
677
|
-
adj_xyz[0] += gradient[0] * adj_ret;
|
|
678
|
-
adj_xyz[1] += gradient[1] * adj_ret;
|
|
679
|
-
adj_xyz[2] += gradient[2] * adj_ret;
|
|
680
|
-
}
|
|
681
|
-
|
|
682
|
-
inline CUDA_CALLABLE float pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt)
|
|
683
|
-
{
|
|
684
|
-
float dx = xyzt[0] - floor(xyzt[0]);
|
|
685
|
-
float dy = xyzt[1] - floor(xyzt[1]);
|
|
686
|
-
float dz = xyzt[2] - floor(xyzt[2]);
|
|
687
|
-
float dt = xyzt[3] - floor(xyzt[3]);
|
|
688
|
-
|
|
689
|
-
int x0 = mod(((int)floor(xyzt[0])), px);
|
|
690
|
-
int y0 = mod(((int)floor(xyzt[1])), py);
|
|
691
|
-
int z0 = mod(((int)floor(xyzt[2])), pz);
|
|
692
|
-
int t0 = mod(((int)floor(xyzt[3])), pt);
|
|
693
|
-
|
|
694
|
-
int x1 = mod((x0 + 1), px);
|
|
695
|
-
int y1 = mod((y0 + 1), py);
|
|
696
|
-
int z1 = mod((z0 + 1), pz);
|
|
697
|
-
int t1 = mod((t0 + 1), pt);
|
|
698
|
-
|
|
699
|
-
return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
700
|
-
}
|
|
701
|
-
|
|
702
|
-
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt, uint32& adj_state, vec4& adj_xyzt, int& adj_px, int& adj_py, int& adj_pz, int& adj_pt, const float adj_ret)
|
|
703
|
-
{
|
|
704
|
-
float dx = xyzt[0] - floor(xyzt[0]);
|
|
705
|
-
float dy = xyzt[1] - floor(xyzt[1]);
|
|
706
|
-
float dz = xyzt[2] - floor(xyzt[2]);
|
|
707
|
-
float dt = xyzt[3] - floor(xyzt[3]);
|
|
708
|
-
|
|
709
|
-
int x0 = mod(((int)floor(xyzt[0])), px);
|
|
710
|
-
int y0 = mod(((int)floor(xyzt[1])), py);
|
|
711
|
-
int z0 = mod(((int)floor(xyzt[2])), pz);
|
|
712
|
-
int t0 = mod(((int)floor(xyzt[3])), pt);
|
|
713
|
-
|
|
714
|
-
int x1 = mod((x0 + 1), px);
|
|
715
|
-
int y1 = mod((y0 + 1), py);
|
|
716
|
-
int z1 = mod((z0 + 1), pz);
|
|
717
|
-
int t1 = mod((t0 + 1), pt);
|
|
718
|
-
|
|
719
|
-
vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
720
|
-
|
|
721
|
-
adj_xyzt[0] += gradient[0] * adj_ret;
|
|
722
|
-
adj_xyzt[1] += gradient[1] * adj_ret;
|
|
723
|
-
adj_xyzt[2] += gradient[2] * adj_ret;
|
|
724
|
-
adj_xyzt[3] += gradient[3] * adj_ret;
|
|
725
|
-
}
|
|
726
|
-
|
|
727
|
-
// curl noise
|
|
728
|
-
|
|
729
|
-
inline CUDA_CALLABLE vec2 curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain)
|
|
730
|
-
{
|
|
731
|
-
vec2 curl_sum = vec2(0.f);
|
|
732
|
-
float freq = 1.f;
|
|
733
|
-
float amplitude = 1.f;
|
|
734
|
-
|
|
735
|
-
for (int i = 0; i < octaves; i++)
|
|
736
|
-
{
|
|
737
|
-
vec2 pt = freq * xy;
|
|
738
|
-
float dx = pt[0] - floor(pt[0]);
|
|
739
|
-
float dy = pt[1] - floor(pt[1]);
|
|
740
|
-
|
|
741
|
-
int x0 = (int)floor(pt[0]);
|
|
742
|
-
int y0 = (int)floor(pt[1]);
|
|
743
|
-
|
|
744
|
-
int x1 = x0 + 1;
|
|
745
|
-
int y1 = y0 + 1;
|
|
746
|
-
|
|
747
|
-
vec2 grad_field = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
748
|
-
curl_sum += amplitude * grad_field;
|
|
749
|
-
|
|
750
|
-
amplitude *= gain;
|
|
751
|
-
freq *= lacunarity;
|
|
752
|
-
}
|
|
753
|
-
return vec2(-curl_sum[1], curl_sum[0]);
|
|
754
|
-
}
|
|
755
|
-
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec2& adj_xy, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec2& adj_ret) {}
|
|
756
|
-
|
|
757
|
-
inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain)
|
|
758
|
-
{
|
|
759
|
-
vec3 curl_sum_1 = vec3(0.f);
|
|
760
|
-
vec3 curl_sum_2 = vec3(0.f);
|
|
761
|
-
vec3 curl_sum_3 = vec3(0.f);
|
|
762
|
-
|
|
763
|
-
float freq = 1.f;
|
|
764
|
-
float amplitude = 1.f;
|
|
765
|
-
|
|
766
|
-
for(int i = 0; i < octaves; i++)
|
|
767
|
-
{
|
|
768
|
-
vec3 pt = freq * xyz;
|
|
769
|
-
float dx = pt[0] - floor(pt[0]);
|
|
770
|
-
float dy = pt[1] - floor(pt[1]);
|
|
771
|
-
float dz = pt[2] - floor(pt[2]);
|
|
772
|
-
|
|
773
|
-
int x0 = (int)floor(pt[0]);
|
|
774
|
-
int y0 = (int)floor(pt[1]);
|
|
775
|
-
int z0 = (int)floor(pt[2]);
|
|
776
|
-
|
|
777
|
-
int x1 = x0 + 1;
|
|
778
|
-
int y1 = y0 + 1;
|
|
779
|
-
int z1 = z0 + 1;
|
|
780
|
-
|
|
781
|
-
vec3 grad_field_1 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
782
|
-
state = rand_init(state, 10019689);
|
|
783
|
-
vec3 grad_field_2 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
784
|
-
state = rand_init(state, 13112221);
|
|
785
|
-
vec3 grad_field_3 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
786
|
-
|
|
787
|
-
curl_sum_1 += amplitude * grad_field_1;
|
|
788
|
-
curl_sum_2 += amplitude * grad_field_2;
|
|
789
|
-
curl_sum_3 += amplitude * grad_field_3;
|
|
790
|
-
|
|
791
|
-
amplitude *= gain;
|
|
792
|
-
freq *= lacunarity;
|
|
793
|
-
}
|
|
794
|
-
|
|
795
|
-
return vec3(
|
|
796
|
-
curl_sum_3[1] - curl_sum_2[2],
|
|
797
|
-
curl_sum_1[2] - curl_sum_3[0],
|
|
798
|
-
curl_sum_2[0] - curl_sum_1[1]);
|
|
799
|
-
}
|
|
800
|
-
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec3& adj_xyz, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, vec3& adj_ret) {}
|
|
801
|
-
|
|
802
|
-
inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain)
|
|
803
|
-
{
|
|
804
|
-
vec4 curl_sum_1 = vec4(0.f);
|
|
805
|
-
vec4 curl_sum_2 = vec4(0.f);
|
|
806
|
-
vec4 curl_sum_3 = vec4(0.f);
|
|
807
|
-
|
|
808
|
-
float freq = 1.f;
|
|
809
|
-
float amplitude = 1.f;
|
|
810
|
-
|
|
811
|
-
for(int i = 0; i < octaves; i++)
|
|
812
|
-
{
|
|
813
|
-
vec4 pt = freq * xyzt;
|
|
814
|
-
float dx = pt[0] - floor(pt[0]);
|
|
815
|
-
float dy = pt[1] - floor(pt[1]);
|
|
816
|
-
float dz = pt[2] - floor(pt[2]);
|
|
817
|
-
float dt = pt[3] - floor(pt[3]);
|
|
818
|
-
|
|
819
|
-
int x0 = (int)floor(pt[0]);
|
|
820
|
-
int y0 = (int)floor(pt[1]);
|
|
821
|
-
int z0 = (int)floor(pt[2]);
|
|
822
|
-
int t0 = (int)floor(pt[3]);
|
|
823
|
-
|
|
824
|
-
int x1 = x0 + 1;
|
|
825
|
-
int y1 = y0 + 1;
|
|
826
|
-
int z1 = z0 + 1;
|
|
827
|
-
int t1 = t0 + 1;
|
|
828
|
-
|
|
829
|
-
vec4 grad_field_1 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
830
|
-
state = rand_init(state, 10019689);
|
|
831
|
-
vec4 grad_field_2 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
832
|
-
state = rand_init(state, 13112221);
|
|
833
|
-
vec4 grad_field_3 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
834
|
-
|
|
835
|
-
curl_sum_1 += amplitude * grad_field_1;
|
|
836
|
-
curl_sum_2 += amplitude * grad_field_2;
|
|
837
|
-
curl_sum_3 += amplitude * grad_field_3;
|
|
838
|
-
|
|
839
|
-
amplitude *= gain;
|
|
840
|
-
freq *= lacunarity;
|
|
841
|
-
}
|
|
842
|
-
|
|
843
|
-
return vec3(
|
|
844
|
-
curl_sum_3[1] - curl_sum_2[2],
|
|
845
|
-
curl_sum_1[2] - curl_sum_3[0],
|
|
846
|
-
curl_sum_2[0] - curl_sum_1[1]);
|
|
847
|
-
}
|
|
848
|
-
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec4& adj_xyzt, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec3& adj_ret) {}
|
|
849
|
-
|
|
850
|
-
} // namespace wp
|
|
1
|
+
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
* and proprietary rights in and to this software, related documentation
|
|
4
|
+
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
* distribution of this software and related documentation without an express
|
|
6
|
+
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
#pragma once
|
|
10
|
+
|
|
11
|
+
#ifndef M_PI_F
|
|
12
|
+
#define M_PI_F 3.14159265358979323846f
|
|
13
|
+
#endif
|
|
14
|
+
|
|
15
|
+
namespace wp
|
|
16
|
+
{
|
|
17
|
+
|
|
18
|
+
inline CUDA_CALLABLE float smootherstep(float t)
|
|
19
|
+
{
|
|
20
|
+
return t * t * t * (t * (t * 6.f - 15.f) + 10.f);
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
inline CUDA_CALLABLE float smootherstep_gradient(float t)
|
|
24
|
+
{
|
|
25
|
+
return 30.f * t * t * (t * (t - 2.f) + 1.f);
|
|
26
|
+
}
|
|
27
|
+
|
|
28
|
+
inline CUDA_CALLABLE float smoothstep(float t)
|
|
29
|
+
{
|
|
30
|
+
return t * t * (3.f - t * 2.f);
|
|
31
|
+
}
|
|
32
|
+
|
|
33
|
+
inline CUDA_CALLABLE float smoothstep_gradient(float t)
|
|
34
|
+
{
|
|
35
|
+
return 6.f * t * (1.f - t);
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
inline CUDA_CALLABLE float interpolate(float a0, float a1, float t)
|
|
39
|
+
{
|
|
40
|
+
return (a1 - a0) * smootherstep(t) + a0;
|
|
41
|
+
// return (a1 - a0) * smoothstep(t) + a0;
|
|
42
|
+
// return (a1 - a0) * t + a0;
|
|
43
|
+
}
|
|
44
|
+
|
|
45
|
+
inline CUDA_CALLABLE float interpolate_gradient(float a0, float a1, float t, float d_a0, float d_a1, float d_t)
|
|
46
|
+
{
|
|
47
|
+
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
48
|
+
// return (d_a1 - d_a0) * smoothstep(t) + (a1 - a0) * smoothstep_gradient(t) * d_t + d_a0;
|
|
49
|
+
// return (d_a1 - d_a0) * t + (a1 - a0) * d_t + d_a0;
|
|
50
|
+
}
|
|
51
|
+
|
|
52
|
+
inline CUDA_CALLABLE vec2 interpolate_gradient_2d(float a0, float a1, float t, vec2& d_a0, vec2& d_a1, vec2& d_t)
|
|
53
|
+
{
|
|
54
|
+
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
55
|
+
}
|
|
56
|
+
|
|
57
|
+
inline CUDA_CALLABLE vec3 interpolate_gradient_3d(float a0, float a1, float t, vec3& d_a0, vec3& d_a1, vec3& d_t)
|
|
58
|
+
{
|
|
59
|
+
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
60
|
+
}
|
|
61
|
+
|
|
62
|
+
inline CUDA_CALLABLE vec4 interpolate_gradient_4d(float a0, float a1, float t, vec4& d_a0, vec4& d_a1, vec4& d_t)
|
|
63
|
+
{
|
|
64
|
+
return (d_a1 - d_a0) * smootherstep(t) + (a1 - a0) * smootherstep_gradient(t) * d_t + d_a0;
|
|
65
|
+
}
|
|
66
|
+
|
|
67
|
+
inline CUDA_CALLABLE float random_gradient_1d(uint32 state, int ix)
|
|
68
|
+
{
|
|
69
|
+
const uint32 p1 = 73856093;
|
|
70
|
+
uint32 idx = ix*p1 + state;
|
|
71
|
+
return randf(idx, -1.f, 1.f);
|
|
72
|
+
}
|
|
73
|
+
|
|
74
|
+
inline CUDA_CALLABLE vec2 random_gradient_2d(uint32 state, int ix, int iy)
|
|
75
|
+
{
|
|
76
|
+
const uint32 p1 = 73856093;
|
|
77
|
+
const uint32 p2 = 19349663;
|
|
78
|
+
uint32 idx = ix*p1 ^ iy*p2 + state;
|
|
79
|
+
|
|
80
|
+
return normalize(sample_unit_square(idx));
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
inline CUDA_CALLABLE vec3 random_gradient_3d(uint32 state, int ix, int iy, int iz)
|
|
84
|
+
{
|
|
85
|
+
const uint32 p1 = 73856093;
|
|
86
|
+
const uint32 p2 = 19349663;
|
|
87
|
+
const uint32 p3 = 53471161;
|
|
88
|
+
uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 + state;
|
|
89
|
+
|
|
90
|
+
return normalize(sample_unit_cube(idx));
|
|
91
|
+
}
|
|
92
|
+
|
|
93
|
+
inline CUDA_CALLABLE vec4 random_gradient_4d(uint32 state, int ix, int iy, int iz, int it)
|
|
94
|
+
{
|
|
95
|
+
const uint32 p1 = 73856093;
|
|
96
|
+
const uint32 p2 = 19349663;
|
|
97
|
+
const uint32 p3 = 53471161;
|
|
98
|
+
const uint32 p4 = 10000019;
|
|
99
|
+
uint32 idx = ix*p1 ^ iy*p2 ^ iz*p3 ^ it*p4 + state;
|
|
100
|
+
|
|
101
|
+
return normalize(sample_unit_hypercube(idx));
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
inline CUDA_CALLABLE float dot_grid_gradient_1d(uint32 state, int ix, float dx)
|
|
105
|
+
{
|
|
106
|
+
float gradient = random_gradient_1d(state, ix);
|
|
107
|
+
return dx*gradient;
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
inline CUDA_CALLABLE float dot_grid_gradient_2d(uint32 state, int ix, int iy, float dx, float dy)
|
|
111
|
+
{
|
|
112
|
+
vec2 gradient = random_gradient_2d(state, ix, iy);
|
|
113
|
+
return (dx*gradient[0] + dy*gradient[1]);
|
|
114
|
+
}
|
|
115
|
+
|
|
116
|
+
inline CUDA_CALLABLE float dot_grid_gradient_3d(uint32 state, int ix, int iy, int iz, float dx, float dy, float dz)
|
|
117
|
+
{
|
|
118
|
+
vec3 gradient = random_gradient_3d(state, ix, iy, iz);
|
|
119
|
+
return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2]);
|
|
120
|
+
}
|
|
121
|
+
|
|
122
|
+
inline CUDA_CALLABLE float dot_grid_gradient_4d(uint32 state, int ix, int iy, int iz, int it, float dx, float dy, float dz, float dt)
|
|
123
|
+
{
|
|
124
|
+
vec4 gradient = random_gradient_4d(state, ix, iy, iz, it);
|
|
125
|
+
return (dx*gradient[0] + dy*gradient[1] + dz*gradient[2] + dt*gradient[3]);
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
inline CUDA_CALLABLE float noise_1d(uint32 state, int x0, int x1, float dx)
|
|
129
|
+
{
|
|
130
|
+
//vX
|
|
131
|
+
float v0 = dot_grid_gradient_1d(state, x0, dx);
|
|
132
|
+
float v1 = dot_grid_gradient_1d(state, x1, dx-1.f);
|
|
133
|
+
|
|
134
|
+
return interpolate(v0, v1, dx);
|
|
135
|
+
}
|
|
136
|
+
|
|
137
|
+
inline CUDA_CALLABLE float noise_1d_gradient(uint32 state, int x0, int x1, float dx)
|
|
138
|
+
{
|
|
139
|
+
float gradient_x0 = random_gradient_1d(state, x0);
|
|
140
|
+
float v0 = dx * gradient_x0;
|
|
141
|
+
|
|
142
|
+
float gradient_x1 = random_gradient_1d(state, x1);
|
|
143
|
+
float v1 = (dx-1.f) * gradient_x1;
|
|
144
|
+
|
|
145
|
+
return interpolate_gradient(v0, v1, dx, gradient_x0, gradient_x1, 1.f);
|
|
146
|
+
}
|
|
147
|
+
|
|
148
|
+
inline CUDA_CALLABLE float noise_2d(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
|
|
149
|
+
{
|
|
150
|
+
//vXY
|
|
151
|
+
float v00 = dot_grid_gradient_2d(state, x0, y0, dx, dy);
|
|
152
|
+
float v10 = dot_grid_gradient_2d(state, x1, y0, dx-1.f, dy);
|
|
153
|
+
float xi0 = interpolate(v00, v10, dx);
|
|
154
|
+
|
|
155
|
+
float v01 = dot_grid_gradient_2d(state, x0, y1, dx, dy-1.f);
|
|
156
|
+
float v11 = dot_grid_gradient_2d(state, x1, y1, dx-1.f, dy-1.f);
|
|
157
|
+
float xi1 = interpolate(v01, v11, dx);
|
|
158
|
+
|
|
159
|
+
return interpolate(xi0, xi1, dy);
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
inline CUDA_CALLABLE vec2 noise_2d_gradient(uint32 state, int x0, int y0, int x1, int y1, float dx, float dy)
|
|
163
|
+
{
|
|
164
|
+
vec2 d00 = vec2(dx, dy);
|
|
165
|
+
vec2 gradient_v00 = random_gradient_2d(state, x0, y0);
|
|
166
|
+
float v00 = dot(d00, gradient_v00);
|
|
167
|
+
|
|
168
|
+
vec2 d10 = vec2(dx-1.f, dy);
|
|
169
|
+
vec2 gradient_v10 = random_gradient_2d(state, x1, y0);
|
|
170
|
+
float v10 = dot(d10, gradient_v10);
|
|
171
|
+
|
|
172
|
+
vec2 d01 = vec2(dx, dy-1.f);
|
|
173
|
+
vec2 gradient_v01 = random_gradient_2d(state, x0, y1);
|
|
174
|
+
float v01 = dot(d01, gradient_v01);
|
|
175
|
+
|
|
176
|
+
vec2 d11 = vec2(dx-1.f, dy-1.f);
|
|
177
|
+
vec2 gradient_v11 = random_gradient_2d(state, x1, y1);
|
|
178
|
+
float v11 = dot(d11, gradient_v11);
|
|
179
|
+
|
|
180
|
+
vec2 dx_dt = vec2(1.f, 0.f);
|
|
181
|
+
|
|
182
|
+
float xi0 = interpolate(v00, v10, dx);
|
|
183
|
+
vec2 gradient_xi0 = interpolate_gradient_2d(v00, v10, dx, gradient_v00, gradient_v10, dx_dt);
|
|
184
|
+
|
|
185
|
+
float xi1 = interpolate(v01, v11, dx);
|
|
186
|
+
vec2 gradient_xi1 = interpolate_gradient_2d(v01, v11, dx, gradient_v01, gradient_v11, dx_dt);
|
|
187
|
+
|
|
188
|
+
vec2 dy_dt = vec2(0.f, 1.f);
|
|
189
|
+
|
|
190
|
+
vec2 gradient = interpolate_gradient_2d(xi0, xi1, dy, gradient_xi0, gradient_xi1, dy_dt);
|
|
191
|
+
|
|
192
|
+
return gradient;
|
|
193
|
+
}
|
|
194
|
+
|
|
195
|
+
inline CUDA_CALLABLE float noise_3d(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
|
|
196
|
+
{
|
|
197
|
+
//vXYZ
|
|
198
|
+
float v000 = dot_grid_gradient_3d(state, x0, y0, z0, dx, dy, dz);
|
|
199
|
+
float v100 = dot_grid_gradient_3d(state, x1, y0, z0, dx-1.f, dy, dz);
|
|
200
|
+
float xi00 = interpolate(v000, v100, dx);
|
|
201
|
+
|
|
202
|
+
float v010 = dot_grid_gradient_3d(state, x0, y1, z0, dx, dy-1.f, dz);
|
|
203
|
+
float v110 = dot_grid_gradient_3d(state, x1, y1, z0, dx-1.f, dy-1.f, dz);
|
|
204
|
+
float xi10 = interpolate(v010, v110, dx);
|
|
205
|
+
|
|
206
|
+
float yi0 = interpolate(xi00, xi10, dy);
|
|
207
|
+
|
|
208
|
+
float v001 = dot_grid_gradient_3d(state, x0, y0, z1, dx, dy, dz-1.f);
|
|
209
|
+
float v101 = dot_grid_gradient_3d(state, x1, y0, z1, dx-1.f, dy, dz-1.f);
|
|
210
|
+
float xi01 = interpolate(v001, v101, dx);
|
|
211
|
+
|
|
212
|
+
float v011 = dot_grid_gradient_3d(state, x0, y1, z1, dx, dy-1.f, dz-1.f);
|
|
213
|
+
float v111 = dot_grid_gradient_3d(state, x1, y1, z1, dx-1.f, dy-1.f, dz-1.f);
|
|
214
|
+
float xi11 = interpolate(v011, v111, dx);
|
|
215
|
+
|
|
216
|
+
float yi1 = interpolate(xi01, xi11, dy);
|
|
217
|
+
|
|
218
|
+
return interpolate(yi0, yi1, dz);
|
|
219
|
+
}
|
|
220
|
+
|
|
221
|
+
inline CUDA_CALLABLE vec3 noise_3d_gradient(uint32 state, int x0, int y0, int z0, int x1, int y1, int z1, float dx, float dy, float dz)
|
|
222
|
+
{
|
|
223
|
+
vec3 d000 = vec3(dx, dy, dz);
|
|
224
|
+
vec3 gradient_v000 = random_gradient_3d(state, x0, y0, z0);
|
|
225
|
+
float v000 = dot(d000, gradient_v000);
|
|
226
|
+
|
|
227
|
+
vec3 d100 = vec3(dx-1.f, dy, dz);
|
|
228
|
+
vec3 gradient_v100 = random_gradient_3d(state, x1, y0, z0);
|
|
229
|
+
float v100 = dot(d100, gradient_v100);
|
|
230
|
+
|
|
231
|
+
vec3 d010 = vec3(dx, dy-1.f, dz);
|
|
232
|
+
vec3 gradient_v010 = random_gradient_3d(state, x0, y1, z0);
|
|
233
|
+
float v010 = dot(d010, gradient_v010);
|
|
234
|
+
|
|
235
|
+
vec3 d110 = vec3(dx-1.f, dy-1.f, dz);
|
|
236
|
+
vec3 gradient_v110 = random_gradient_3d(state, x1, y1, z0);
|
|
237
|
+
float v110 = dot(d110, gradient_v110);
|
|
238
|
+
|
|
239
|
+
vec3 d001 = vec3(dx, dy, dz-1.f);
|
|
240
|
+
vec3 gradient_v001 = random_gradient_3d(state, x0, y0, z1);
|
|
241
|
+
float v001 = dot(d001, gradient_v001);
|
|
242
|
+
|
|
243
|
+
vec3 d101 = vec3(dx-1.f, dy, dz-1.f);
|
|
244
|
+
vec3 gradient_v101 = random_gradient_3d(state, x1, y0, z1);
|
|
245
|
+
float v101 = dot(d101, gradient_v101);
|
|
246
|
+
|
|
247
|
+
vec3 d011 = vec3(dx, dy-1.f, dz-1.f);
|
|
248
|
+
vec3 gradient_v011 = random_gradient_3d(state, x0, y1, z1);
|
|
249
|
+
float v011 = dot(d011, gradient_v011);
|
|
250
|
+
|
|
251
|
+
vec3 d111 = vec3(dx-1.f, dy-1.f, dz-1.f);
|
|
252
|
+
vec3 gradient_v111 = random_gradient_3d(state, x1, y1, z1);
|
|
253
|
+
float v111 = dot(d111, gradient_v111);
|
|
254
|
+
|
|
255
|
+
vec3 dx_dt = vec3(1.f, 0.f, 0.f);
|
|
256
|
+
|
|
257
|
+
float xi00 = interpolate(v000, v100, dx);
|
|
258
|
+
vec3 gradient_xi00 = interpolate_gradient_3d(v000, v100, dx, gradient_v000, gradient_v100, dx_dt);
|
|
259
|
+
|
|
260
|
+
float xi10 = interpolate(v010, v110, dx);
|
|
261
|
+
vec3 gradient_xi10 = interpolate_gradient_3d(v010, v110, dx, gradient_v010, gradient_v110, dx_dt);
|
|
262
|
+
|
|
263
|
+
float xi01 = interpolate(v001, v101, dx);
|
|
264
|
+
vec3 gradient_xi01 = interpolate_gradient_3d(v001, v101, dx, gradient_v001, gradient_v101, dx_dt);
|
|
265
|
+
|
|
266
|
+
float xi11 = interpolate(v011, v111, dx);
|
|
267
|
+
vec3 gradient_xi11 = interpolate_gradient_3d(v011, v111, dx, gradient_v011, gradient_v111, dx_dt);
|
|
268
|
+
|
|
269
|
+
vec3 dy_dt = vec3(0.f, 1.f, 0.f);
|
|
270
|
+
|
|
271
|
+
float yi0 = interpolate(xi00, xi10, dy);
|
|
272
|
+
vec3 gradient_yi0 = interpolate_gradient_3d(xi00, xi10, dy, gradient_xi00, gradient_xi10, dy_dt);
|
|
273
|
+
|
|
274
|
+
float yi1 = interpolate(xi01, xi11, dy);
|
|
275
|
+
vec3 gradient_yi1 = interpolate_gradient_3d(xi01, xi11, dy, gradient_xi01, gradient_xi11, dy_dt);
|
|
276
|
+
|
|
277
|
+
vec3 dz_dt = vec3(0.f, 0.f, 1.f);
|
|
278
|
+
|
|
279
|
+
vec3 gradient = interpolate_gradient_3d(yi0, yi1, dz, gradient_yi0, gradient_yi1, dz_dt);
|
|
280
|
+
|
|
281
|
+
return gradient;
|
|
282
|
+
}
|
|
283
|
+
|
|
284
|
+
inline CUDA_CALLABLE float noise_4d(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
|
|
285
|
+
{
|
|
286
|
+
//vXYZT
|
|
287
|
+
float v0000 = dot_grid_gradient_4d(state, x0, y0, z0, t0, dx, dy, dz, dt);
|
|
288
|
+
float v1000 = dot_grid_gradient_4d(state, x1, y0, z0, t0, dx-1.f, dy, dz, dt);
|
|
289
|
+
float xi000 = interpolate(v0000, v1000, dx);
|
|
290
|
+
|
|
291
|
+
float v0100 = dot_grid_gradient_4d(state, x0, y1, z0, t0, dx, dy-1.f, dz, dt);
|
|
292
|
+
float v1100 = dot_grid_gradient_4d(state, x1, y1, z0, t0, dx-1.f, dy-1.f, dz, dt);
|
|
293
|
+
float xi100 = interpolate(v0100, v1100, dx);
|
|
294
|
+
|
|
295
|
+
float yi00 = interpolate(xi000, xi100, dy);
|
|
296
|
+
|
|
297
|
+
float v0010 = dot_grid_gradient_4d(state, x0, y0, z1, t0, dx, dy, dz-1.f, dt);
|
|
298
|
+
float v1010 = dot_grid_gradient_4d(state, x1, y0, z1, t0, dx-1.f, dy, dz-1.f, dt);
|
|
299
|
+
float xi010 = interpolate(v0010, v1010, dx);
|
|
300
|
+
|
|
301
|
+
float v0110 = dot_grid_gradient_4d(state, x0, y1, z1, t0, dx, dy-1.f, dz-1.f, dt);
|
|
302
|
+
float v1110 = dot_grid_gradient_4d(state, x1, y1, z1, t0, dx-1.f, dy-1.f, dz-1.f, dt);
|
|
303
|
+
float xi110 = interpolate(v0110, v1110, dx);
|
|
304
|
+
|
|
305
|
+
float yi10 = interpolate(xi010, xi110, dy);
|
|
306
|
+
|
|
307
|
+
float zi0 = interpolate(yi00, yi10, dz);
|
|
308
|
+
|
|
309
|
+
float v0001 = dot_grid_gradient_4d(state, x0, y0, z0, t1, dx, dy, dz, dt-1.f);
|
|
310
|
+
float v1001 = dot_grid_gradient_4d(state, x1, y0, z0, t1, dx-1.f, dy, dz, dt-1.f);
|
|
311
|
+
float xi001 = interpolate(v0001, v1001, dx);
|
|
312
|
+
|
|
313
|
+
float v0101 = dot_grid_gradient_4d(state, x0, y1, z0, t1, dx, dy-1.f, dz, dt-1.f);
|
|
314
|
+
float v1101 = dot_grid_gradient_4d(state, x1, y1, z0, t1, dx-1.f, dy-1.f, dz, dt-1.f);
|
|
315
|
+
float xi101 = interpolate(v0101, v1101, dx);
|
|
316
|
+
|
|
317
|
+
float yi01 = interpolate(xi001, xi101, dy);
|
|
318
|
+
|
|
319
|
+
float v0011 = dot_grid_gradient_4d(state, x0, y0, z1, t1, dx, dy, dz-1.f, dt-1.f);
|
|
320
|
+
float v1011 = dot_grid_gradient_4d(state, x1, y0, z1, t1, dx-1.f, dy, dz-1.f, dt-1.f);
|
|
321
|
+
float xi011 = interpolate(v0011, v1011, dx);
|
|
322
|
+
|
|
323
|
+
float v0111 = dot_grid_gradient_4d(state, x0, y1, z1, t1, dx, dy-1.f, dz-1.f, dt-1.f);
|
|
324
|
+
float v1111 = dot_grid_gradient_4d(state, x1, y1, z1, t1, dx-1.f, dy-1.f, dz-1.f, dt-1.f);
|
|
325
|
+
float xi111 = interpolate(v0111, v1111, dx);
|
|
326
|
+
|
|
327
|
+
float yi11 = interpolate(xi011, xi111, dy);
|
|
328
|
+
|
|
329
|
+
float zi1 = interpolate(yi01, yi11, dz);
|
|
330
|
+
|
|
331
|
+
return interpolate(zi0, zi1, dt);
|
|
332
|
+
}
|
|
333
|
+
|
|
334
|
+
inline CUDA_CALLABLE vec4 noise_4d_gradient(uint32 state, int x0, int y0, int z0, int t0, int x1, int y1, int z1, int t1, float dx, float dy, float dz, float dt)
|
|
335
|
+
{
|
|
336
|
+
vec4 d0000 = vec4(dx, dy, dz, dt);
|
|
337
|
+
vec4 gradient_v0000 = random_gradient_4d(state, x0, y0, z0, t0);
|
|
338
|
+
float v0000 = dot(d0000, gradient_v0000);
|
|
339
|
+
|
|
340
|
+
vec4 d1000 = vec4(dx-1.f, dy, dz, dt);
|
|
341
|
+
vec4 gradient_v1000 = random_gradient_4d(state, x1, y0, z0, t0);
|
|
342
|
+
float v1000 = dot(d1000, gradient_v1000);
|
|
343
|
+
|
|
344
|
+
vec4 d0100 = vec4(dx, dy-1.f, dz, dt);
|
|
345
|
+
vec4 gradient_v0100 = random_gradient_4d(state, x0, y1, z0, t0);
|
|
346
|
+
float v0100 = dot(d0100, gradient_v0100);
|
|
347
|
+
|
|
348
|
+
vec4 d1100 = vec4(dx-1.f, dy-1.f, dz, dt);
|
|
349
|
+
vec4 gradient_v1100 = random_gradient_4d(state, x1, y1, z0, t0);
|
|
350
|
+
float v1100 = dot(d1100, gradient_v1100);
|
|
351
|
+
|
|
352
|
+
vec4 d0010 = vec4(dx, dy, dz-1.f, dt);
|
|
353
|
+
vec4 gradient_v0010 = random_gradient_4d(state, x0, y0, z1, t0);
|
|
354
|
+
float v0010 = dot(d0010, gradient_v0010);
|
|
355
|
+
|
|
356
|
+
vec4 d1010 = vec4(dx-1.f, dy, dz-1.f, dt);
|
|
357
|
+
vec4 gradient_v1010 = random_gradient_4d(state, x1, y0, z1, t0);
|
|
358
|
+
float v1010 = dot(d1010, gradient_v1010);
|
|
359
|
+
|
|
360
|
+
vec4 d0110 = vec4(dx, dy-1.f, dz-1.f, dt);
|
|
361
|
+
vec4 gradient_v0110 = random_gradient_4d(state, x0, y1, z1, t0);
|
|
362
|
+
float v0110 = dot(d0110, gradient_v0110);
|
|
363
|
+
|
|
364
|
+
vec4 d1110 = vec4(dx-1.f, dy-1.f, dz-1.f, dt);
|
|
365
|
+
vec4 gradient_v1110 = random_gradient_4d(state, x1, y1, z1, t0);
|
|
366
|
+
float v1110 = dot(d1110, gradient_v1110);
|
|
367
|
+
|
|
368
|
+
vec4 d0001 = vec4(dx, dy, dz, dt-1.f);
|
|
369
|
+
vec4 gradient_v0001 = random_gradient_4d(state, x0, y0, z0, t1);
|
|
370
|
+
float v0001 = dot(d0001, gradient_v0001);
|
|
371
|
+
|
|
372
|
+
vec4 d1001 = vec4(dx-1.f, dy, dz, dt-1.f);
|
|
373
|
+
vec4 gradient_v1001 = random_gradient_4d(state, x1, y0, z0, t1);
|
|
374
|
+
float v1001 = dot(d1001, gradient_v1001);
|
|
375
|
+
|
|
376
|
+
vec4 d0101 = vec4(dx, dy-1.f, dz, dt-1.f);
|
|
377
|
+
vec4 gradient_v0101 = random_gradient_4d(state, x0, y1, z0, t1);
|
|
378
|
+
float v0101 = dot(d0101, gradient_v0101);
|
|
379
|
+
|
|
380
|
+
vec4 d1101 = vec4(dx-1.f, dy-1.f, dz, dt-1.f);
|
|
381
|
+
vec4 gradient_v1101 = random_gradient_4d(state, x1, y1, z0, t1);
|
|
382
|
+
float v1101 = dot(d1101, gradient_v1101);
|
|
383
|
+
|
|
384
|
+
vec4 d0011 = vec4(dx, dy, dz-1.f, dt-1.f);
|
|
385
|
+
vec4 gradient_v0011 = random_gradient_4d(state, x0, y0, z1, t1);
|
|
386
|
+
float v0011 = dot(d0011, gradient_v0011);
|
|
387
|
+
|
|
388
|
+
vec4 d1011 = vec4(dx-1.f, dy, dz-1.f, dt-1.f);
|
|
389
|
+
vec4 gradient_v1011 = random_gradient_4d(state, x1, y0, z1, t1);
|
|
390
|
+
float v1011 = dot(d1011, gradient_v1011);
|
|
391
|
+
|
|
392
|
+
vec4 d0111 = vec4(dx, dy-1.f, dz-1.f, dt-1.f);
|
|
393
|
+
vec4 gradient_v0111 = random_gradient_4d(state, x0, y1, z1, t1);
|
|
394
|
+
float v0111 = dot(d0111, gradient_v0111);
|
|
395
|
+
|
|
396
|
+
vec4 d1111 = vec4(dx-1.f, dy-1.f, dz-1.f, dt-1.f);
|
|
397
|
+
vec4 gradient_v1111 = random_gradient_4d(state, x1, y1, z1, t1);
|
|
398
|
+
float v1111 = dot(d1111, gradient_v1111);
|
|
399
|
+
|
|
400
|
+
vec4 dx_dt = vec4(1.f, 0.f, 0.f, 0.f);
|
|
401
|
+
|
|
402
|
+
float xi000 = interpolate(v0000, v1000, dx);
|
|
403
|
+
vec4 gradient_xi000 = interpolate_gradient_4d(v0000, v1000, dx, gradient_v0000, gradient_v1000, dx_dt);
|
|
404
|
+
|
|
405
|
+
float xi100 = interpolate(v0100, v1100, dx);
|
|
406
|
+
vec4 gradient_xi100 = interpolate_gradient_4d(v0100, v1100, dx, gradient_v0100, gradient_v1100, dx_dt);
|
|
407
|
+
|
|
408
|
+
float xi010 = interpolate(v0010, v1010, dx);
|
|
409
|
+
vec4 gradient_xi010 = interpolate_gradient_4d(v0010, v1010, dx, gradient_v0010, gradient_v1010, dx_dt);
|
|
410
|
+
|
|
411
|
+
float xi110 = interpolate(v0110, v1110, dx);
|
|
412
|
+
vec4 gradient_xi110 = interpolate_gradient_4d(v0110, v1110, dx, gradient_v0110, gradient_v1110, dx_dt);
|
|
413
|
+
|
|
414
|
+
float xi001 = interpolate(v0001, v1001, dx);
|
|
415
|
+
vec4 gradient_xi001 = interpolate_gradient_4d(v0001, v1001, dx, gradient_v0001, gradient_v1001, dx_dt);
|
|
416
|
+
|
|
417
|
+
float xi101 = interpolate(v0101, v1101, dx);
|
|
418
|
+
vec4 gradient_xi101 = interpolate_gradient_4d(v0101, v1101, dx, gradient_v0101, gradient_v1101, dx_dt);
|
|
419
|
+
|
|
420
|
+
float xi011 = interpolate(v0011, v1011, dx);
|
|
421
|
+
vec4 gradient_xi011 = interpolate_gradient_4d(v0011, v1011, dx, gradient_v0011, gradient_v1011, dx_dt);
|
|
422
|
+
|
|
423
|
+
float xi111 = interpolate(v0111, v1111, dx);
|
|
424
|
+
vec4 gradient_xi111 = interpolate_gradient_4d(v0111, v1111, dx, gradient_v0111, gradient_v1111, dx_dt);
|
|
425
|
+
|
|
426
|
+
vec4 dy_dt = vec4(0.f, 1.f, 0.f, 0.f);
|
|
427
|
+
|
|
428
|
+
float yi00 = interpolate(xi000, xi100, dy);
|
|
429
|
+
vec4 gradient_yi00 = interpolate_gradient_4d(xi000, xi100, dy, gradient_xi000, gradient_xi100, dy_dt);
|
|
430
|
+
|
|
431
|
+
float yi10 = interpolate(xi010, xi110, dy);
|
|
432
|
+
vec4 gradient_yi10 = interpolate_gradient_4d(xi010, xi110, dy, gradient_xi010, gradient_xi110, dy_dt);
|
|
433
|
+
|
|
434
|
+
float yi01 = interpolate(xi001, xi101, dy);
|
|
435
|
+
vec4 gradient_yi01 = interpolate_gradient_4d(xi001, xi101, dy, gradient_xi001, gradient_xi101, dy_dt);
|
|
436
|
+
|
|
437
|
+
float yi11 = interpolate(xi011, xi111, dy);
|
|
438
|
+
vec4 gradient_yi11 = interpolate_gradient_4d(xi011, xi111, dy, gradient_xi011, gradient_xi111, dy_dt);
|
|
439
|
+
|
|
440
|
+
vec4 dz_dt = vec4(0.f, 0.f, 1.f, 0.f);
|
|
441
|
+
|
|
442
|
+
float zi0 = interpolate(yi00, yi10, dz);
|
|
443
|
+
vec4 gradient_zi0 = interpolate_gradient_4d(yi00, yi10, dz, gradient_yi00, gradient_yi10, dz_dt);
|
|
444
|
+
|
|
445
|
+
float zi1 = interpolate(yi01, yi11, dz);
|
|
446
|
+
vec4 gradient_zi1 = interpolate_gradient_4d(yi01, yi11, dz, gradient_yi01, gradient_yi11, dz_dt);
|
|
447
|
+
|
|
448
|
+
vec4 dt_dt = vec4(0.f, 0.f, 0.f, 1.f);
|
|
449
|
+
|
|
450
|
+
vec4 gradient = interpolate_gradient_4d(zi0, zi1, dt, gradient_zi0, gradient_zi1, dt_dt);
|
|
451
|
+
|
|
452
|
+
return gradient;
|
|
453
|
+
}
|
|
454
|
+
|
|
455
|
+
// non-periodic Perlin noise
|
|
456
|
+
|
|
457
|
+
inline CUDA_CALLABLE float noise(uint32 state, float x)
|
|
458
|
+
{
|
|
459
|
+
float dx = x - floor(x);
|
|
460
|
+
|
|
461
|
+
int x0 = (int)floor(x);
|
|
462
|
+
int x1 = x0 + 1;
|
|
463
|
+
|
|
464
|
+
return noise_1d(state, x0, x1, dx);
|
|
465
|
+
}
|
|
466
|
+
|
|
467
|
+
inline CUDA_CALLABLE void adj_noise(uint32 state, float x, uint32& adj_state, float& adj_x, const float adj_ret)
|
|
468
|
+
{
|
|
469
|
+
float dx = x - floor(x);
|
|
470
|
+
|
|
471
|
+
int x0 = (int)floor(x);
|
|
472
|
+
int x1 = x0 + 1;
|
|
473
|
+
|
|
474
|
+
float gradient = noise_1d_gradient(state, x0, x1, dx);
|
|
475
|
+
adj_x += gradient * adj_ret;
|
|
476
|
+
}
|
|
477
|
+
|
|
478
|
+
inline CUDA_CALLABLE float noise(uint32 state, const vec2& xy)
|
|
479
|
+
{
|
|
480
|
+
float dx = xy[0] - floor(xy[0]);
|
|
481
|
+
float dy = xy[1] - floor(xy[1]);
|
|
482
|
+
|
|
483
|
+
int x0 = (int)floor(xy[0]);
|
|
484
|
+
int y0 = (int)floor(xy[1]);
|
|
485
|
+
|
|
486
|
+
int x1 = x0 + 1;
|
|
487
|
+
int y1 = y0 + 1;
|
|
488
|
+
|
|
489
|
+
return noise_2d(state, x0, y0, x1, y1, dx, dy);
|
|
490
|
+
}
|
|
491
|
+
|
|
492
|
+
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec2& xy, uint32& adj_state, vec2& adj_xy, const float adj_ret)
|
|
493
|
+
{
|
|
494
|
+
float dx = xy[0] - floor(xy[0]);
|
|
495
|
+
float dy = xy[1] - floor(xy[1]);
|
|
496
|
+
|
|
497
|
+
int x0 = (int)floor(xy[0]);
|
|
498
|
+
int y0 = (int)floor(xy[1]);
|
|
499
|
+
|
|
500
|
+
int x1 = x0 + 1;
|
|
501
|
+
int y1 = y0 + 1;
|
|
502
|
+
|
|
503
|
+
vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
504
|
+
|
|
505
|
+
adj_xy[0] += gradient[0] * adj_ret;
|
|
506
|
+
adj_xy[1] += gradient[1] * adj_ret;
|
|
507
|
+
}
|
|
508
|
+
|
|
509
|
+
inline CUDA_CALLABLE float noise(uint32 state, const vec3& xyz)
|
|
510
|
+
{
|
|
511
|
+
float dx = xyz[0] - floor(xyz[0]);
|
|
512
|
+
float dy = xyz[1] - floor(xyz[1]);
|
|
513
|
+
float dz = xyz[2] - floor(xyz[2]);
|
|
514
|
+
|
|
515
|
+
int x0 = (int)floor(xyz[0]);
|
|
516
|
+
int y0 = (int)floor(xyz[1]);
|
|
517
|
+
int z0 = (int)floor(xyz[2]);
|
|
518
|
+
|
|
519
|
+
int x1 = x0 + 1;
|
|
520
|
+
int y1 = y0 + 1;
|
|
521
|
+
int z1 = z0 + 1;
|
|
522
|
+
|
|
523
|
+
return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
524
|
+
}
|
|
525
|
+
|
|
526
|
+
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec3& xyz, uint32& adj_state, vec3& adj_xyz, const float adj_ret)
|
|
527
|
+
{
|
|
528
|
+
float dx = xyz[0] - floor(xyz[0]);
|
|
529
|
+
float dy = xyz[1] - floor(xyz[1]);
|
|
530
|
+
float dz = xyz[2] - floor(xyz[2]);
|
|
531
|
+
|
|
532
|
+
int x0 = (int)floor(xyz[0]);
|
|
533
|
+
int y0 = (int)floor(xyz[1]);
|
|
534
|
+
int z0 = (int)floor(xyz[2]);
|
|
535
|
+
|
|
536
|
+
int x1 = x0 + 1;
|
|
537
|
+
int y1 = y0 + 1;
|
|
538
|
+
int z1 = z0 + 1;
|
|
539
|
+
|
|
540
|
+
vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
541
|
+
adj_xyz[0] += gradient[0] * adj_ret;
|
|
542
|
+
adj_xyz[1] += gradient[1] * adj_ret;
|
|
543
|
+
adj_xyz[2] += gradient[2] * adj_ret;
|
|
544
|
+
}
|
|
545
|
+
|
|
546
|
+
inline CUDA_CALLABLE float noise(uint32 state, const vec4& xyzt)
|
|
547
|
+
{
|
|
548
|
+
float dx = xyzt[0] - floor(xyzt[0]);
|
|
549
|
+
float dy = xyzt[1] - floor(xyzt[1]);
|
|
550
|
+
float dz = xyzt[2] - floor(xyzt[2]);
|
|
551
|
+
float dt = xyzt[3] - floor(xyzt[3]);
|
|
552
|
+
|
|
553
|
+
int x0 = (int)floor(xyzt[0]);
|
|
554
|
+
int y0 = (int)floor(xyzt[1]);
|
|
555
|
+
int z0 = (int)floor(xyzt[2]);
|
|
556
|
+
int t0 = (int)floor(xyzt[3]);
|
|
557
|
+
|
|
558
|
+
int x1 = x0 + 1;
|
|
559
|
+
int y1 = y0 + 1;
|
|
560
|
+
int z1 = z0 + 1;
|
|
561
|
+
int t1 = t0 + 1;
|
|
562
|
+
|
|
563
|
+
return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
564
|
+
}
|
|
565
|
+
|
|
566
|
+
inline CUDA_CALLABLE void adj_noise(uint32 state, const vec4& xyzt, uint32& adj_state, vec4& adj_xyzt, const float adj_ret)
|
|
567
|
+
{
|
|
568
|
+
float dx = xyzt[0] - floor(xyzt[0]);
|
|
569
|
+
float dy = xyzt[1] - floor(xyzt[1]);
|
|
570
|
+
float dz = xyzt[2] - floor(xyzt[2]);
|
|
571
|
+
float dt = xyzt[3] - floor(xyzt[3]);
|
|
572
|
+
|
|
573
|
+
int x0 = (int)floor(xyzt[0]);
|
|
574
|
+
int y0 = (int)floor(xyzt[1]);
|
|
575
|
+
int z0 = (int)floor(xyzt[2]);
|
|
576
|
+
int t0 = (int)floor(xyzt[3]);
|
|
577
|
+
|
|
578
|
+
int x1 = x0 + 1;
|
|
579
|
+
int y1 = y0 + 1;
|
|
580
|
+
int z1 = z0 + 1;
|
|
581
|
+
int t1 = t0 + 1;
|
|
582
|
+
|
|
583
|
+
vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
584
|
+
|
|
585
|
+
adj_xyzt[0] += gradient[0] * adj_ret;
|
|
586
|
+
adj_xyzt[1] += gradient[1] * adj_ret;
|
|
587
|
+
adj_xyzt[2] += gradient[2] * adj_ret;
|
|
588
|
+
adj_xyzt[3] += gradient[3] * adj_ret;
|
|
589
|
+
}
|
|
590
|
+
|
|
591
|
+
// periodic Perlin noise
|
|
592
|
+
|
|
593
|
+
inline CUDA_CALLABLE float pnoise(uint32 state, float x, int px)
|
|
594
|
+
{
|
|
595
|
+
float dx = x - floor(x);
|
|
596
|
+
|
|
597
|
+
int x0 = mod(((int)floor(x)), px);
|
|
598
|
+
int x1 = mod((x0 + 1), px);
|
|
599
|
+
|
|
600
|
+
return noise_1d(state, x0, x1, dx);
|
|
601
|
+
}
|
|
602
|
+
|
|
603
|
+
inline CUDA_CALLABLE void adj_pnoise(uint32 state, float x, int px, uint32& adj_state, float& adj_x, int& adj_px, const float adj_ret)
|
|
604
|
+
{
|
|
605
|
+
float dx = x - floor(x);
|
|
606
|
+
|
|
607
|
+
int x0 = mod(((int)floor(x)), px);
|
|
608
|
+
int x1 = mod((x0 + 1), px);
|
|
609
|
+
|
|
610
|
+
float gradient = noise_1d_gradient(state, x0, x1, dx);
|
|
611
|
+
adj_x += gradient * adj_ret;
|
|
612
|
+
}
|
|
613
|
+
|
|
614
|
+
inline CUDA_CALLABLE float pnoise(uint32 state, const vec2& xy, int px, int py)
|
|
615
|
+
{
|
|
616
|
+
float dx = xy[0] - floor(xy[0]);
|
|
617
|
+
float dy = xy[1] - floor(xy[1]);
|
|
618
|
+
|
|
619
|
+
int x0 = mod(((int)floor(xy[0])), px);
|
|
620
|
+
int y0 = mod(((int)floor(xy[1])), py);
|
|
621
|
+
|
|
622
|
+
int x1 = mod((x0 + 1), px);
|
|
623
|
+
int y1 = mod((y0 + 1), py);
|
|
624
|
+
|
|
625
|
+
return noise_2d(state, x0, y0, x1, y1, dx, dy);
|
|
626
|
+
}
|
|
627
|
+
|
|
628
|
+
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec2& xy, int px, int py, uint32& adj_state, vec2& adj_xy, int& adj_px, int& adj_py, const float adj_ret)
|
|
629
|
+
{
|
|
630
|
+
float dx = xy[0] - floor(xy[0]);
|
|
631
|
+
float dy = xy[1] - floor(xy[1]);
|
|
632
|
+
|
|
633
|
+
int x0 = mod(((int)floor(xy[0])), px);
|
|
634
|
+
int y0 = mod(((int)floor(xy[1])), py);
|
|
635
|
+
|
|
636
|
+
int x1 = mod((x0 + 1), px);
|
|
637
|
+
int y1 = mod((y0 + 1), py);
|
|
638
|
+
|
|
639
|
+
vec2 gradient = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
640
|
+
|
|
641
|
+
adj_xy[0] += gradient[0] * adj_ret;
|
|
642
|
+
adj_xy[1] += gradient[1] * adj_ret;
|
|
643
|
+
}
|
|
644
|
+
|
|
645
|
+
inline CUDA_CALLABLE float pnoise(uint32 state, const vec3& xyz, int px, int py, int pz)
|
|
646
|
+
{
|
|
647
|
+
float dx = xyz[0] - floor(xyz[0]);
|
|
648
|
+
float dy = xyz[1] - floor(xyz[1]);
|
|
649
|
+
float dz = xyz[2] - floor(xyz[2]);
|
|
650
|
+
|
|
651
|
+
int x0 = mod(((int)floor(xyz[0])), px);
|
|
652
|
+
int y0 = mod(((int)floor(xyz[1])), py);
|
|
653
|
+
int z0 = mod(((int)floor(xyz[2])), pz);
|
|
654
|
+
|
|
655
|
+
int x1 = mod((x0 + 1), px);
|
|
656
|
+
int y1 = mod((y0 + 1), py);
|
|
657
|
+
int z1 = mod((z0 + 1), pz);
|
|
658
|
+
|
|
659
|
+
return noise_3d(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
660
|
+
}
|
|
661
|
+
|
|
662
|
+
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec3& xyz, int px, int py, int pz, uint32& adj_state, vec3& adj_xyz, int& adj_px, int& adj_py, int& adj_pz, const float adj_ret)
|
|
663
|
+
{
|
|
664
|
+
float dx = xyz[0] - floor(xyz[0]);
|
|
665
|
+
float dy = xyz[1] - floor(xyz[1]);
|
|
666
|
+
float dz = xyz[2] - floor(xyz[2]);
|
|
667
|
+
|
|
668
|
+
int x0 = mod(((int)floor(xyz[0])), px);
|
|
669
|
+
int y0 = mod(((int)floor(xyz[1])), py);
|
|
670
|
+
int z0 = mod(((int)floor(xyz[2])), pz);
|
|
671
|
+
|
|
672
|
+
int x1 = mod((x0 + 1), px);
|
|
673
|
+
int y1 = mod((y0 + 1), py);
|
|
674
|
+
int z1 = mod((z0 + 1), pz);
|
|
675
|
+
|
|
676
|
+
vec3 gradient = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
677
|
+
adj_xyz[0] += gradient[0] * adj_ret;
|
|
678
|
+
adj_xyz[1] += gradient[1] * adj_ret;
|
|
679
|
+
adj_xyz[2] += gradient[2] * adj_ret;
|
|
680
|
+
}
|
|
681
|
+
|
|
682
|
+
inline CUDA_CALLABLE float pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt)
|
|
683
|
+
{
|
|
684
|
+
float dx = xyzt[0] - floor(xyzt[0]);
|
|
685
|
+
float dy = xyzt[1] - floor(xyzt[1]);
|
|
686
|
+
float dz = xyzt[2] - floor(xyzt[2]);
|
|
687
|
+
float dt = xyzt[3] - floor(xyzt[3]);
|
|
688
|
+
|
|
689
|
+
int x0 = mod(((int)floor(xyzt[0])), px);
|
|
690
|
+
int y0 = mod(((int)floor(xyzt[1])), py);
|
|
691
|
+
int z0 = mod(((int)floor(xyzt[2])), pz);
|
|
692
|
+
int t0 = mod(((int)floor(xyzt[3])), pt);
|
|
693
|
+
|
|
694
|
+
int x1 = mod((x0 + 1), px);
|
|
695
|
+
int y1 = mod((y0 + 1), py);
|
|
696
|
+
int z1 = mod((z0 + 1), pz);
|
|
697
|
+
int t1 = mod((t0 + 1), pt);
|
|
698
|
+
|
|
699
|
+
return noise_4d(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
700
|
+
}
|
|
701
|
+
|
|
702
|
+
inline CUDA_CALLABLE void adj_pnoise(uint32 state, const vec4& xyzt, int px, int py, int pz, int pt, uint32& adj_state, vec4& adj_xyzt, int& adj_px, int& adj_py, int& adj_pz, int& adj_pt, const float adj_ret)
|
|
703
|
+
{
|
|
704
|
+
float dx = xyzt[0] - floor(xyzt[0]);
|
|
705
|
+
float dy = xyzt[1] - floor(xyzt[1]);
|
|
706
|
+
float dz = xyzt[2] - floor(xyzt[2]);
|
|
707
|
+
float dt = xyzt[3] - floor(xyzt[3]);
|
|
708
|
+
|
|
709
|
+
int x0 = mod(((int)floor(xyzt[0])), px);
|
|
710
|
+
int y0 = mod(((int)floor(xyzt[1])), py);
|
|
711
|
+
int z0 = mod(((int)floor(xyzt[2])), pz);
|
|
712
|
+
int t0 = mod(((int)floor(xyzt[3])), pt);
|
|
713
|
+
|
|
714
|
+
int x1 = mod((x0 + 1), px);
|
|
715
|
+
int y1 = mod((y0 + 1), py);
|
|
716
|
+
int z1 = mod((z0 + 1), pz);
|
|
717
|
+
int t1 = mod((t0 + 1), pt);
|
|
718
|
+
|
|
719
|
+
vec4 gradient = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
720
|
+
|
|
721
|
+
adj_xyzt[0] += gradient[0] * adj_ret;
|
|
722
|
+
adj_xyzt[1] += gradient[1] * adj_ret;
|
|
723
|
+
adj_xyzt[2] += gradient[2] * adj_ret;
|
|
724
|
+
adj_xyzt[3] += gradient[3] * adj_ret;
|
|
725
|
+
}
|
|
726
|
+
|
|
727
|
+
// curl noise
|
|
728
|
+
|
|
729
|
+
inline CUDA_CALLABLE vec2 curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain)
|
|
730
|
+
{
|
|
731
|
+
vec2 curl_sum = vec2(0.f);
|
|
732
|
+
float freq = 1.f;
|
|
733
|
+
float amplitude = 1.f;
|
|
734
|
+
|
|
735
|
+
for (int i = 0; i < octaves; i++)
|
|
736
|
+
{
|
|
737
|
+
vec2 pt = freq * xy;
|
|
738
|
+
float dx = pt[0] - floor(pt[0]);
|
|
739
|
+
float dy = pt[1] - floor(pt[1]);
|
|
740
|
+
|
|
741
|
+
int x0 = (int)floor(pt[0]);
|
|
742
|
+
int y0 = (int)floor(pt[1]);
|
|
743
|
+
|
|
744
|
+
int x1 = x0 + 1;
|
|
745
|
+
int y1 = y0 + 1;
|
|
746
|
+
|
|
747
|
+
vec2 grad_field = noise_2d_gradient(state, x0, y0, x1, y1, dx, dy);
|
|
748
|
+
curl_sum += amplitude * grad_field;
|
|
749
|
+
|
|
750
|
+
amplitude *= gain;
|
|
751
|
+
freq *= lacunarity;
|
|
752
|
+
}
|
|
753
|
+
return vec2(-curl_sum[1], curl_sum[0]);
|
|
754
|
+
}
|
|
755
|
+
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec2& xy, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec2& adj_xy, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec2& adj_ret) {}
|
|
756
|
+
|
|
757
|
+
inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain)
|
|
758
|
+
{
|
|
759
|
+
vec3 curl_sum_1 = vec3(0.f);
|
|
760
|
+
vec3 curl_sum_2 = vec3(0.f);
|
|
761
|
+
vec3 curl_sum_3 = vec3(0.f);
|
|
762
|
+
|
|
763
|
+
float freq = 1.f;
|
|
764
|
+
float amplitude = 1.f;
|
|
765
|
+
|
|
766
|
+
for(int i = 0; i < octaves; i++)
|
|
767
|
+
{
|
|
768
|
+
vec3 pt = freq * xyz;
|
|
769
|
+
float dx = pt[0] - floor(pt[0]);
|
|
770
|
+
float dy = pt[1] - floor(pt[1]);
|
|
771
|
+
float dz = pt[2] - floor(pt[2]);
|
|
772
|
+
|
|
773
|
+
int x0 = (int)floor(pt[0]);
|
|
774
|
+
int y0 = (int)floor(pt[1]);
|
|
775
|
+
int z0 = (int)floor(pt[2]);
|
|
776
|
+
|
|
777
|
+
int x1 = x0 + 1;
|
|
778
|
+
int y1 = y0 + 1;
|
|
779
|
+
int z1 = z0 + 1;
|
|
780
|
+
|
|
781
|
+
vec3 grad_field_1 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
782
|
+
state = rand_init(state, 10019689);
|
|
783
|
+
vec3 grad_field_2 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
784
|
+
state = rand_init(state, 13112221);
|
|
785
|
+
vec3 grad_field_3 = noise_3d_gradient(state, x0, y0, z0, x1, y1, z1, dx, dy, dz);
|
|
786
|
+
|
|
787
|
+
curl_sum_1 += amplitude * grad_field_1;
|
|
788
|
+
curl_sum_2 += amplitude * grad_field_2;
|
|
789
|
+
curl_sum_3 += amplitude * grad_field_3;
|
|
790
|
+
|
|
791
|
+
amplitude *= gain;
|
|
792
|
+
freq *= lacunarity;
|
|
793
|
+
}
|
|
794
|
+
|
|
795
|
+
return vec3(
|
|
796
|
+
curl_sum_3[1] - curl_sum_2[2],
|
|
797
|
+
curl_sum_1[2] - curl_sum_3[0],
|
|
798
|
+
curl_sum_2[0] - curl_sum_1[1]);
|
|
799
|
+
}
|
|
800
|
+
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec3& xyz, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec3& adj_xyz, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, vec3& adj_ret) {}
|
|
801
|
+
|
|
802
|
+
inline CUDA_CALLABLE vec3 curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain)
|
|
803
|
+
{
|
|
804
|
+
vec4 curl_sum_1 = vec4(0.f);
|
|
805
|
+
vec4 curl_sum_2 = vec4(0.f);
|
|
806
|
+
vec4 curl_sum_3 = vec4(0.f);
|
|
807
|
+
|
|
808
|
+
float freq = 1.f;
|
|
809
|
+
float amplitude = 1.f;
|
|
810
|
+
|
|
811
|
+
for(int i = 0; i < octaves; i++)
|
|
812
|
+
{
|
|
813
|
+
vec4 pt = freq * xyzt;
|
|
814
|
+
float dx = pt[0] - floor(pt[0]);
|
|
815
|
+
float dy = pt[1] - floor(pt[1]);
|
|
816
|
+
float dz = pt[2] - floor(pt[2]);
|
|
817
|
+
float dt = pt[3] - floor(pt[3]);
|
|
818
|
+
|
|
819
|
+
int x0 = (int)floor(pt[0]);
|
|
820
|
+
int y0 = (int)floor(pt[1]);
|
|
821
|
+
int z0 = (int)floor(pt[2]);
|
|
822
|
+
int t0 = (int)floor(pt[3]);
|
|
823
|
+
|
|
824
|
+
int x1 = x0 + 1;
|
|
825
|
+
int y1 = y0 + 1;
|
|
826
|
+
int z1 = z0 + 1;
|
|
827
|
+
int t1 = t0 + 1;
|
|
828
|
+
|
|
829
|
+
vec4 grad_field_1 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
830
|
+
state = rand_init(state, 10019689);
|
|
831
|
+
vec4 grad_field_2 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
832
|
+
state = rand_init(state, 13112221);
|
|
833
|
+
vec4 grad_field_3 = noise_4d_gradient(state, x0, y0, z0, t0, x1, y1, z1, t1, dx, dy, dz, dt);
|
|
834
|
+
|
|
835
|
+
curl_sum_1 += amplitude * grad_field_1;
|
|
836
|
+
curl_sum_2 += amplitude * grad_field_2;
|
|
837
|
+
curl_sum_3 += amplitude * grad_field_3;
|
|
838
|
+
|
|
839
|
+
amplitude *= gain;
|
|
840
|
+
freq *= lacunarity;
|
|
841
|
+
}
|
|
842
|
+
|
|
843
|
+
return vec3(
|
|
844
|
+
curl_sum_3[1] - curl_sum_2[2],
|
|
845
|
+
curl_sum_1[2] - curl_sum_3[0],
|
|
846
|
+
curl_sum_2[0] - curl_sum_1[1]);
|
|
847
|
+
}
|
|
848
|
+
inline CUDA_CALLABLE void adj_curlnoise(uint32 state, const vec4& xyzt, const uint32 octaves, const float lacunarity, const float gain, uint32& adj_state, vec4& adj_xyzt, const uint32& adj_octaves, const float& adj_lacunarity, const float& adj_gain, const vec3& adj_ret) {}
|
|
849
|
+
|
|
850
|
+
} // namespace wp
|