warp-lang 1.0.1__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +115 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3425 -3354
- warp/codegen.py +2878 -2792
- warp/config.py +40 -36
- warp/constants.py +45 -45
- warp/context.py +5194 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +383 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -279
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
- warp/examples/benchmarks/benchmark_launches.py +295 -295
- warp/examples/browse.py +29 -28
- warp/examples/core/example_dem.py +234 -221
- warp/examples/core/example_fluid.py +293 -267
- warp/examples/core/example_graph_capture.py +144 -129
- warp/examples/core/example_marching_cubes.py +188 -176
- warp/examples/core/example_mesh.py +174 -154
- warp/examples/core/example_mesh_intersect.py +205 -193
- warp/examples/core/example_nvdb.py +176 -169
- warp/examples/core/example_raycast.py +105 -89
- warp/examples/core/example_raymarch.py +199 -178
- warp/examples/core/example_render_opengl.py +185 -141
- warp/examples/core/example_sph.py +405 -389
- warp/examples/core/example_torch.py +222 -181
- warp/examples/core/example_wave.py +263 -249
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +407 -391
- warp/examples/fem/example_convection_diffusion.py +182 -168
- warp/examples/fem/example_convection_diffusion_dg.py +219 -209
- warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
- warp/examples/fem/example_deformed_geometry.py +177 -159
- warp/examples/fem/example_diffusion.py +201 -173
- warp/examples/fem/example_diffusion_3d.py +177 -152
- warp/examples/fem/example_diffusion_mgpu.py +221 -214
- warp/examples/fem/example_mixed_elasticity.py +244 -222
- warp/examples/fem/example_navier_stokes.py +259 -243
- warp/examples/fem/example_stokes.py +220 -192
- warp/examples/fem/example_stokes_transfer.py +265 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +260 -248
- warp/examples/optim/example_cloth_throw.py +222 -210
- warp/examples/optim/example_diffray.py +566 -535
- warp/examples/optim/example_drone.py +864 -835
- warp/examples/optim/example_inverse_kinematics.py +176 -169
- warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
- warp/examples/optim/example_spring_cage.py +239 -234
- warp/examples/optim/example_trajectory.py +223 -201
- warp/examples/optim/example_walker.py +306 -292
- warp/examples/sim/example_cartpole.py +139 -128
- warp/examples/sim/example_cloth.py +196 -184
- warp/examples/sim/example_granular.py +124 -113
- warp/examples/sim/example_granular_collision_sdf.py +197 -185
- warp/examples/sim/example_jacobian_ik.py +236 -213
- warp/examples/sim/example_particle_chain.py +118 -106
- warp/examples/sim/example_quadruped.py +193 -179
- warp/examples/sim/example_rigid_chain.py +197 -189
- warp/examples/sim/example_rigid_contact.py +189 -176
- warp/examples/sim/example_rigid_force.py +127 -126
- warp/examples/sim/example_rigid_gyroscopic.py +109 -97
- warp/examples/sim/example_rigid_soft_contact.py +134 -124
- warp/examples/sim/example_soft_body.py +190 -178
- warp/fabric.py +337 -335
- warp/fem/__init__.py +60 -27
- warp/fem/cache.py +401 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +15 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +744 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +441 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1630 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +294 -292
- warp/fem/space/basis_space.py +488 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +267 -267
- warp/fem/space/grid_3d_function_space.py +305 -306
- warp/fem/space/hexmesh_function_space.py +350 -352
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +368 -369
- warp/fem/space/restriction.py +158 -160
- warp/fem/space/shape/__init__.py +13 -15
- warp/fem/space/shape/cube_shape_function.py +738 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +294 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +223 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1072 -1025
- warp/native/builtin.h +1560 -1560
- warp/native/bvh.cpp +398 -398
- warp/native/bvh.cu +525 -525
- warp/native/bvh.h +429 -429
- warp/native/clang/clang.cpp +495 -464
- warp/native/crt.cpp +31 -31
- warp/native/crt.h +334 -334
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1498 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +293 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/NanoVDB.h +4782 -4782
- warp/native/nanovdb/PNanoVDB.h +2553 -2553
- warp/native/nanovdb/PNanoVDBWrite.h +294 -294
- warp/native/noise.h +850 -850
- warp/native/quat.h +1084 -1084
- warp/native/rand.h +299 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1132 -1132
- warp/native/volume.cpp +297 -297
- warp/native/volume.cu +32 -32
- warp/native/volume.h +538 -538
- warp/native/volume_builder.cu +425 -425
- warp/native/volume_builder.h +19 -19
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2943 -2828
- warp/native/warp.h +313 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3217 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1910 -1991
- warp/sim/integrator_xpbd.py +3294 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1227 -1227
- warp/stubs.py +2109 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +22 -22
- warp/tests/aux_test_grad_customs.py +23 -23
- warp/tests/aux_test_reference.py +11 -11
- warp/tests/aux_test_reference_reference.py +10 -10
- warp/tests/aux_test_square.py +17 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +239 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +157 -157
- warp/tests/test_arithmetic.py +1124 -1124
- warp/tests/test_array.py +2417 -2326
- warp/tests/test_array_reduce.py +150 -150
- warp/tests/test_async.py +668 -656
- warp/tests/test_atomic.py +141 -141
- warp/tests/test_bool.py +204 -149
- warp/tests/test_builtins_resolution.py +1292 -1292
- warp/tests/test_bvh.py +164 -171
- warp/tests/test_closest_point_edge_edge.py +228 -228
- warp/tests/test_codegen.py +566 -553
- warp/tests/test_compile_consts.py +97 -101
- warp/tests/test_conditional.py +246 -246
- warp/tests/test_copy.py +232 -215
- warp/tests/test_ctypes.py +632 -632
- warp/tests/test_dense.py +67 -67
- warp/tests/test_devices.py +91 -98
- warp/tests/test_dlpack.py +530 -529
- warp/tests/test_examples.py +400 -378
- warp/tests/test_fabricarray.py +955 -955
- warp/tests/test_fast_math.py +62 -54
- warp/tests/test_fem.py +1277 -1278
- warp/tests/test_fp16.py +130 -130
- warp/tests/test_func.py +338 -337
- warp/tests/test_generics.py +571 -571
- warp/tests/test_grad.py +746 -640
- warp/tests/test_grad_customs.py +333 -336
- warp/tests/test_hash_grid.py +210 -164
- warp/tests/test_import.py +39 -39
- warp/tests/test_indexedarray.py +1134 -1134
- warp/tests/test_intersect.py +67 -67
- warp/tests/test_jax.py +307 -307
- warp/tests/test_large.py +167 -164
- warp/tests/test_launch.py +354 -354
- warp/tests/test_lerp.py +261 -261
- warp/tests/test_linear_solvers.py +191 -171
- warp/tests/test_lvalue.py +421 -493
- warp/tests/test_marching_cubes.py +65 -65
- warp/tests/test_mat.py +1801 -1827
- warp/tests/test_mat_lite.py +115 -115
- warp/tests/test_mat_scalar_ops.py +2907 -2889
- warp/tests/test_math.py +126 -193
- warp/tests/test_matmul.py +500 -499
- warp/tests/test_matmul_lite.py +410 -410
- warp/tests/test_mempool.py +188 -190
- warp/tests/test_mesh.py +284 -324
- warp/tests/test_mesh_query_aabb.py +228 -241
- warp/tests/test_mesh_query_point.py +692 -702
- warp/tests/test_mesh_query_ray.py +292 -303
- warp/tests/test_mlp.py +276 -276
- warp/tests/test_model.py +110 -110
- warp/tests/test_modules_lite.py +39 -39
- warp/tests/test_multigpu.py +163 -163
- warp/tests/test_noise.py +248 -248
- warp/tests/test_operators.py +250 -250
- warp/tests/test_options.py +123 -125
- warp/tests/test_peer.py +133 -137
- warp/tests/test_pinned.py +78 -78
- warp/tests/test_print.py +54 -54
- warp/tests/test_quat.py +2086 -2086
- warp/tests/test_rand.py +288 -288
- warp/tests/test_reload.py +217 -217
- warp/tests/test_rounding.py +179 -179
- warp/tests/test_runlength_encode.py +190 -190
- warp/tests/test_sim_grad.py +243 -0
- warp/tests/test_sim_kinematics.py +91 -97
- warp/tests/test_smoothstep.py +168 -168
- warp/tests/test_snippet.py +305 -266
- warp/tests/test_sparse.py +468 -460
- warp/tests/test_spatial.py +2148 -2148
- warp/tests/test_streams.py +486 -473
- warp/tests/test_struct.py +710 -675
- warp/tests/test_tape.py +173 -148
- warp/tests/test_torch.py +743 -743
- warp/tests/test_transient_module.py +87 -87
- warp/tests/test_types.py +556 -659
- warp/tests/test_utils.py +490 -499
- warp/tests/test_vec.py +1264 -1268
- warp/tests/test_vec_lite.py +73 -73
- warp/tests/test_vec_scalar_ops.py +2099 -2099
- warp/tests/test_verify_fp.py +94 -94
- warp/tests/test_volume.py +737 -736
- warp/tests/test_volume_write.py +255 -265
- warp/tests/unittest_serial.py +37 -37
- warp/tests/unittest_suites.py +363 -359
- warp/tests/unittest_utils.py +603 -578
- warp/tests/unused_test_misc.py +71 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +566 -561
- warp/torch.py +321 -295
- warp/types.py +4504 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
- warp_lang-1.1.0.dist-info/RECORD +352 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp_lang-1.0.1.dist-info/RECORD +0 -352
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/native/intersect.h
CHANGED
|
@@ -1,1204 +1,1204 @@
|
|
|
1
|
-
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
-
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
-
* and proprietary rights in and to this software, related documentation
|
|
4
|
-
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
-
* distribution of this software and related documentation without an express
|
|
6
|
-
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
-
*/
|
|
8
|
-
|
|
9
|
-
#pragma once
|
|
10
|
-
|
|
11
|
-
#include "builtin.h"
|
|
12
|
-
|
|
13
|
-
namespace wp
|
|
14
|
-
{
|
|
15
|
-
|
|
16
|
-
CUDA_CALLABLE inline vec3 closest_point_to_aabb(const vec3& p, const vec3& lower, const vec3& upper)
|
|
17
|
-
{
|
|
18
|
-
vec3 c;
|
|
19
|
-
|
|
20
|
-
{
|
|
21
|
-
float v = p[0];
|
|
22
|
-
if (v < lower[0]) v = lower[0];
|
|
23
|
-
if (v > upper[0]) v = upper[0];
|
|
24
|
-
c[0] = v;
|
|
25
|
-
}
|
|
26
|
-
|
|
27
|
-
{
|
|
28
|
-
float v = p[1];
|
|
29
|
-
if (v < lower[1]) v = lower[1];
|
|
30
|
-
if (v > upper[1]) v = upper[1];
|
|
31
|
-
c[1] = v;
|
|
32
|
-
}
|
|
33
|
-
|
|
34
|
-
{
|
|
35
|
-
float v = p[2];
|
|
36
|
-
if (v < lower[2]) v = lower[2];
|
|
37
|
-
if (v > upper[2]) v = upper[2];
|
|
38
|
-
c[2] = v;
|
|
39
|
-
}
|
|
40
|
-
|
|
41
|
-
return c;
|
|
42
|
-
}
|
|
43
|
-
|
|
44
|
-
CUDA_CALLABLE inline vec2 closest_point_to_triangle(const vec3& a, const vec3& b, const vec3& c, const vec3& p)
|
|
45
|
-
{
|
|
46
|
-
vec3 ab = b-a;
|
|
47
|
-
vec3 ac = c-a;
|
|
48
|
-
vec3 ap = p-a;
|
|
49
|
-
|
|
50
|
-
float u, v, w;
|
|
51
|
-
float d1 = dot(ab, ap);
|
|
52
|
-
float d2 = dot(ac, ap);
|
|
53
|
-
if (d1 <= 0.0f && d2 <= 0.0f)
|
|
54
|
-
{
|
|
55
|
-
v = 0.0f;
|
|
56
|
-
w = 0.0f;
|
|
57
|
-
u = 1.0f - v - w;
|
|
58
|
-
return vec2(u, v);
|
|
59
|
-
}
|
|
60
|
-
|
|
61
|
-
vec3 bp = p-b;
|
|
62
|
-
float d3 = dot(ab, bp);
|
|
63
|
-
float d4 = dot(ac, bp);
|
|
64
|
-
if (d3 >= 0.0f && d4 <= d3)
|
|
65
|
-
{
|
|
66
|
-
v = 1.0f;
|
|
67
|
-
w = 0.0f;
|
|
68
|
-
u = 1.0f - v - w;
|
|
69
|
-
return vec2(u, v);
|
|
70
|
-
}
|
|
71
|
-
|
|
72
|
-
float vc = d1*d4 - d3*d2;
|
|
73
|
-
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
|
|
74
|
-
{
|
|
75
|
-
v = d1 / (d1-d3);
|
|
76
|
-
w = 0.0f;
|
|
77
|
-
u = 1.0f - v - w;
|
|
78
|
-
return vec2(u, v);
|
|
79
|
-
}
|
|
80
|
-
|
|
81
|
-
vec3 cp = p-c;
|
|
82
|
-
float d5 = dot(ab, cp);
|
|
83
|
-
float d6 = dot(ac, cp);
|
|
84
|
-
if (d6 >= 0.0f && d5 <= d6)
|
|
85
|
-
{
|
|
86
|
-
v = 0.0f;
|
|
87
|
-
w = 1.0f;
|
|
88
|
-
u = 1.0f - v - w;
|
|
89
|
-
return vec2(u, v);
|
|
90
|
-
}
|
|
91
|
-
|
|
92
|
-
float vb = d5*d2 - d1*d6;
|
|
93
|
-
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
|
|
94
|
-
{
|
|
95
|
-
v = 0.0f;
|
|
96
|
-
w = d2 / (d2 - d6);
|
|
97
|
-
u = 1.0f - v - w;
|
|
98
|
-
return vec2(u, v);
|
|
99
|
-
}
|
|
100
|
-
|
|
101
|
-
float va = d3*d6 - d5*d4;
|
|
102
|
-
if (va <= 0.0f && (d4 -d3) >= 0.0f && (d5-d6) >= 0.0f)
|
|
103
|
-
{
|
|
104
|
-
w = (d4-d3)/((d4-d3) + (d5-d6));
|
|
105
|
-
v = 1.0f - w;
|
|
106
|
-
u = 1.0f - v - w;
|
|
107
|
-
return vec2(u, v);
|
|
108
|
-
}
|
|
109
|
-
|
|
110
|
-
float denom = 1.0f / (va + vb + vc);
|
|
111
|
-
v = vb * denom;
|
|
112
|
-
w = vc * denom;
|
|
113
|
-
u = 1.0f - v - w;
|
|
114
|
-
return vec2(u, v);
|
|
115
|
-
}
|
|
116
|
-
|
|
117
|
-
CUDA_CALLABLE inline vec2 furthest_point_to_triangle(const vec3& a, const vec3& b, const vec3& c, const vec3& p)
|
|
118
|
-
{
|
|
119
|
-
vec3 pa = p-a;
|
|
120
|
-
vec3 pb = p-b;
|
|
121
|
-
vec3 pc = p-c;
|
|
122
|
-
float dist_a = dot(pa, pa);
|
|
123
|
-
float dist_b = dot(pb, pb);
|
|
124
|
-
float dist_c = dot(pc, pc);
|
|
125
|
-
|
|
126
|
-
if (dist_a > dist_b && dist_a > dist_c)
|
|
127
|
-
return vec2(1.0f, 0.0f); // a is furthest
|
|
128
|
-
if (dist_b > dist_c)
|
|
129
|
-
return vec2(0.0f, 1.0f); // b is furthest
|
|
130
|
-
return vec2(0.0f, 0.0f); // c is furthest
|
|
131
|
-
}
|
|
132
|
-
|
|
133
|
-
CUDA_CALLABLE inline bool intersect_ray_aabb(const vec3& pos, const vec3& rcp_dir, const vec3& lower, const vec3& upper, float& t)
|
|
134
|
-
{
|
|
135
|
-
float l1, l2, lmin, lmax;
|
|
136
|
-
|
|
137
|
-
l1 = (lower[0] - pos[0]) * rcp_dir[0];
|
|
138
|
-
l2 = (upper[0] - pos[0]) * rcp_dir[0];
|
|
139
|
-
lmin = min(l1,l2);
|
|
140
|
-
lmax = max(l1,l2);
|
|
141
|
-
|
|
142
|
-
l1 = (lower[1] - pos[1]) * rcp_dir[1];
|
|
143
|
-
l2 = (upper[1] - pos[1]) * rcp_dir[1];
|
|
144
|
-
lmin = max(min(l1,l2), lmin);
|
|
145
|
-
lmax = min(max(l1,l2), lmax);
|
|
146
|
-
|
|
147
|
-
l1 = (lower[2] - pos[2]) * rcp_dir[2];
|
|
148
|
-
l2 = (upper[2] - pos[2]) * rcp_dir[2];
|
|
149
|
-
lmin = max(min(l1,l2), lmin);
|
|
150
|
-
lmax = min(max(l1,l2), lmax);
|
|
151
|
-
|
|
152
|
-
bool hit = ((lmax >= 0.f) & (lmax >= lmin));
|
|
153
|
-
if (hit)
|
|
154
|
-
t = lmin;
|
|
155
|
-
|
|
156
|
-
return hit;
|
|
157
|
-
}
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
// Moller and Trumbore's method
|
|
161
|
-
CUDA_CALLABLE inline bool intersect_ray_tri_moller(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& w, float& sign, vec3* normal)
|
|
162
|
-
{
|
|
163
|
-
vec3 ab = b - a;
|
|
164
|
-
vec3 ac = c - a;
|
|
165
|
-
vec3 n = cross(ab, ac);
|
|
166
|
-
|
|
167
|
-
float d = dot(-dir, n);
|
|
168
|
-
float ood = 1.0f / d; // No need to check for division by zero here as infinity arithmetic will save us...
|
|
169
|
-
vec3 ap = p - a;
|
|
170
|
-
|
|
171
|
-
t = dot(ap, n) * ood;
|
|
172
|
-
if (t < 0.0f)
|
|
173
|
-
return false;
|
|
174
|
-
|
|
175
|
-
vec3 e = cross(-dir, ap);
|
|
176
|
-
v = dot(ac, e) * ood;
|
|
177
|
-
if (v < 0.0f || v > 1.0f) // ...here...
|
|
178
|
-
return false;
|
|
179
|
-
w = -dot(ab, e) * ood;
|
|
180
|
-
if (w < 0.0f || (v + w) > 1.0f) // ...and here
|
|
181
|
-
return false;
|
|
182
|
-
|
|
183
|
-
u = 1.0f - v - w;
|
|
184
|
-
if (normal)
|
|
185
|
-
*normal = n;
|
|
186
|
-
|
|
187
|
-
sign = d;
|
|
188
|
-
|
|
189
|
-
return true;
|
|
190
|
-
}
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
CUDA_CALLABLE inline bool intersect_ray_tri_rtcd(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& w, float& sign, vec3* normal)
|
|
194
|
-
{
|
|
195
|
-
const vec3 ab = b-a;
|
|
196
|
-
const vec3 ac = c-a;
|
|
197
|
-
|
|
198
|
-
// calculate normal
|
|
199
|
-
vec3 n = cross(ab, ac);
|
|
200
|
-
|
|
201
|
-
// need to solve a system of three equations to give t, u, v
|
|
202
|
-
float d = dot(-dir, n);
|
|
203
|
-
|
|
204
|
-
// if dir is parallel to triangle plane or points away from triangle
|
|
205
|
-
if (d <= 0.0f)
|
|
206
|
-
return false;
|
|
207
|
-
|
|
208
|
-
vec3 ap = p-a;
|
|
209
|
-
t = dot(ap, n);
|
|
210
|
-
|
|
211
|
-
// ignores tris behind
|
|
212
|
-
if (t < 0.0f)
|
|
213
|
-
return false;
|
|
214
|
-
|
|
215
|
-
// compute barycentric coordinates
|
|
216
|
-
vec3 e = cross(-dir, ap);
|
|
217
|
-
v = dot(ac, e);
|
|
218
|
-
if (v < 0.0f || v > d) return false;
|
|
219
|
-
|
|
220
|
-
w = -dot(ab, e);
|
|
221
|
-
if (w < 0.0f || v + w > d) return false;
|
|
222
|
-
|
|
223
|
-
float ood = 1.0f / d;
|
|
224
|
-
t *= ood;
|
|
225
|
-
v *= ood;
|
|
226
|
-
w *= ood;
|
|
227
|
-
u = 1.0f-v-w;
|
|
228
|
-
|
|
229
|
-
// optionally write out normal (todo: this branch is a performance concern, should probably remove)
|
|
230
|
-
if (normal)
|
|
231
|
-
*normal = n;
|
|
232
|
-
|
|
233
|
-
return true;
|
|
234
|
-
}
|
|
235
|
-
|
|
236
|
-
#ifndef __CUDA_ARCH__
|
|
237
|
-
|
|
238
|
-
// these are provided as built-ins by CUDA
|
|
239
|
-
inline float __int_as_float(int i)
|
|
240
|
-
{
|
|
241
|
-
return *(float*)(&i);
|
|
242
|
-
}
|
|
243
|
-
|
|
244
|
-
inline int __float_as_int(float f)
|
|
245
|
-
{
|
|
246
|
-
return *(int*)(&f);
|
|
247
|
-
}
|
|
248
|
-
|
|
249
|
-
#endif
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
CUDA_CALLABLE inline float xorf(float x, int y)
|
|
253
|
-
{
|
|
254
|
-
return __int_as_float(__float_as_int(x) ^ y);
|
|
255
|
-
}
|
|
256
|
-
|
|
257
|
-
CUDA_CALLABLE inline int sign_mask(float x)
|
|
258
|
-
{
|
|
259
|
-
return __float_as_int(x) & 0x80000000;
|
|
260
|
-
}
|
|
261
|
-
|
|
262
|
-
CUDA_CALLABLE inline int max_dim(vec3 a)
|
|
263
|
-
{
|
|
264
|
-
float x = abs(a[0]);
|
|
265
|
-
float y = abs(a[1]);
|
|
266
|
-
float z = abs(a[2]);
|
|
267
|
-
|
|
268
|
-
return longest_axis(vec3(x, y, z));
|
|
269
|
-
}
|
|
270
|
-
|
|
271
|
-
// computes the difference of products a*b - c*d using
|
|
272
|
-
// FMA instructions for improved numerical precision
|
|
273
|
-
CUDA_CALLABLE inline float diff_product(float a, float b, float c, float d)
|
|
274
|
-
{
|
|
275
|
-
float cd = c * d;
|
|
276
|
-
float diff = fmaf(a, b, -cd);
|
|
277
|
-
float error = fmaf(-c, d, cd);
|
|
278
|
-
|
|
279
|
-
return diff + error;
|
|
280
|
-
}
|
|
281
|
-
|
|
282
|
-
// http://jcgt.org/published/0002/01/05/
|
|
283
|
-
CUDA_CALLABLE inline bool intersect_ray_tri_woop(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& sign, vec3* normal)
|
|
284
|
-
{
|
|
285
|
-
// todo: precompute for ray
|
|
286
|
-
|
|
287
|
-
int kz = max_dim(dir);
|
|
288
|
-
int kx = kz+1; if (kx == 3) kx = 0;
|
|
289
|
-
int ky = kx+1; if (ky == 3) ky = 0;
|
|
290
|
-
|
|
291
|
-
if (dir[kz] < 0.0f)
|
|
292
|
-
{
|
|
293
|
-
float tmp = kx;
|
|
294
|
-
kx = ky;
|
|
295
|
-
ky = tmp;
|
|
296
|
-
}
|
|
297
|
-
|
|
298
|
-
float Sx = dir[kx]/dir[kz];
|
|
299
|
-
float Sy = dir[ky]/dir[kz];
|
|
300
|
-
float Sz = 1.0f/dir[kz];
|
|
301
|
-
|
|
302
|
-
// todo: end precompute
|
|
303
|
-
|
|
304
|
-
const vec3 A = a-p;
|
|
305
|
-
const vec3 B = b-p;
|
|
306
|
-
const vec3 C = c-p;
|
|
307
|
-
|
|
308
|
-
const float Ax = A[kx] - Sx*A[kz];
|
|
309
|
-
const float Ay = A[ky] - Sy*A[kz];
|
|
310
|
-
const float Bx = B[kx] - Sx*B[kz];
|
|
311
|
-
const float By = B[ky] - Sy*B[kz];
|
|
312
|
-
const float Cx = C[kx] - Sx*C[kz];
|
|
313
|
-
const float Cy = C[ky] - Sy*C[kz];
|
|
314
|
-
|
|
315
|
-
float U = diff_product(Cx, By, Cy, Bx);
|
|
316
|
-
float V = diff_product(Ax, Cy, Ay, Cx);
|
|
317
|
-
float W = diff_product(Bx, Ay, By, Ax);
|
|
318
|
-
|
|
319
|
-
if (U == 0.0f || V == 0.0f || W == 0.0f)
|
|
320
|
-
{
|
|
321
|
-
double CxBy = (double)Cx*(double)By;
|
|
322
|
-
double CyBx = (double)Cy*(double)Bx;
|
|
323
|
-
U = (float)(CxBy - CyBx);
|
|
324
|
-
double AxCy = (double)Ax*(double)Cy;
|
|
325
|
-
double AyCx = (double)Ay*(double)Cx;
|
|
326
|
-
V = (float)(AxCy - AyCx);
|
|
327
|
-
double BxAy = (double)Bx*(double)Ay;
|
|
328
|
-
double ByAx = (double)By*(double)Ax;
|
|
329
|
-
W = (float)(BxAy - ByAx);
|
|
330
|
-
}
|
|
331
|
-
|
|
332
|
-
if ((U<0.0f || V<0.0f || W<0.0f) && (U>0.0f || V>0.0f || W>0.0f))
|
|
333
|
-
{
|
|
334
|
-
return false;
|
|
335
|
-
}
|
|
336
|
-
|
|
337
|
-
float det = U+V+W;
|
|
338
|
-
|
|
339
|
-
if (det == 0.0f)
|
|
340
|
-
{
|
|
341
|
-
return false;
|
|
342
|
-
}
|
|
343
|
-
|
|
344
|
-
const float Az = Sz*A[kz];
|
|
345
|
-
const float Bz = Sz*B[kz];
|
|
346
|
-
const float Cz = Sz*C[kz];
|
|
347
|
-
const float T = U*Az + V*Bz + W*Cz;
|
|
348
|
-
|
|
349
|
-
int det_sign = sign_mask(det);
|
|
350
|
-
if (xorf(T,det_sign) < 0.0f)// || xorf(T,det_sign) > hit.t * xorf(det, det_sign)) // early out if hit.t is specified
|
|
351
|
-
{
|
|
352
|
-
return false;
|
|
353
|
-
}
|
|
354
|
-
|
|
355
|
-
const float rcpDet = 1.0f/det;
|
|
356
|
-
u = U*rcpDet;
|
|
357
|
-
v = V*rcpDet;
|
|
358
|
-
t = T*rcpDet;
|
|
359
|
-
sign = det;
|
|
360
|
-
|
|
361
|
-
// optionally write out normal (todo: this branch is a performance concern, should probably remove)
|
|
362
|
-
if (normal)
|
|
363
|
-
{
|
|
364
|
-
const vec3 ab = b-a;
|
|
365
|
-
const vec3 ac = c-a;
|
|
366
|
-
|
|
367
|
-
// calculate normal
|
|
368
|
-
*normal = cross(ab, ac);
|
|
369
|
-
}
|
|
370
|
-
|
|
371
|
-
return true;
|
|
372
|
-
}
|
|
373
|
-
|
|
374
|
-
CUDA_CALLABLE inline void adj_intersect_ray_tri_woop(
|
|
375
|
-
const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float t, float u, float v, float sign, const vec3& normal,
|
|
376
|
-
vec3& adj_p, vec3& adj_dir, vec3& adj_a, vec3& adj_b, vec3& adj_c, float& adj_t, float& adj_u, float& adj_v, float& adj_sign, vec3& adj_normal, bool& adj_ret)
|
|
377
|
-
{
|
|
378
|
-
|
|
379
|
-
// todo: precompute for ray
|
|
380
|
-
|
|
381
|
-
int kz = max_dim(dir);
|
|
382
|
-
int kx = kz+1; if (kx == 3) kx = 0;
|
|
383
|
-
int ky = kx+1; if (ky == 3) ky = 0;
|
|
384
|
-
|
|
385
|
-
if (dir[kz] < 0.0f)
|
|
386
|
-
{
|
|
387
|
-
float tmp = kx;
|
|
388
|
-
kx = ky;
|
|
389
|
-
ky = tmp;
|
|
390
|
-
}
|
|
391
|
-
|
|
392
|
-
const float Dx = dir[kx];
|
|
393
|
-
const float Dy = dir[ky];
|
|
394
|
-
const float Dz = dir[kz];
|
|
395
|
-
|
|
396
|
-
const float Sx = dir[kx]/dir[kz];
|
|
397
|
-
const float Sy = dir[ky]/dir[kz];
|
|
398
|
-
const float Sz = 1.0f/dir[kz];
|
|
399
|
-
|
|
400
|
-
// todo: end precompute
|
|
401
|
-
|
|
402
|
-
const vec3 A = a-p;
|
|
403
|
-
const vec3 B = b-p;
|
|
404
|
-
const vec3 C = c-p;
|
|
405
|
-
|
|
406
|
-
const float Ax = A[kx] - Sx*A[kz];
|
|
407
|
-
const float Ay = A[ky] - Sy*A[kz];
|
|
408
|
-
const float Bx = B[kx] - Sx*B[kz];
|
|
409
|
-
const float By = B[ky] - Sy*B[kz];
|
|
410
|
-
const float Cx = C[kx] - Sx*C[kz];
|
|
411
|
-
const float Cy = C[ky] - Sy*C[kz];
|
|
412
|
-
|
|
413
|
-
float U = Cx*By - Cy*Bx;
|
|
414
|
-
float V = Ax*Cy - Ay*Cx;
|
|
415
|
-
float W = Bx*Ay - By*Ax;
|
|
416
|
-
|
|
417
|
-
if (U == 0.0f || V == 0.0f || W == 0.0f)
|
|
418
|
-
{
|
|
419
|
-
double CxBy = (double)Cx*(double)By;
|
|
420
|
-
double CyBx = (double)Cy*(double)Bx;
|
|
421
|
-
U = (float)(CxBy - CyBx);
|
|
422
|
-
double AxCy = (double)Ax*(double)Cy;
|
|
423
|
-
double AyCx = (double)Ay*(double)Cx;
|
|
424
|
-
V = (float)(AxCy - AyCx);
|
|
425
|
-
double BxAy = (double)Bx*(double)Ay;
|
|
426
|
-
double ByAx = (double)By*(double)Ax;
|
|
427
|
-
W = (float)(BxAy - ByAx);
|
|
428
|
-
}
|
|
429
|
-
|
|
430
|
-
if ((U<0.0f || V<0.0f || W<0.0f) && (U>0.0f || V>0.0f || W>0.0f))
|
|
431
|
-
return;
|
|
432
|
-
|
|
433
|
-
float det = U+V+W;
|
|
434
|
-
|
|
435
|
-
if (det == 0.0f)
|
|
436
|
-
return;
|
|
437
|
-
|
|
438
|
-
const float Az = Sz*A[kz];
|
|
439
|
-
const float Bz = Sz*B[kz];
|
|
440
|
-
const float Cz = Sz*C[kz];
|
|
441
|
-
const float T = U*Az + V*Bz + W*Cz;
|
|
442
|
-
|
|
443
|
-
int det_sign = sign_mask(det);
|
|
444
|
-
if (xorf(T,det_sign) < 0.0f)// || xorf(T,det_sign) > hit.t * xorf(det, det_sign)) // early out if hit.t is specified
|
|
445
|
-
return;
|
|
446
|
-
|
|
447
|
-
const float rcpDet = (1.f / det);
|
|
448
|
-
const float rcpDetSq = rcpDet * rcpDet;
|
|
449
|
-
|
|
450
|
-
// adj_p
|
|
451
|
-
|
|
452
|
-
const float dAx_dpx = -1.f;
|
|
453
|
-
const float dBx_dpx = -1.f;
|
|
454
|
-
const float dCx_dpx = -1.f;
|
|
455
|
-
const float dAy_dpx = 0.f;
|
|
456
|
-
const float dBy_dpx = 0.f;
|
|
457
|
-
const float dCy_dpx = 0.f;
|
|
458
|
-
const float dAz_dpx = 0.f;
|
|
459
|
-
const float dBz_dpx = 0.f;
|
|
460
|
-
const float dCz_dpx = 0.f;
|
|
461
|
-
|
|
462
|
-
const float dAx_dpy = 0.f;
|
|
463
|
-
const float dBx_dpy = 0.f;
|
|
464
|
-
const float dCx_dpy = 0.f;
|
|
465
|
-
const float dAy_dpy = -1.f;
|
|
466
|
-
const float dBy_dpy = -1.f;
|
|
467
|
-
const float dCy_dpy = -1.f;
|
|
468
|
-
const float dAz_dpy = 0.f;
|
|
469
|
-
const float dBz_dpy = 0.f;
|
|
470
|
-
const float dCz_dpy = 0.f;
|
|
471
|
-
|
|
472
|
-
const float dAx_dpz = Sx;
|
|
473
|
-
const float dBx_dpz = Sx;
|
|
474
|
-
const float dCx_dpz = Sx;
|
|
475
|
-
const float dAy_dpz = Sy;
|
|
476
|
-
const float dBy_dpz = Sy;
|
|
477
|
-
const float dCy_dpz = Sy;
|
|
478
|
-
const float dAz_dpz = -Sz;
|
|
479
|
-
const float dBz_dpz = -Sz;
|
|
480
|
-
const float dCz_dpz = -Sz;
|
|
481
|
-
|
|
482
|
-
const float dU_dpx = Cx * dBy_dpx + By * dCx_dpx - Cy * dBx_dpx - Bx * dCy_dpx;
|
|
483
|
-
const float dU_dpy = Cx * dBy_dpy + By * dCx_dpy - Cy * dBx_dpy - Bx * dCy_dpy;
|
|
484
|
-
const float dU_dpz = Cx * dBy_dpz + By * dCx_dpz - Cy * dBx_dpz - Bx * dCy_dpz;
|
|
485
|
-
const vec3 dU_dp = vec3(dU_dpx, dU_dpy, dU_dpz);
|
|
486
|
-
|
|
487
|
-
const float dV_dpx = Ax * dCy_dpx + Cy * dAx_dpx - Ay * dCx_dpx - Cx * dAy_dpx;
|
|
488
|
-
const float dV_dpy = Ax * dCy_dpy + Cy * dAx_dpy - Ay * dCx_dpy - Cx * dAy_dpy;
|
|
489
|
-
const float dV_dpz = Ax * dCy_dpz + Cy * dAx_dpz - Ay * dCx_dpz - Cx * dAy_dpz;
|
|
490
|
-
const vec3 dV_dp = vec3(dV_dpx, dV_dpy, dV_dpz);
|
|
491
|
-
|
|
492
|
-
const float dW_dpx = Bx * dAy_dpx + Ay * dBx_dpx - By * dAx_dpx - Ax * dBy_dpx;
|
|
493
|
-
const float dW_dpy = Bx * dAy_dpy + Ay * dBx_dpy - By * dAx_dpy - Ax * dBy_dpy;
|
|
494
|
-
const float dW_dpz = Bx * dAy_dpz + Ay * dBx_dpz - By * dAx_dpz - Ax * dBy_dpz;
|
|
495
|
-
const vec3 dW_dp = vec3(dW_dpx, dW_dpy, dW_dpz);
|
|
496
|
-
|
|
497
|
-
const float dT_dpx = dU_dpx * Az + U * dAz_dpx + dV_dpx * Bz + V * dBz_dpx + dW_dpx * Cz + W * dCz_dpx;
|
|
498
|
-
const float dT_dpy = dU_dpy * Az + U * dAz_dpy + dV_dpy * Bz + V * dBz_dpy + dW_dpy * Cz + W * dCz_dpy;
|
|
499
|
-
const float dT_dpz = dU_dpz * Az + U * dAz_dpz + dV_dpz * Bz + V * dBz_dpz + dW_dpz * Cz + W * dCz_dpz;
|
|
500
|
-
const vec3 dT_dp = vec3(dT_dpx, dT_dpy, dT_dpz);
|
|
501
|
-
|
|
502
|
-
const float dDet_dpx = dU_dpx + dV_dpx + dW_dpx;
|
|
503
|
-
const float dDet_dpy = dU_dpy + dV_dpy + dW_dpy;
|
|
504
|
-
const float dDet_dpz = dU_dpz + dV_dpz + dW_dpz;
|
|
505
|
-
const vec3 dDet_dp = vec3(dDet_dpx, dDet_dpy, dDet_dpz);
|
|
506
|
-
|
|
507
|
-
const vec3 du_dp = rcpDet * dU_dp + -U * rcpDetSq * dDet_dp;
|
|
508
|
-
const vec3 dv_dp = rcpDet * dV_dp + -V * rcpDetSq * dDet_dp;
|
|
509
|
-
const vec3 dt_dp = rcpDet * dT_dp + -T * rcpDetSq * dDet_dp;
|
|
510
|
-
|
|
511
|
-
vec3 adj_p_swapped = adj_u*du_dp + adj_v*dv_dp + adj_t*dt_dp;
|
|
512
|
-
adj_p[kx] += adj_p_swapped[0];
|
|
513
|
-
adj_p[ky] += adj_p_swapped[1];
|
|
514
|
-
adj_p[kz] += adj_p_swapped[2];
|
|
515
|
-
|
|
516
|
-
// adj_dir
|
|
517
|
-
|
|
518
|
-
const float dAx_dDx = -Sz * A[kz];
|
|
519
|
-
const float dBx_dDx = -Sz * B[kz];
|
|
520
|
-
const float dCx_dDx = -Sz * C[kz];
|
|
521
|
-
const float dAy_dDx = 0.f;
|
|
522
|
-
const float dBy_dDx = 0.f;
|
|
523
|
-
const float dCy_dDx = 0.f;
|
|
524
|
-
const float dAz_dDx = 0.f;
|
|
525
|
-
const float dBz_dDx = 0.f;
|
|
526
|
-
const float dCz_dDx = 0.f;
|
|
527
|
-
|
|
528
|
-
const float dAx_dDy = 0.f;
|
|
529
|
-
const float dBx_dDy = 0.f;
|
|
530
|
-
const float dCx_dDy = 0.f;
|
|
531
|
-
const float dAy_dDy = -Sz * A[kz];
|
|
532
|
-
const float dBy_dDy = -Sz * B[kz];
|
|
533
|
-
const float dCy_dDy = -Sz * C[kz];
|
|
534
|
-
const float dAz_dDy = 0.f;
|
|
535
|
-
const float dBz_dDy = 0.f;
|
|
536
|
-
const float dCz_dDy = 0.f;
|
|
537
|
-
|
|
538
|
-
const float dAx_dDz = Dx * Sz * Sz * A[kz];
|
|
539
|
-
const float dBx_dDz = Dx * Sz * Sz * B[kz];
|
|
540
|
-
const float dCx_dDz = Dx * Sz * Sz * C[kz];
|
|
541
|
-
const float dAy_dDz = Dy * Sz * Sz * A[kz];
|
|
542
|
-
const float dBy_dDz = Dy * Sz * Sz * B[kz];
|
|
543
|
-
const float dCy_dDz = Dy * Sz * Sz * C[kz];
|
|
544
|
-
const float dAz_dDz = -Sz * Sz * A[kz];
|
|
545
|
-
const float dBz_dDz = -Sz * Sz * B[kz];
|
|
546
|
-
const float dCz_dDz = -Sz * Sz * C[kz];
|
|
547
|
-
|
|
548
|
-
const float dU_dDx = Cx * dBy_dDx + By * dCx_dDx - Cy * dBx_dDx - Bx * dCy_dDx;
|
|
549
|
-
const float dU_dDy = Cx * dBy_dDy + By * dCx_dDy - Cy * dBx_dDy - Bx * dCy_dDy;
|
|
550
|
-
const float dU_dDz = Cx * dBy_dDz + By * dCx_dDz - Cy * dBx_dDz - Bx * dCy_dDz;
|
|
551
|
-
const vec3 dU_dD = vec3(dU_dDx, dU_dDy, dU_dDz);
|
|
552
|
-
|
|
553
|
-
const float dV_dDx = Ax * dCy_dDx + Cy * dAx_dDx - Ay * dCx_dDx - Cx * dAy_dDx;
|
|
554
|
-
const float dV_dDy = Ax * dCy_dDy + Cy * dAx_dDy - Ay * dCx_dDy - Cx * dAy_dDy;
|
|
555
|
-
const float dV_dDz = Ax * dCy_dDz + Cy * dAx_dDz - Ay * dCx_dDz - Cx * dAy_dDz;
|
|
556
|
-
const vec3 dV_dD = vec3(dV_dDx, dV_dDy, dV_dDz);
|
|
557
|
-
|
|
558
|
-
const float dW_dDx = Bx * dAy_dDx + Ay * dBx_dDx - By * dAx_dDx - Ax * dBy_dDx;
|
|
559
|
-
const float dW_dDy = Bx * dAy_dDy + Ay * dBx_dDy - By * dAx_dDy - Ax * dBy_dDy;
|
|
560
|
-
const float dW_dDz = Bx * dAy_dDz + Ay * dBx_dDz - By * dAx_dDz - Ax * dBy_dDz;
|
|
561
|
-
const vec3 dW_dD = vec3(dW_dDx, dW_dDy, dW_dDz);
|
|
562
|
-
|
|
563
|
-
const float dT_dDx = dU_dDx * Az + U * dAz_dDx + dV_dDx * Bz + V * dBz_dDx + dW_dDx * Cz + W * dCz_dDx;
|
|
564
|
-
const float dT_dDy = dU_dDy * Az + U * dAz_dDy + dV_dDy * Bz + V * dBz_dDy + dW_dDy * Cz + W * dCz_dDy;
|
|
565
|
-
const float dT_dDz = dU_dDz * Az + U * dAz_dDz + dV_dDz * Bz + V * dBz_dDz + dW_dDz * Cz + W * dCz_dDz;
|
|
566
|
-
const vec3 dT_dD = vec3(dT_dDx, dT_dDy, dT_dDz);
|
|
567
|
-
|
|
568
|
-
const float dDet_dDx = dU_dDx + dV_dDx + dW_dDx;
|
|
569
|
-
const float dDet_dDy = dU_dDy + dV_dDy + dW_dDy;
|
|
570
|
-
const float dDet_dDz = dU_dDz + dV_dDz + dW_dDz;
|
|
571
|
-
const vec3 dDet_dD = vec3(dDet_dDx, dDet_dDy, dDet_dDz);
|
|
572
|
-
|
|
573
|
-
const vec3 du_dD = rcpDet * dU_dD + -U * rcpDetSq * dDet_dD;
|
|
574
|
-
const vec3 dv_dD = rcpDet * dV_dD + -V * rcpDetSq * dDet_dD;
|
|
575
|
-
const vec3 dt_dD = rcpDet * dT_dD + -T * rcpDetSq * dDet_dD;
|
|
576
|
-
|
|
577
|
-
vec3 adj_dir_swapped = adj_u*du_dD + adj_v*dv_dD + adj_t*dt_dD;
|
|
578
|
-
adj_dir[kx] += adj_dir_swapped[0];
|
|
579
|
-
adj_dir[ky] += adj_dir_swapped[1];
|
|
580
|
-
adj_dir[kz] += adj_dir_swapped[2];
|
|
581
|
-
}
|
|
582
|
-
|
|
583
|
-
// Möller's method
|
|
584
|
-
#include "intersect_tri.h"
|
|
585
|
-
|
|
586
|
-
CUDA_CALLABLE inline int intersect_tri_tri(
|
|
587
|
-
vec3& v0, vec3& v1, vec3& v2,
|
|
588
|
-
vec3& u0, vec3& u1, vec3& u2)
|
|
589
|
-
{
|
|
590
|
-
return NoDivTriTriIsect(&v0[0], &v1[0], &v2[0], &u0[0], &u1[0], &u2[0]);
|
|
591
|
-
}
|
|
592
|
-
|
|
593
|
-
CUDA_CALLABLE inline void adj_intersect_tri_tri(const vec3& var_v0,
|
|
594
|
-
const vec3& var_v1,
|
|
595
|
-
const vec3& var_v2,
|
|
596
|
-
const vec3& var_u0,
|
|
597
|
-
const vec3& var_u1,
|
|
598
|
-
const vec3& var_u2,
|
|
599
|
-
vec3& adj_v0,
|
|
600
|
-
vec3& adj_v1,
|
|
601
|
-
vec3& adj_v2,
|
|
602
|
-
vec3& adj_u0,
|
|
603
|
-
vec3& adj_u1,
|
|
604
|
-
vec3& adj_u2,
|
|
605
|
-
int adj_ret) {}
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
CUDA_CALLABLE inline void adj_closest_point_to_triangle(
|
|
609
|
-
const vec3& var_a, const vec3& var_b, const vec3& var_c, const vec3& var_p,
|
|
610
|
-
vec3& adj_a, vec3& adj_b, vec3& adj_c, vec3& adj_p, vec2& adj_ret)
|
|
611
|
-
{
|
|
612
|
-
|
|
613
|
-
// primal vars
|
|
614
|
-
vec3 var_0;
|
|
615
|
-
vec3 var_1;
|
|
616
|
-
vec3 var_2;
|
|
617
|
-
float32 var_3;
|
|
618
|
-
float32 var_4;
|
|
619
|
-
const float32 var_5 = 0.0;
|
|
620
|
-
bool var_6;
|
|
621
|
-
bool var_7;
|
|
622
|
-
bool var_8;
|
|
623
|
-
const float32 var_9 = 1.0;
|
|
624
|
-
vec2 var_10;
|
|
625
|
-
vec3 var_11;
|
|
626
|
-
float32 var_12;
|
|
627
|
-
float32 var_13;
|
|
628
|
-
bool var_14;
|
|
629
|
-
bool var_15;
|
|
630
|
-
bool var_16;
|
|
631
|
-
vec2 var_17;
|
|
632
|
-
vec2 var_18;
|
|
633
|
-
float32 var_19;
|
|
634
|
-
float32 var_20;
|
|
635
|
-
float32 var_21;
|
|
636
|
-
float32 var_22;
|
|
637
|
-
float32 var_23;
|
|
638
|
-
bool var_24;
|
|
639
|
-
bool var_25;
|
|
640
|
-
bool var_26;
|
|
641
|
-
bool var_27;
|
|
642
|
-
float32 var_28;
|
|
643
|
-
vec2 var_29;
|
|
644
|
-
vec2 var_30;
|
|
645
|
-
vec3 var_31;
|
|
646
|
-
float32 var_32;
|
|
647
|
-
float32 var_33;
|
|
648
|
-
bool var_34;
|
|
649
|
-
bool var_35;
|
|
650
|
-
bool var_36;
|
|
651
|
-
vec2 var_37;
|
|
652
|
-
vec2 var_38;
|
|
653
|
-
float32 var_39;
|
|
654
|
-
float32 var_40;
|
|
655
|
-
float32 var_41;
|
|
656
|
-
float32 var_42;
|
|
657
|
-
float32 var_43;
|
|
658
|
-
bool var_44;
|
|
659
|
-
bool var_45;
|
|
660
|
-
bool var_46;
|
|
661
|
-
bool var_47;
|
|
662
|
-
float32 var_48;
|
|
663
|
-
vec2 var_49;
|
|
664
|
-
vec2 var_50;
|
|
665
|
-
float32 var_51;
|
|
666
|
-
float32 var_52;
|
|
667
|
-
float32 var_53;
|
|
668
|
-
float32 var_54;
|
|
669
|
-
float32 var_55;
|
|
670
|
-
float32 var_56;
|
|
671
|
-
float32 var_57;
|
|
672
|
-
float32 var_58;
|
|
673
|
-
bool var_59;
|
|
674
|
-
float32 var_60;
|
|
675
|
-
bool var_61;
|
|
676
|
-
float32 var_62;
|
|
677
|
-
bool var_63;
|
|
678
|
-
bool var_64;
|
|
679
|
-
float32 var_65;
|
|
680
|
-
vec2 var_66;
|
|
681
|
-
// vec2 var_67;
|
|
682
|
-
float32 var_68;
|
|
683
|
-
float32 var_69;
|
|
684
|
-
float32 var_70;
|
|
685
|
-
float32 var_71;
|
|
686
|
-
float32 var_72;
|
|
687
|
-
float32 var_73;
|
|
688
|
-
float32 var_74;
|
|
689
|
-
// vec2 var_75;
|
|
690
|
-
//---------
|
|
691
|
-
// dual vars
|
|
692
|
-
vec3 adj_0 = 0;
|
|
693
|
-
vec3 adj_1 = 0;
|
|
694
|
-
vec3 adj_2 = 0;
|
|
695
|
-
float32 adj_3 = 0;
|
|
696
|
-
float32 adj_4 = 0;
|
|
697
|
-
float32 adj_5 = 0;
|
|
698
|
-
//bool adj_6 = 0;
|
|
699
|
-
//bool adj_7 = 0;
|
|
700
|
-
//bool adj_8 = 0;
|
|
701
|
-
float32 adj_9 = 0;
|
|
702
|
-
vec2 adj_10 = 0;
|
|
703
|
-
vec3 adj_11 = 0;
|
|
704
|
-
float32 adj_12 = 0;
|
|
705
|
-
float32 adj_13 = 0;
|
|
706
|
-
//bool adj_14 = 0;
|
|
707
|
-
//bool adj_15 = 0;
|
|
708
|
-
bool adj_16 = 0;
|
|
709
|
-
vec2 adj_17 = 0;
|
|
710
|
-
vec2 adj_18 = 0;
|
|
711
|
-
float32 adj_19 = 0;
|
|
712
|
-
float32 adj_20 = 0;
|
|
713
|
-
float32 adj_21 = 0;
|
|
714
|
-
float32 adj_22 = 0;
|
|
715
|
-
float32 adj_23 = 0;
|
|
716
|
-
//bool adj_24 = 0;
|
|
717
|
-
//bool adj_25 = 0;
|
|
718
|
-
//bool adj_26 = 0;
|
|
719
|
-
bool adj_27 = 0;
|
|
720
|
-
float32 adj_28 = 0;
|
|
721
|
-
vec2 adj_29 = 0;
|
|
722
|
-
vec2 adj_30 = 0;
|
|
723
|
-
vec3 adj_31 = 0;
|
|
724
|
-
float32 adj_32 = 0;
|
|
725
|
-
float32 adj_33 = 0;
|
|
726
|
-
//bool adj_34 = 0;
|
|
727
|
-
//bool adj_35 = 0;
|
|
728
|
-
bool adj_36 = 0;
|
|
729
|
-
vec2 adj_37 = 0;
|
|
730
|
-
vec2 adj_38 = 0;
|
|
731
|
-
float32 adj_39 = 0;
|
|
732
|
-
float32 adj_40 = 0;
|
|
733
|
-
float32 adj_41 = 0;
|
|
734
|
-
float32 adj_42 = 0;
|
|
735
|
-
float32 adj_43 = 0;
|
|
736
|
-
//bool adj_44 = 0;
|
|
737
|
-
//bool adj_45 = 0;
|
|
738
|
-
//bool adj_46 = 0;
|
|
739
|
-
bool adj_47 = 0;
|
|
740
|
-
float32 adj_48 = 0;
|
|
741
|
-
vec2 adj_49 = 0;
|
|
742
|
-
vec2 adj_50 = 0;
|
|
743
|
-
float32 adj_51 = 0;
|
|
744
|
-
float32 adj_52 = 0;
|
|
745
|
-
float32 adj_53 = 0;
|
|
746
|
-
float32 adj_54 = 0;
|
|
747
|
-
float32 adj_55 = 0;
|
|
748
|
-
float32 adj_56 = 0;
|
|
749
|
-
float32 adj_57 = 0;
|
|
750
|
-
float32 adj_58 = 0;
|
|
751
|
-
//bool adj_59 = 0;
|
|
752
|
-
float32 adj_60 = 0;
|
|
753
|
-
//bool adj_61 = 0;
|
|
754
|
-
float32 adj_62 = 0;
|
|
755
|
-
//bool adj_63 = 0;
|
|
756
|
-
bool adj_64 = 0;
|
|
757
|
-
float32 adj_65 = 0;
|
|
758
|
-
vec2 adj_66 = 0;
|
|
759
|
-
vec2 adj_67 = 0;
|
|
760
|
-
float32 adj_68 = 0;
|
|
761
|
-
float32 adj_69 = 0;
|
|
762
|
-
float32 adj_70 = 0;
|
|
763
|
-
float32 adj_71 = 0;
|
|
764
|
-
float32 adj_72 = 0;
|
|
765
|
-
float32 adj_73 = 0;
|
|
766
|
-
float32 adj_74 = 0;
|
|
767
|
-
vec2 adj_75 = 0;
|
|
768
|
-
//---------
|
|
769
|
-
// forward
|
|
770
|
-
var_0 = wp::sub(var_b, var_a);
|
|
771
|
-
var_1 = wp::sub(var_c, var_a);
|
|
772
|
-
var_2 = wp::sub(var_p, var_a);
|
|
773
|
-
var_3 = wp::dot(var_0, var_2);
|
|
774
|
-
var_4 = wp::dot(var_1, var_2);
|
|
775
|
-
var_6 = (var_3 <= var_5);
|
|
776
|
-
var_7 = (var_4 <= var_5);
|
|
777
|
-
var_8 = var_6 && var_7;
|
|
778
|
-
if (var_8) {
|
|
779
|
-
var_10 = wp::vec2(var_9, var_5);
|
|
780
|
-
goto label0;
|
|
781
|
-
}
|
|
782
|
-
var_11 = wp::sub(var_p, var_b);
|
|
783
|
-
var_12 = wp::dot(var_0, var_11);
|
|
784
|
-
var_13 = wp::dot(var_1, var_11);
|
|
785
|
-
var_14 = (var_12 >= var_5);
|
|
786
|
-
var_15 = (var_13 <= var_12);
|
|
787
|
-
var_16 = var_14 && var_15;
|
|
788
|
-
if (var_16) {
|
|
789
|
-
var_17 = wp::vec2(var_5, var_9);
|
|
790
|
-
goto label1;
|
|
791
|
-
}
|
|
792
|
-
var_18 = wp::select(var_16, var_10, var_17);
|
|
793
|
-
var_19 = wp::mul(var_3, var_13);
|
|
794
|
-
var_20 = wp::mul(var_12, var_4);
|
|
795
|
-
var_21 = wp::sub(var_19, var_20);
|
|
796
|
-
var_22 = wp::sub(var_3, var_12);
|
|
797
|
-
var_23 = wp::div(var_3, var_22);
|
|
798
|
-
var_24 = (var_21 <= var_5);
|
|
799
|
-
var_25 = (var_3 >= var_5);
|
|
800
|
-
var_26 = (var_12 <= var_5);
|
|
801
|
-
var_27 = var_24 && var_25 && var_26;
|
|
802
|
-
if (var_27) {
|
|
803
|
-
var_28 = wp::sub(var_9, var_23);
|
|
804
|
-
var_29 = wp::vec2(var_28, var_23);
|
|
805
|
-
goto label2;
|
|
806
|
-
}
|
|
807
|
-
var_30 = wp::select(var_27, var_18, var_29);
|
|
808
|
-
var_31 = wp::sub(var_p, var_c);
|
|
809
|
-
var_32 = wp::dot(var_0, var_31);
|
|
810
|
-
var_33 = wp::dot(var_1, var_31);
|
|
811
|
-
var_34 = (var_33 >= var_5);
|
|
812
|
-
var_35 = (var_32 <= var_33);
|
|
813
|
-
var_36 = var_34 && var_35;
|
|
814
|
-
if (var_36) {
|
|
815
|
-
var_37 = wp::vec2(var_5, var_5);
|
|
816
|
-
goto label3;
|
|
817
|
-
}
|
|
818
|
-
var_38 = wp::select(var_36, var_30, var_37);
|
|
819
|
-
var_39 = wp::mul(var_32, var_4);
|
|
820
|
-
var_40 = wp::mul(var_3, var_33);
|
|
821
|
-
var_41 = wp::sub(var_39, var_40);
|
|
822
|
-
var_42 = wp::sub(var_4, var_33);
|
|
823
|
-
var_43 = wp::div(var_4, var_42);
|
|
824
|
-
var_44 = (var_41 <= var_5);
|
|
825
|
-
var_45 = (var_4 >= var_5);
|
|
826
|
-
var_46 = (var_33 <= var_5);
|
|
827
|
-
var_47 = var_44 && var_45 && var_46;
|
|
828
|
-
if (var_47) {
|
|
829
|
-
var_48 = wp::sub(var_9, var_43);
|
|
830
|
-
var_49 = wp::vec2(var_48, var_5);
|
|
831
|
-
goto label4;
|
|
832
|
-
}
|
|
833
|
-
var_50 = wp::select(var_47, var_38, var_49);
|
|
834
|
-
var_51 = wp::mul(var_12, var_33);
|
|
835
|
-
var_52 = wp::mul(var_32, var_13);
|
|
836
|
-
var_53 = wp::sub(var_51, var_52);
|
|
837
|
-
var_54 = wp::sub(var_13, var_12);
|
|
838
|
-
var_55 = wp::sub(var_13, var_12);
|
|
839
|
-
var_56 = wp::sub(var_32, var_33);
|
|
840
|
-
var_57 = wp::add(var_55, var_56);
|
|
841
|
-
var_58 = wp::div(var_54, var_57);
|
|
842
|
-
var_59 = (var_53 <= var_5);
|
|
843
|
-
var_60 = wp::sub(var_13, var_12);
|
|
844
|
-
var_61 = (var_60 >= var_5);
|
|
845
|
-
var_62 = wp::sub(var_32, var_33);
|
|
846
|
-
var_63 = (var_62 >= var_5);
|
|
847
|
-
var_64 = var_59 && var_61 && var_63;
|
|
848
|
-
if (var_64) {
|
|
849
|
-
var_65 = wp::sub(var_9, var_58);
|
|
850
|
-
var_66 = wp::vec2(var_5, var_65);
|
|
851
|
-
goto label5;
|
|
852
|
-
}
|
|
853
|
-
// var_67 = wp::select(var_64, var_50, var_66);
|
|
854
|
-
var_68 = wp::add(var_53, var_41);
|
|
855
|
-
var_69 = wp::add(var_68, var_21);
|
|
856
|
-
var_70 = wp::div(var_9, var_69);
|
|
857
|
-
var_71 = wp::mul(var_41, var_70);
|
|
858
|
-
var_72 = wp::mul(var_21, var_70);
|
|
859
|
-
var_73 = wp::sub(var_9, var_71);
|
|
860
|
-
var_74 = wp::sub(var_73, var_72);
|
|
861
|
-
// var_75 = wp::vec2(var_74, var_71);
|
|
862
|
-
goto label6;
|
|
863
|
-
//---------
|
|
864
|
-
// reverse
|
|
865
|
-
label6:;
|
|
866
|
-
adj_75 += adj_ret;
|
|
867
|
-
wp::adj_vec2(var_74, var_71, adj_74, adj_71, adj_75);
|
|
868
|
-
wp::adj_sub(var_73, var_72, adj_73, adj_72, adj_74);
|
|
869
|
-
wp::adj_sub(var_9, var_71, adj_9, adj_71, adj_73);
|
|
870
|
-
wp::adj_mul(var_21, var_70, adj_21, adj_70, adj_72);
|
|
871
|
-
wp::adj_mul(var_41, var_70, adj_41, adj_70, adj_71);
|
|
872
|
-
wp::adj_div(var_9, var_69, var_70, adj_9, adj_69, adj_70);
|
|
873
|
-
wp::adj_add(var_68, var_21, adj_68, adj_21, adj_69);
|
|
874
|
-
wp::adj_add(var_53, var_41, adj_53, adj_41, adj_68);
|
|
875
|
-
wp::adj_select(var_64, var_50, var_66, adj_64, adj_50, adj_66, adj_67);
|
|
876
|
-
if (var_64) {
|
|
877
|
-
label5:;
|
|
878
|
-
adj_66 += adj_ret;
|
|
879
|
-
wp::adj_vec2(var_5, var_65, adj_5, adj_65, adj_66);
|
|
880
|
-
wp::adj_sub(var_9, var_58, adj_9, adj_58, adj_65);
|
|
881
|
-
}
|
|
882
|
-
wp::adj_sub(var_32, var_33, adj_32, adj_33, adj_62);
|
|
883
|
-
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_60);
|
|
884
|
-
wp::adj_div(var_54, var_57, var_58, adj_54, adj_57, adj_58);
|
|
885
|
-
wp::adj_add(var_55, var_56, adj_55, adj_56, adj_57);
|
|
886
|
-
wp::adj_sub(var_32, var_33, adj_32, adj_33, adj_56);
|
|
887
|
-
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_55);
|
|
888
|
-
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_54);
|
|
889
|
-
wp::adj_sub(var_51, var_52, adj_51, adj_52, adj_53);
|
|
890
|
-
wp::adj_mul(var_32, var_13, adj_32, adj_13, adj_52);
|
|
891
|
-
wp::adj_mul(var_12, var_33, adj_12, adj_33, adj_51);
|
|
892
|
-
wp::adj_select(var_47, var_38, var_49, adj_47, adj_38, adj_49, adj_50);
|
|
893
|
-
if (var_47) {
|
|
894
|
-
label4:;
|
|
895
|
-
adj_49 += adj_ret;
|
|
896
|
-
wp::adj_vec2(var_48, var_5, adj_48, adj_5, adj_49);
|
|
897
|
-
wp::adj_sub(var_9, var_43, adj_9, adj_43, adj_48);
|
|
898
|
-
}
|
|
899
|
-
wp::adj_div(var_4, var_42, var_43, adj_4, adj_42, adj_43);
|
|
900
|
-
wp::adj_sub(var_4, var_33, adj_4, adj_33, adj_42);
|
|
901
|
-
wp::adj_sub(var_39, var_40, adj_39, adj_40, adj_41);
|
|
902
|
-
wp::adj_mul(var_3, var_33, adj_3, adj_33, adj_40);
|
|
903
|
-
wp::adj_mul(var_32, var_4, adj_32, adj_4, adj_39);
|
|
904
|
-
wp::adj_select(var_36, var_30, var_37, adj_36, adj_30, adj_37, adj_38);
|
|
905
|
-
if (var_36) {
|
|
906
|
-
label3:;
|
|
907
|
-
adj_37 += adj_ret;
|
|
908
|
-
wp::adj_vec2(var_5, var_5, adj_5, adj_5, adj_37);
|
|
909
|
-
}
|
|
910
|
-
wp::adj_dot(var_1, var_31, adj_1, adj_31, adj_33);
|
|
911
|
-
wp::adj_dot(var_0, var_31, adj_0, adj_31, adj_32);
|
|
912
|
-
wp::adj_sub(var_p, var_c, adj_p, adj_c, adj_31);
|
|
913
|
-
wp::adj_select(var_27, var_18, var_29, adj_27, adj_18, adj_29, adj_30);
|
|
914
|
-
if (var_27) {
|
|
915
|
-
label2:;
|
|
916
|
-
adj_29 += adj_ret;
|
|
917
|
-
wp::adj_vec2(var_28, var_23, adj_28, adj_23, adj_29);
|
|
918
|
-
wp::adj_sub(var_9, var_23, adj_9, adj_23, adj_28);
|
|
919
|
-
}
|
|
920
|
-
wp::adj_div(var_3, var_22, var_23, adj_3, adj_22, adj_23);
|
|
921
|
-
wp::adj_sub(var_3, var_12, adj_3, adj_12, adj_22);
|
|
922
|
-
wp::adj_sub(var_19, var_20, adj_19, adj_20, adj_21);
|
|
923
|
-
wp::adj_mul(var_12, var_4, adj_12, adj_4, adj_20);
|
|
924
|
-
wp::adj_mul(var_3, var_13, adj_3, adj_13, adj_19);
|
|
925
|
-
wp::adj_select(var_16, var_10, var_17, adj_16, adj_10, adj_17, adj_18);
|
|
926
|
-
if (var_16) {
|
|
927
|
-
label1:;
|
|
928
|
-
adj_17 += adj_ret;
|
|
929
|
-
wp::adj_vec2(var_5, var_9, adj_5, adj_9, adj_17);
|
|
930
|
-
}
|
|
931
|
-
wp::adj_dot(var_1, var_11, adj_1, adj_11, adj_13);
|
|
932
|
-
wp::adj_dot(var_0, var_11, adj_0, adj_11, adj_12);
|
|
933
|
-
wp::adj_sub(var_p, var_b, adj_p, adj_b, adj_11);
|
|
934
|
-
if (var_8) {
|
|
935
|
-
label0:;
|
|
936
|
-
adj_10 += adj_ret;
|
|
937
|
-
wp::adj_vec2(var_9, var_5, adj_9, adj_5, adj_10);
|
|
938
|
-
}
|
|
939
|
-
wp::adj_dot(var_1, var_2, adj_1, adj_2, adj_4);
|
|
940
|
-
wp::adj_dot(var_0, var_2, adj_0, adj_2, adj_3);
|
|
941
|
-
wp::adj_sub(var_p, var_a, adj_p, adj_a, adj_2);
|
|
942
|
-
wp::adj_sub(var_c, var_a, adj_c, adj_a, adj_1);
|
|
943
|
-
wp::adj_sub(var_b, var_a, adj_b, adj_a, adj_0);
|
|
944
|
-
return;
|
|
945
|
-
|
|
946
|
-
}
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
// ----------------------------------------------------------------
|
|
951
|
-
// jleaf: I needed to replace "float(" with "cast_float(" manually below because
|
|
952
|
-
// "#define float(x) cast_float(x)"" in this header affects other files.
|
|
953
|
-
// See adjoint in "intersect_adj.h" for the generated adjoint.
|
|
954
|
-
/*
|
|
955
|
-
Here is the original warp implementation that was used to generate this code:
|
|
956
|
-
|
|
957
|
-
# https://books.google.ca/books?id=WGpL6Sk9qNAC&printsec=frontcover&hl=en#v=onepage&q=triangle&f=false
|
|
958
|
-
# From 5.1.9
|
|
959
|
-
# p1 and q1 are points of edge 1.
|
|
960
|
-
# p2 and q2 are points of edge 2.
|
|
961
|
-
# epsilon zero tolerance for determining if points in an edge are degenerate
|
|
962
|
-
# output: A single wp.vec3, containing s and t for edges 1 and 2 respectively,
|
|
963
|
-
# and the distance between their closest points.
|
|
964
|
-
@wp.func
|
|
965
|
-
def closest_point_edge_edge(
|
|
966
|
-
p1: wp.vec3, q1: wp.vec3, p2: wp.vec3, q2: wp.vec3, epsilon: float
|
|
967
|
-
):
|
|
968
|
-
# direction vectors of each segment/edge
|
|
969
|
-
d1 = q1 - p1
|
|
970
|
-
d2 = q2 - p2
|
|
971
|
-
r = p1 - p2
|
|
972
|
-
|
|
973
|
-
a = wp.dot(d1, d1) # squared length of segment s1, always nonnegative
|
|
974
|
-
e = wp.dot(d2, d2) # squared length of segment s2, always nonnegative
|
|
975
|
-
f = wp.dot(d2, r)
|
|
976
|
-
|
|
977
|
-
s = float(0.0)
|
|
978
|
-
t = float(0.0)
|
|
979
|
-
dist = wp.length(p2 - p1)
|
|
980
|
-
|
|
981
|
-
# Check if either or both segments degenerate into points
|
|
982
|
-
if a <= epsilon and e <= epsilon:
|
|
983
|
-
# both segments degenerate into points
|
|
984
|
-
return wp.vec3(s, t, dist)
|
|
985
|
-
|
|
986
|
-
if a <= epsilon:
|
|
987
|
-
s = float(0.0)
|
|
988
|
-
t = float(f / e) # s = 0 => t = (b*s + f) / e = f / e
|
|
989
|
-
else:
|
|
990
|
-
c = wp.dot(d1, r)
|
|
991
|
-
if e <= epsilon:
|
|
992
|
-
# second segment generates into a point
|
|
993
|
-
s = wp.clamp(-c / a, 0.0, 1.0) # t = 0 => s = (b*t-c)/a = -c/a
|
|
994
|
-
t = float(0.0)
|
|
995
|
-
else:
|
|
996
|
-
# The general nondegenerate case starts here
|
|
997
|
-
b = wp.dot(d1, d2)
|
|
998
|
-
denom = a * e - b * b # always nonnegative
|
|
999
|
-
|
|
1000
|
-
# if segments not parallel, compute closest point on L1 to L2 and
|
|
1001
|
-
# clamp to segment S1. Else pick arbitrary s (here 0)
|
|
1002
|
-
if denom != 0.0:
|
|
1003
|
-
s = wp.clamp((b * f - c * e) / denom, 0.0, 1.0)
|
|
1004
|
-
else:
|
|
1005
|
-
s = 0.0
|
|
1006
|
-
|
|
1007
|
-
# compute point on L2 closest to S1(s) using
|
|
1008
|
-
# t = dot((p1+d2*s) - p2,d2)/dot(d2,d2) = (b*s+f)/e
|
|
1009
|
-
t = (b * s + f) / e
|
|
1010
|
-
|
|
1011
|
-
# if t in [0,1] done. Else clamp t, recompute s for the new value
|
|
1012
|
-
# of t using s = dot((p2+d2*t-p1,d1)/dot(d1,d1) = (t*b - c)/a
|
|
1013
|
-
# and clamp s to [0,1]
|
|
1014
|
-
if t < 0.0:
|
|
1015
|
-
t = 0.0
|
|
1016
|
-
s = wp.clamp(-c / a, 0.0, 1.0)
|
|
1017
|
-
elif t > 1.0:
|
|
1018
|
-
t = 1.0
|
|
1019
|
-
s = wp.clamp((b - c) / a, 0.0, 1.0)
|
|
1020
|
-
|
|
1021
|
-
c1 = p1 + (q1 - p1) * s
|
|
1022
|
-
c2 = p2 + (q2 - p2) * t
|
|
1023
|
-
dist = wp.length(c2 - c1)
|
|
1024
|
-
return wp.vec3(s, t, dist)
|
|
1025
|
-
|
|
1026
|
-
*/
|
|
1027
|
-
|
|
1028
|
-
static CUDA_CALLABLE vec3 closest_point_edge_edge(vec3 var_p1,
|
|
1029
|
-
vec3 var_q1,
|
|
1030
|
-
vec3 var_p2,
|
|
1031
|
-
vec3 var_q2,
|
|
1032
|
-
float32 var_epsilon)
|
|
1033
|
-
{
|
|
1034
|
-
//---------
|
|
1035
|
-
// primal vars
|
|
1036
|
-
vec3 var_0;
|
|
1037
|
-
vec3 var_1;
|
|
1038
|
-
vec3 var_2;
|
|
1039
|
-
float32 var_3;
|
|
1040
|
-
float32 var_4;
|
|
1041
|
-
float32 var_5;
|
|
1042
|
-
const float32 var_6 = 0.0;
|
|
1043
|
-
float32 var_7;
|
|
1044
|
-
float32 var_8;
|
|
1045
|
-
vec3 var_9;
|
|
1046
|
-
float32 var_10;
|
|
1047
|
-
bool var_11;
|
|
1048
|
-
bool var_12;
|
|
1049
|
-
bool var_13;
|
|
1050
|
-
vec3 var_14;
|
|
1051
|
-
bool var_15;
|
|
1052
|
-
float32 var_16;
|
|
1053
|
-
float32 var_17;
|
|
1054
|
-
float32 var_18;
|
|
1055
|
-
float32 var_19;
|
|
1056
|
-
float32 var_20;
|
|
1057
|
-
float32 var_21;
|
|
1058
|
-
bool var_22;
|
|
1059
|
-
float32 var_23;
|
|
1060
|
-
float32 var_24;
|
|
1061
|
-
const float32 var_25 = 1.0;
|
|
1062
|
-
float32 var_26;
|
|
1063
|
-
float32 var_27;
|
|
1064
|
-
float32 var_28;
|
|
1065
|
-
float32 var_29;
|
|
1066
|
-
float32 var_30;
|
|
1067
|
-
float32 var_31;
|
|
1068
|
-
float32 var_32;
|
|
1069
|
-
float32 var_33;
|
|
1070
|
-
bool var_34;
|
|
1071
|
-
float32 var_35;
|
|
1072
|
-
float32 var_36;
|
|
1073
|
-
float32 var_37;
|
|
1074
|
-
float32 var_38;
|
|
1075
|
-
float32 var_39;
|
|
1076
|
-
float32 var_40;
|
|
1077
|
-
float32 var_41;
|
|
1078
|
-
float32 var_42;
|
|
1079
|
-
float32 var_43;
|
|
1080
|
-
float32 var_44;
|
|
1081
|
-
bool var_45;
|
|
1082
|
-
float32 var_46;
|
|
1083
|
-
float32 var_47;
|
|
1084
|
-
float32 var_48;
|
|
1085
|
-
float32 var_49;
|
|
1086
|
-
float32 var_50;
|
|
1087
|
-
bool var_51;
|
|
1088
|
-
float32 var_52;
|
|
1089
|
-
float32 var_53;
|
|
1090
|
-
float32 var_54;
|
|
1091
|
-
float32 var_55;
|
|
1092
|
-
float32 var_56;
|
|
1093
|
-
float32 var_57;
|
|
1094
|
-
float32 var_58;
|
|
1095
|
-
float32 var_59;
|
|
1096
|
-
float32 var_60;
|
|
1097
|
-
float32 var_61;
|
|
1098
|
-
float32 var_62;
|
|
1099
|
-
vec3 var_63;
|
|
1100
|
-
vec3 var_64;
|
|
1101
|
-
vec3 var_65;
|
|
1102
|
-
vec3 var_66;
|
|
1103
|
-
vec3 var_67;
|
|
1104
|
-
vec3 var_68;
|
|
1105
|
-
vec3 var_69;
|
|
1106
|
-
float32 var_70;
|
|
1107
|
-
vec3 var_71;
|
|
1108
|
-
//---------
|
|
1109
|
-
// forward
|
|
1110
|
-
var_0 = wp::sub(var_q1, var_p1);
|
|
1111
|
-
var_1 = wp::sub(var_q2, var_p2);
|
|
1112
|
-
var_2 = wp::sub(var_p1, var_p2);
|
|
1113
|
-
var_3 = wp::dot(var_0, var_0);
|
|
1114
|
-
var_4 = wp::dot(var_1, var_1);
|
|
1115
|
-
var_5 = wp::dot(var_1, var_2);
|
|
1116
|
-
var_7 = wp::cast_float(var_6);
|
|
1117
|
-
var_8 = wp::cast_float(var_6);
|
|
1118
|
-
var_9 = wp::sub(var_p2, var_p1);
|
|
1119
|
-
var_10 = wp::length(var_9);
|
|
1120
|
-
var_11 = (var_3 <= var_epsilon);
|
|
1121
|
-
var_12 = (var_4 <= var_epsilon);
|
|
1122
|
-
var_13 = var_11 && var_12;
|
|
1123
|
-
if (var_13) {
|
|
1124
|
-
var_14 = wp::vec3(var_7, var_8, var_10);
|
|
1125
|
-
return var_14;
|
|
1126
|
-
}
|
|
1127
|
-
var_15 = (var_3 <= var_epsilon);
|
|
1128
|
-
if (var_15) {
|
|
1129
|
-
var_16 = wp::cast_float(var_6);
|
|
1130
|
-
var_17 = wp::div(var_5, var_4);
|
|
1131
|
-
var_18 = wp::cast_float(var_17);
|
|
1132
|
-
}
|
|
1133
|
-
var_19 = wp::select(var_15, var_7, var_16);
|
|
1134
|
-
var_20 = wp::select(var_15, var_8, var_18);
|
|
1135
|
-
if (!var_15) {
|
|
1136
|
-
var_21 = wp::dot(var_0, var_2);
|
|
1137
|
-
var_22 = (var_4 <= var_epsilon);
|
|
1138
|
-
if (var_22) {
|
|
1139
|
-
var_23 = wp::neg(var_21);
|
|
1140
|
-
var_24 = wp::div(var_23, var_3);
|
|
1141
|
-
var_26 = wp::clamp(var_24, var_6, var_25);
|
|
1142
|
-
var_27 = wp::cast_float(var_6);
|
|
1143
|
-
}
|
|
1144
|
-
var_28 = wp::select(var_22, var_19, var_26);
|
|
1145
|
-
var_29 = wp::select(var_22, var_20, var_27);
|
|
1146
|
-
if (!var_22) {
|
|
1147
|
-
var_30 = wp::dot(var_0, var_1);
|
|
1148
|
-
var_31 = wp::mul(var_3, var_4);
|
|
1149
|
-
var_32 = wp::mul(var_30, var_30);
|
|
1150
|
-
var_33 = wp::sub(var_31, var_32);
|
|
1151
|
-
var_34 = (var_33 != var_6);
|
|
1152
|
-
if (var_34) {
|
|
1153
|
-
var_35 = wp::mul(var_30, var_5);
|
|
1154
|
-
var_36 = wp::mul(var_21, var_4);
|
|
1155
|
-
var_37 = wp::sub(var_35, var_36);
|
|
1156
|
-
var_38 = wp::div(var_37, var_33);
|
|
1157
|
-
var_39 = wp::clamp(var_38, var_6, var_25);
|
|
1158
|
-
}
|
|
1159
|
-
var_40 = wp::select(var_34, var_28, var_39);
|
|
1160
|
-
if (!var_34) {
|
|
1161
|
-
}
|
|
1162
|
-
var_41 = wp::select(var_34, var_6, var_40);
|
|
1163
|
-
var_42 = wp::mul(var_30, var_41);
|
|
1164
|
-
var_43 = wp::add(var_42, var_5);
|
|
1165
|
-
var_44 = wp::div(var_43, var_4);
|
|
1166
|
-
var_45 = (var_44 < var_6);
|
|
1167
|
-
if (var_45) {
|
|
1168
|
-
var_46 = wp::neg(var_21);
|
|
1169
|
-
var_47 = wp::div(var_46, var_3);
|
|
1170
|
-
var_48 = wp::clamp(var_47, var_6, var_25);
|
|
1171
|
-
}
|
|
1172
|
-
var_49 = wp::select(var_45, var_41, var_48);
|
|
1173
|
-
var_50 = wp::select(var_45, var_44, var_6);
|
|
1174
|
-
if (!var_45) {
|
|
1175
|
-
var_51 = (var_50 > var_25);
|
|
1176
|
-
if (var_51) {
|
|
1177
|
-
var_52 = wp::sub(var_30, var_21);
|
|
1178
|
-
var_53 = wp::div(var_52, var_3);
|
|
1179
|
-
var_54 = wp::clamp(var_53, var_6, var_25);
|
|
1180
|
-
}
|
|
1181
|
-
var_55 = wp::select(var_51, var_49, var_54);
|
|
1182
|
-
var_56 = wp::select(var_51, var_50, var_25);
|
|
1183
|
-
}
|
|
1184
|
-
var_57 = wp::select(var_45, var_55, var_49);
|
|
1185
|
-
var_58 = wp::select(var_45, var_56, var_50);
|
|
1186
|
-
}
|
|
1187
|
-
var_59 = wp::select(var_22, var_57, var_28);
|
|
1188
|
-
var_60 = wp::select(var_22, var_58, var_29);
|
|
1189
|
-
}
|
|
1190
|
-
var_61 = wp::select(var_15, var_59, var_19);
|
|
1191
|
-
var_62 = wp::select(var_15, var_60, var_20);
|
|
1192
|
-
var_63 = wp::sub(var_q1, var_p1);
|
|
1193
|
-
var_64 = wp::mul(var_63, var_61);
|
|
1194
|
-
var_65 = wp::add(var_p1, var_64);
|
|
1195
|
-
var_66 = wp::sub(var_q2, var_p2);
|
|
1196
|
-
var_67 = wp::mul(var_66, var_62);
|
|
1197
|
-
var_68 = wp::add(var_p2, var_67);
|
|
1198
|
-
var_69 = wp::sub(var_68, var_65);
|
|
1199
|
-
var_70 = wp::length(var_69);
|
|
1200
|
-
var_71 = wp::vec3(var_61, var_62, var_70);
|
|
1201
|
-
return var_71;
|
|
1202
|
-
|
|
1203
|
-
}
|
|
1204
|
-
} // namespace wp
|
|
1
|
+
/** Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
* NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
* and proprietary rights in and to this software, related documentation
|
|
4
|
+
* and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
* distribution of this software and related documentation without an express
|
|
6
|
+
* license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
*/
|
|
8
|
+
|
|
9
|
+
#pragma once
|
|
10
|
+
|
|
11
|
+
#include "builtin.h"
|
|
12
|
+
|
|
13
|
+
namespace wp
|
|
14
|
+
{
|
|
15
|
+
|
|
16
|
+
CUDA_CALLABLE inline vec3 closest_point_to_aabb(const vec3& p, const vec3& lower, const vec3& upper)
|
|
17
|
+
{
|
|
18
|
+
vec3 c;
|
|
19
|
+
|
|
20
|
+
{
|
|
21
|
+
float v = p[0];
|
|
22
|
+
if (v < lower[0]) v = lower[0];
|
|
23
|
+
if (v > upper[0]) v = upper[0];
|
|
24
|
+
c[0] = v;
|
|
25
|
+
}
|
|
26
|
+
|
|
27
|
+
{
|
|
28
|
+
float v = p[1];
|
|
29
|
+
if (v < lower[1]) v = lower[1];
|
|
30
|
+
if (v > upper[1]) v = upper[1];
|
|
31
|
+
c[1] = v;
|
|
32
|
+
}
|
|
33
|
+
|
|
34
|
+
{
|
|
35
|
+
float v = p[2];
|
|
36
|
+
if (v < lower[2]) v = lower[2];
|
|
37
|
+
if (v > upper[2]) v = upper[2];
|
|
38
|
+
c[2] = v;
|
|
39
|
+
}
|
|
40
|
+
|
|
41
|
+
return c;
|
|
42
|
+
}
|
|
43
|
+
|
|
44
|
+
CUDA_CALLABLE inline vec2 closest_point_to_triangle(const vec3& a, const vec3& b, const vec3& c, const vec3& p)
|
|
45
|
+
{
|
|
46
|
+
vec3 ab = b-a;
|
|
47
|
+
vec3 ac = c-a;
|
|
48
|
+
vec3 ap = p-a;
|
|
49
|
+
|
|
50
|
+
float u, v, w;
|
|
51
|
+
float d1 = dot(ab, ap);
|
|
52
|
+
float d2 = dot(ac, ap);
|
|
53
|
+
if (d1 <= 0.0f && d2 <= 0.0f)
|
|
54
|
+
{
|
|
55
|
+
v = 0.0f;
|
|
56
|
+
w = 0.0f;
|
|
57
|
+
u = 1.0f - v - w;
|
|
58
|
+
return vec2(u, v);
|
|
59
|
+
}
|
|
60
|
+
|
|
61
|
+
vec3 bp = p-b;
|
|
62
|
+
float d3 = dot(ab, bp);
|
|
63
|
+
float d4 = dot(ac, bp);
|
|
64
|
+
if (d3 >= 0.0f && d4 <= d3)
|
|
65
|
+
{
|
|
66
|
+
v = 1.0f;
|
|
67
|
+
w = 0.0f;
|
|
68
|
+
u = 1.0f - v - w;
|
|
69
|
+
return vec2(u, v);
|
|
70
|
+
}
|
|
71
|
+
|
|
72
|
+
float vc = d1*d4 - d3*d2;
|
|
73
|
+
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
|
|
74
|
+
{
|
|
75
|
+
v = d1 / (d1-d3);
|
|
76
|
+
w = 0.0f;
|
|
77
|
+
u = 1.0f - v - w;
|
|
78
|
+
return vec2(u, v);
|
|
79
|
+
}
|
|
80
|
+
|
|
81
|
+
vec3 cp = p-c;
|
|
82
|
+
float d5 = dot(ab, cp);
|
|
83
|
+
float d6 = dot(ac, cp);
|
|
84
|
+
if (d6 >= 0.0f && d5 <= d6)
|
|
85
|
+
{
|
|
86
|
+
v = 0.0f;
|
|
87
|
+
w = 1.0f;
|
|
88
|
+
u = 1.0f - v - w;
|
|
89
|
+
return vec2(u, v);
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
float vb = d5*d2 - d1*d6;
|
|
93
|
+
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
|
|
94
|
+
{
|
|
95
|
+
v = 0.0f;
|
|
96
|
+
w = d2 / (d2 - d6);
|
|
97
|
+
u = 1.0f - v - w;
|
|
98
|
+
return vec2(u, v);
|
|
99
|
+
}
|
|
100
|
+
|
|
101
|
+
float va = d3*d6 - d5*d4;
|
|
102
|
+
if (va <= 0.0f && (d4 -d3) >= 0.0f && (d5-d6) >= 0.0f)
|
|
103
|
+
{
|
|
104
|
+
w = (d4-d3)/((d4-d3) + (d5-d6));
|
|
105
|
+
v = 1.0f - w;
|
|
106
|
+
u = 1.0f - v - w;
|
|
107
|
+
return vec2(u, v);
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
float denom = 1.0f / (va + vb + vc);
|
|
111
|
+
v = vb * denom;
|
|
112
|
+
w = vc * denom;
|
|
113
|
+
u = 1.0f - v - w;
|
|
114
|
+
return vec2(u, v);
|
|
115
|
+
}
|
|
116
|
+
|
|
117
|
+
CUDA_CALLABLE inline vec2 furthest_point_to_triangle(const vec3& a, const vec3& b, const vec3& c, const vec3& p)
|
|
118
|
+
{
|
|
119
|
+
vec3 pa = p-a;
|
|
120
|
+
vec3 pb = p-b;
|
|
121
|
+
vec3 pc = p-c;
|
|
122
|
+
float dist_a = dot(pa, pa);
|
|
123
|
+
float dist_b = dot(pb, pb);
|
|
124
|
+
float dist_c = dot(pc, pc);
|
|
125
|
+
|
|
126
|
+
if (dist_a > dist_b && dist_a > dist_c)
|
|
127
|
+
return vec2(1.0f, 0.0f); // a is furthest
|
|
128
|
+
if (dist_b > dist_c)
|
|
129
|
+
return vec2(0.0f, 1.0f); // b is furthest
|
|
130
|
+
return vec2(0.0f, 0.0f); // c is furthest
|
|
131
|
+
}
|
|
132
|
+
|
|
133
|
+
CUDA_CALLABLE inline bool intersect_ray_aabb(const vec3& pos, const vec3& rcp_dir, const vec3& lower, const vec3& upper, float& t)
|
|
134
|
+
{
|
|
135
|
+
float l1, l2, lmin, lmax;
|
|
136
|
+
|
|
137
|
+
l1 = (lower[0] - pos[0]) * rcp_dir[0];
|
|
138
|
+
l2 = (upper[0] - pos[0]) * rcp_dir[0];
|
|
139
|
+
lmin = min(l1,l2);
|
|
140
|
+
lmax = max(l1,l2);
|
|
141
|
+
|
|
142
|
+
l1 = (lower[1] - pos[1]) * rcp_dir[1];
|
|
143
|
+
l2 = (upper[1] - pos[1]) * rcp_dir[1];
|
|
144
|
+
lmin = max(min(l1,l2), lmin);
|
|
145
|
+
lmax = min(max(l1,l2), lmax);
|
|
146
|
+
|
|
147
|
+
l1 = (lower[2] - pos[2]) * rcp_dir[2];
|
|
148
|
+
l2 = (upper[2] - pos[2]) * rcp_dir[2];
|
|
149
|
+
lmin = max(min(l1,l2), lmin);
|
|
150
|
+
lmax = min(max(l1,l2), lmax);
|
|
151
|
+
|
|
152
|
+
bool hit = ((lmax >= 0.f) & (lmax >= lmin));
|
|
153
|
+
if (hit)
|
|
154
|
+
t = lmin;
|
|
155
|
+
|
|
156
|
+
return hit;
|
|
157
|
+
}
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
// Moller and Trumbore's method
|
|
161
|
+
CUDA_CALLABLE inline bool intersect_ray_tri_moller(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& w, float& sign, vec3* normal)
|
|
162
|
+
{
|
|
163
|
+
vec3 ab = b - a;
|
|
164
|
+
vec3 ac = c - a;
|
|
165
|
+
vec3 n = cross(ab, ac);
|
|
166
|
+
|
|
167
|
+
float d = dot(-dir, n);
|
|
168
|
+
float ood = 1.0f / d; // No need to check for division by zero here as infinity arithmetic will save us...
|
|
169
|
+
vec3 ap = p - a;
|
|
170
|
+
|
|
171
|
+
t = dot(ap, n) * ood;
|
|
172
|
+
if (t < 0.0f)
|
|
173
|
+
return false;
|
|
174
|
+
|
|
175
|
+
vec3 e = cross(-dir, ap);
|
|
176
|
+
v = dot(ac, e) * ood;
|
|
177
|
+
if (v < 0.0f || v > 1.0f) // ...here...
|
|
178
|
+
return false;
|
|
179
|
+
w = -dot(ab, e) * ood;
|
|
180
|
+
if (w < 0.0f || (v + w) > 1.0f) // ...and here
|
|
181
|
+
return false;
|
|
182
|
+
|
|
183
|
+
u = 1.0f - v - w;
|
|
184
|
+
if (normal)
|
|
185
|
+
*normal = n;
|
|
186
|
+
|
|
187
|
+
sign = d;
|
|
188
|
+
|
|
189
|
+
return true;
|
|
190
|
+
}
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
CUDA_CALLABLE inline bool intersect_ray_tri_rtcd(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& w, float& sign, vec3* normal)
|
|
194
|
+
{
|
|
195
|
+
const vec3 ab = b-a;
|
|
196
|
+
const vec3 ac = c-a;
|
|
197
|
+
|
|
198
|
+
// calculate normal
|
|
199
|
+
vec3 n = cross(ab, ac);
|
|
200
|
+
|
|
201
|
+
// need to solve a system of three equations to give t, u, v
|
|
202
|
+
float d = dot(-dir, n);
|
|
203
|
+
|
|
204
|
+
// if dir is parallel to triangle plane or points away from triangle
|
|
205
|
+
if (d <= 0.0f)
|
|
206
|
+
return false;
|
|
207
|
+
|
|
208
|
+
vec3 ap = p-a;
|
|
209
|
+
t = dot(ap, n);
|
|
210
|
+
|
|
211
|
+
// ignores tris behind
|
|
212
|
+
if (t < 0.0f)
|
|
213
|
+
return false;
|
|
214
|
+
|
|
215
|
+
// compute barycentric coordinates
|
|
216
|
+
vec3 e = cross(-dir, ap);
|
|
217
|
+
v = dot(ac, e);
|
|
218
|
+
if (v < 0.0f || v > d) return false;
|
|
219
|
+
|
|
220
|
+
w = -dot(ab, e);
|
|
221
|
+
if (w < 0.0f || v + w > d) return false;
|
|
222
|
+
|
|
223
|
+
float ood = 1.0f / d;
|
|
224
|
+
t *= ood;
|
|
225
|
+
v *= ood;
|
|
226
|
+
w *= ood;
|
|
227
|
+
u = 1.0f-v-w;
|
|
228
|
+
|
|
229
|
+
// optionally write out normal (todo: this branch is a performance concern, should probably remove)
|
|
230
|
+
if (normal)
|
|
231
|
+
*normal = n;
|
|
232
|
+
|
|
233
|
+
return true;
|
|
234
|
+
}
|
|
235
|
+
|
|
236
|
+
#ifndef __CUDA_ARCH__
|
|
237
|
+
|
|
238
|
+
// these are provided as built-ins by CUDA
|
|
239
|
+
inline float __int_as_float(int i)
|
|
240
|
+
{
|
|
241
|
+
return *(float*)(&i);
|
|
242
|
+
}
|
|
243
|
+
|
|
244
|
+
inline int __float_as_int(float f)
|
|
245
|
+
{
|
|
246
|
+
return *(int*)(&f);
|
|
247
|
+
}
|
|
248
|
+
|
|
249
|
+
#endif
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
CUDA_CALLABLE inline float xorf(float x, int y)
|
|
253
|
+
{
|
|
254
|
+
return __int_as_float(__float_as_int(x) ^ y);
|
|
255
|
+
}
|
|
256
|
+
|
|
257
|
+
CUDA_CALLABLE inline int sign_mask(float x)
|
|
258
|
+
{
|
|
259
|
+
return __float_as_int(x) & 0x80000000;
|
|
260
|
+
}
|
|
261
|
+
|
|
262
|
+
CUDA_CALLABLE inline int max_dim(vec3 a)
|
|
263
|
+
{
|
|
264
|
+
float x = abs(a[0]);
|
|
265
|
+
float y = abs(a[1]);
|
|
266
|
+
float z = abs(a[2]);
|
|
267
|
+
|
|
268
|
+
return longest_axis(vec3(x, y, z));
|
|
269
|
+
}
|
|
270
|
+
|
|
271
|
+
// computes the difference of products a*b - c*d using
|
|
272
|
+
// FMA instructions for improved numerical precision
|
|
273
|
+
CUDA_CALLABLE inline float diff_product(float a, float b, float c, float d)
|
|
274
|
+
{
|
|
275
|
+
float cd = c * d;
|
|
276
|
+
float diff = fmaf(a, b, -cd);
|
|
277
|
+
float error = fmaf(-c, d, cd);
|
|
278
|
+
|
|
279
|
+
return diff + error;
|
|
280
|
+
}
|
|
281
|
+
|
|
282
|
+
// http://jcgt.org/published/0002/01/05/
|
|
283
|
+
CUDA_CALLABLE inline bool intersect_ray_tri_woop(const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float& t, float& u, float& v, float& sign, vec3* normal)
|
|
284
|
+
{
|
|
285
|
+
// todo: precompute for ray
|
|
286
|
+
|
|
287
|
+
int kz = max_dim(dir);
|
|
288
|
+
int kx = kz+1; if (kx == 3) kx = 0;
|
|
289
|
+
int ky = kx+1; if (ky == 3) ky = 0;
|
|
290
|
+
|
|
291
|
+
if (dir[kz] < 0.0f)
|
|
292
|
+
{
|
|
293
|
+
float tmp = kx;
|
|
294
|
+
kx = ky;
|
|
295
|
+
ky = tmp;
|
|
296
|
+
}
|
|
297
|
+
|
|
298
|
+
float Sx = dir[kx]/dir[kz];
|
|
299
|
+
float Sy = dir[ky]/dir[kz];
|
|
300
|
+
float Sz = 1.0f/dir[kz];
|
|
301
|
+
|
|
302
|
+
// todo: end precompute
|
|
303
|
+
|
|
304
|
+
const vec3 A = a-p;
|
|
305
|
+
const vec3 B = b-p;
|
|
306
|
+
const vec3 C = c-p;
|
|
307
|
+
|
|
308
|
+
const float Ax = A[kx] - Sx*A[kz];
|
|
309
|
+
const float Ay = A[ky] - Sy*A[kz];
|
|
310
|
+
const float Bx = B[kx] - Sx*B[kz];
|
|
311
|
+
const float By = B[ky] - Sy*B[kz];
|
|
312
|
+
const float Cx = C[kx] - Sx*C[kz];
|
|
313
|
+
const float Cy = C[ky] - Sy*C[kz];
|
|
314
|
+
|
|
315
|
+
float U = diff_product(Cx, By, Cy, Bx);
|
|
316
|
+
float V = diff_product(Ax, Cy, Ay, Cx);
|
|
317
|
+
float W = diff_product(Bx, Ay, By, Ax);
|
|
318
|
+
|
|
319
|
+
if (U == 0.0f || V == 0.0f || W == 0.0f)
|
|
320
|
+
{
|
|
321
|
+
double CxBy = (double)Cx*(double)By;
|
|
322
|
+
double CyBx = (double)Cy*(double)Bx;
|
|
323
|
+
U = (float)(CxBy - CyBx);
|
|
324
|
+
double AxCy = (double)Ax*(double)Cy;
|
|
325
|
+
double AyCx = (double)Ay*(double)Cx;
|
|
326
|
+
V = (float)(AxCy - AyCx);
|
|
327
|
+
double BxAy = (double)Bx*(double)Ay;
|
|
328
|
+
double ByAx = (double)By*(double)Ax;
|
|
329
|
+
W = (float)(BxAy - ByAx);
|
|
330
|
+
}
|
|
331
|
+
|
|
332
|
+
if ((U<0.0f || V<0.0f || W<0.0f) && (U>0.0f || V>0.0f || W>0.0f))
|
|
333
|
+
{
|
|
334
|
+
return false;
|
|
335
|
+
}
|
|
336
|
+
|
|
337
|
+
float det = U+V+W;
|
|
338
|
+
|
|
339
|
+
if (det == 0.0f)
|
|
340
|
+
{
|
|
341
|
+
return false;
|
|
342
|
+
}
|
|
343
|
+
|
|
344
|
+
const float Az = Sz*A[kz];
|
|
345
|
+
const float Bz = Sz*B[kz];
|
|
346
|
+
const float Cz = Sz*C[kz];
|
|
347
|
+
const float T = U*Az + V*Bz + W*Cz;
|
|
348
|
+
|
|
349
|
+
int det_sign = sign_mask(det);
|
|
350
|
+
if (xorf(T,det_sign) < 0.0f)// || xorf(T,det_sign) > hit.t * xorf(det, det_sign)) // early out if hit.t is specified
|
|
351
|
+
{
|
|
352
|
+
return false;
|
|
353
|
+
}
|
|
354
|
+
|
|
355
|
+
const float rcpDet = 1.0f/det;
|
|
356
|
+
u = U*rcpDet;
|
|
357
|
+
v = V*rcpDet;
|
|
358
|
+
t = T*rcpDet;
|
|
359
|
+
sign = det;
|
|
360
|
+
|
|
361
|
+
// optionally write out normal (todo: this branch is a performance concern, should probably remove)
|
|
362
|
+
if (normal)
|
|
363
|
+
{
|
|
364
|
+
const vec3 ab = b-a;
|
|
365
|
+
const vec3 ac = c-a;
|
|
366
|
+
|
|
367
|
+
// calculate normal
|
|
368
|
+
*normal = cross(ab, ac);
|
|
369
|
+
}
|
|
370
|
+
|
|
371
|
+
return true;
|
|
372
|
+
}
|
|
373
|
+
|
|
374
|
+
CUDA_CALLABLE inline void adj_intersect_ray_tri_woop(
|
|
375
|
+
const vec3& p, const vec3& dir, const vec3& a, const vec3& b, const vec3& c, float t, float u, float v, float sign, const vec3& normal,
|
|
376
|
+
vec3& adj_p, vec3& adj_dir, vec3& adj_a, vec3& adj_b, vec3& adj_c, float& adj_t, float& adj_u, float& adj_v, float& adj_sign, vec3& adj_normal, bool& adj_ret)
|
|
377
|
+
{
|
|
378
|
+
|
|
379
|
+
// todo: precompute for ray
|
|
380
|
+
|
|
381
|
+
int kz = max_dim(dir);
|
|
382
|
+
int kx = kz+1; if (kx == 3) kx = 0;
|
|
383
|
+
int ky = kx+1; if (ky == 3) ky = 0;
|
|
384
|
+
|
|
385
|
+
if (dir[kz] < 0.0f)
|
|
386
|
+
{
|
|
387
|
+
float tmp = kx;
|
|
388
|
+
kx = ky;
|
|
389
|
+
ky = tmp;
|
|
390
|
+
}
|
|
391
|
+
|
|
392
|
+
const float Dx = dir[kx];
|
|
393
|
+
const float Dy = dir[ky];
|
|
394
|
+
const float Dz = dir[kz];
|
|
395
|
+
|
|
396
|
+
const float Sx = dir[kx]/dir[kz];
|
|
397
|
+
const float Sy = dir[ky]/dir[kz];
|
|
398
|
+
const float Sz = 1.0f/dir[kz];
|
|
399
|
+
|
|
400
|
+
// todo: end precompute
|
|
401
|
+
|
|
402
|
+
const vec3 A = a-p;
|
|
403
|
+
const vec3 B = b-p;
|
|
404
|
+
const vec3 C = c-p;
|
|
405
|
+
|
|
406
|
+
const float Ax = A[kx] - Sx*A[kz];
|
|
407
|
+
const float Ay = A[ky] - Sy*A[kz];
|
|
408
|
+
const float Bx = B[kx] - Sx*B[kz];
|
|
409
|
+
const float By = B[ky] - Sy*B[kz];
|
|
410
|
+
const float Cx = C[kx] - Sx*C[kz];
|
|
411
|
+
const float Cy = C[ky] - Sy*C[kz];
|
|
412
|
+
|
|
413
|
+
float U = Cx*By - Cy*Bx;
|
|
414
|
+
float V = Ax*Cy - Ay*Cx;
|
|
415
|
+
float W = Bx*Ay - By*Ax;
|
|
416
|
+
|
|
417
|
+
if (U == 0.0f || V == 0.0f || W == 0.0f)
|
|
418
|
+
{
|
|
419
|
+
double CxBy = (double)Cx*(double)By;
|
|
420
|
+
double CyBx = (double)Cy*(double)Bx;
|
|
421
|
+
U = (float)(CxBy - CyBx);
|
|
422
|
+
double AxCy = (double)Ax*(double)Cy;
|
|
423
|
+
double AyCx = (double)Ay*(double)Cx;
|
|
424
|
+
V = (float)(AxCy - AyCx);
|
|
425
|
+
double BxAy = (double)Bx*(double)Ay;
|
|
426
|
+
double ByAx = (double)By*(double)Ax;
|
|
427
|
+
W = (float)(BxAy - ByAx);
|
|
428
|
+
}
|
|
429
|
+
|
|
430
|
+
if ((U<0.0f || V<0.0f || W<0.0f) && (U>0.0f || V>0.0f || W>0.0f))
|
|
431
|
+
return;
|
|
432
|
+
|
|
433
|
+
float det = U+V+W;
|
|
434
|
+
|
|
435
|
+
if (det == 0.0f)
|
|
436
|
+
return;
|
|
437
|
+
|
|
438
|
+
const float Az = Sz*A[kz];
|
|
439
|
+
const float Bz = Sz*B[kz];
|
|
440
|
+
const float Cz = Sz*C[kz];
|
|
441
|
+
const float T = U*Az + V*Bz + W*Cz;
|
|
442
|
+
|
|
443
|
+
int det_sign = sign_mask(det);
|
|
444
|
+
if (xorf(T,det_sign) < 0.0f)// || xorf(T,det_sign) > hit.t * xorf(det, det_sign)) // early out if hit.t is specified
|
|
445
|
+
return;
|
|
446
|
+
|
|
447
|
+
const float rcpDet = (1.f / det);
|
|
448
|
+
const float rcpDetSq = rcpDet * rcpDet;
|
|
449
|
+
|
|
450
|
+
// adj_p
|
|
451
|
+
|
|
452
|
+
const float dAx_dpx = -1.f;
|
|
453
|
+
const float dBx_dpx = -1.f;
|
|
454
|
+
const float dCx_dpx = -1.f;
|
|
455
|
+
const float dAy_dpx = 0.f;
|
|
456
|
+
const float dBy_dpx = 0.f;
|
|
457
|
+
const float dCy_dpx = 0.f;
|
|
458
|
+
const float dAz_dpx = 0.f;
|
|
459
|
+
const float dBz_dpx = 0.f;
|
|
460
|
+
const float dCz_dpx = 0.f;
|
|
461
|
+
|
|
462
|
+
const float dAx_dpy = 0.f;
|
|
463
|
+
const float dBx_dpy = 0.f;
|
|
464
|
+
const float dCx_dpy = 0.f;
|
|
465
|
+
const float dAy_dpy = -1.f;
|
|
466
|
+
const float dBy_dpy = -1.f;
|
|
467
|
+
const float dCy_dpy = -1.f;
|
|
468
|
+
const float dAz_dpy = 0.f;
|
|
469
|
+
const float dBz_dpy = 0.f;
|
|
470
|
+
const float dCz_dpy = 0.f;
|
|
471
|
+
|
|
472
|
+
const float dAx_dpz = Sx;
|
|
473
|
+
const float dBx_dpz = Sx;
|
|
474
|
+
const float dCx_dpz = Sx;
|
|
475
|
+
const float dAy_dpz = Sy;
|
|
476
|
+
const float dBy_dpz = Sy;
|
|
477
|
+
const float dCy_dpz = Sy;
|
|
478
|
+
const float dAz_dpz = -Sz;
|
|
479
|
+
const float dBz_dpz = -Sz;
|
|
480
|
+
const float dCz_dpz = -Sz;
|
|
481
|
+
|
|
482
|
+
const float dU_dpx = Cx * dBy_dpx + By * dCx_dpx - Cy * dBx_dpx - Bx * dCy_dpx;
|
|
483
|
+
const float dU_dpy = Cx * dBy_dpy + By * dCx_dpy - Cy * dBx_dpy - Bx * dCy_dpy;
|
|
484
|
+
const float dU_dpz = Cx * dBy_dpz + By * dCx_dpz - Cy * dBx_dpz - Bx * dCy_dpz;
|
|
485
|
+
const vec3 dU_dp = vec3(dU_dpx, dU_dpy, dU_dpz);
|
|
486
|
+
|
|
487
|
+
const float dV_dpx = Ax * dCy_dpx + Cy * dAx_dpx - Ay * dCx_dpx - Cx * dAy_dpx;
|
|
488
|
+
const float dV_dpy = Ax * dCy_dpy + Cy * dAx_dpy - Ay * dCx_dpy - Cx * dAy_dpy;
|
|
489
|
+
const float dV_dpz = Ax * dCy_dpz + Cy * dAx_dpz - Ay * dCx_dpz - Cx * dAy_dpz;
|
|
490
|
+
const vec3 dV_dp = vec3(dV_dpx, dV_dpy, dV_dpz);
|
|
491
|
+
|
|
492
|
+
const float dW_dpx = Bx * dAy_dpx + Ay * dBx_dpx - By * dAx_dpx - Ax * dBy_dpx;
|
|
493
|
+
const float dW_dpy = Bx * dAy_dpy + Ay * dBx_dpy - By * dAx_dpy - Ax * dBy_dpy;
|
|
494
|
+
const float dW_dpz = Bx * dAy_dpz + Ay * dBx_dpz - By * dAx_dpz - Ax * dBy_dpz;
|
|
495
|
+
const vec3 dW_dp = vec3(dW_dpx, dW_dpy, dW_dpz);
|
|
496
|
+
|
|
497
|
+
const float dT_dpx = dU_dpx * Az + U * dAz_dpx + dV_dpx * Bz + V * dBz_dpx + dW_dpx * Cz + W * dCz_dpx;
|
|
498
|
+
const float dT_dpy = dU_dpy * Az + U * dAz_dpy + dV_dpy * Bz + V * dBz_dpy + dW_dpy * Cz + W * dCz_dpy;
|
|
499
|
+
const float dT_dpz = dU_dpz * Az + U * dAz_dpz + dV_dpz * Bz + V * dBz_dpz + dW_dpz * Cz + W * dCz_dpz;
|
|
500
|
+
const vec3 dT_dp = vec3(dT_dpx, dT_dpy, dT_dpz);
|
|
501
|
+
|
|
502
|
+
const float dDet_dpx = dU_dpx + dV_dpx + dW_dpx;
|
|
503
|
+
const float dDet_dpy = dU_dpy + dV_dpy + dW_dpy;
|
|
504
|
+
const float dDet_dpz = dU_dpz + dV_dpz + dW_dpz;
|
|
505
|
+
const vec3 dDet_dp = vec3(dDet_dpx, dDet_dpy, dDet_dpz);
|
|
506
|
+
|
|
507
|
+
const vec3 du_dp = rcpDet * dU_dp + -U * rcpDetSq * dDet_dp;
|
|
508
|
+
const vec3 dv_dp = rcpDet * dV_dp + -V * rcpDetSq * dDet_dp;
|
|
509
|
+
const vec3 dt_dp = rcpDet * dT_dp + -T * rcpDetSq * dDet_dp;
|
|
510
|
+
|
|
511
|
+
vec3 adj_p_swapped = adj_u*du_dp + adj_v*dv_dp + adj_t*dt_dp;
|
|
512
|
+
adj_p[kx] += adj_p_swapped[0];
|
|
513
|
+
adj_p[ky] += adj_p_swapped[1];
|
|
514
|
+
adj_p[kz] += adj_p_swapped[2];
|
|
515
|
+
|
|
516
|
+
// adj_dir
|
|
517
|
+
|
|
518
|
+
const float dAx_dDx = -Sz * A[kz];
|
|
519
|
+
const float dBx_dDx = -Sz * B[kz];
|
|
520
|
+
const float dCx_dDx = -Sz * C[kz];
|
|
521
|
+
const float dAy_dDx = 0.f;
|
|
522
|
+
const float dBy_dDx = 0.f;
|
|
523
|
+
const float dCy_dDx = 0.f;
|
|
524
|
+
const float dAz_dDx = 0.f;
|
|
525
|
+
const float dBz_dDx = 0.f;
|
|
526
|
+
const float dCz_dDx = 0.f;
|
|
527
|
+
|
|
528
|
+
const float dAx_dDy = 0.f;
|
|
529
|
+
const float dBx_dDy = 0.f;
|
|
530
|
+
const float dCx_dDy = 0.f;
|
|
531
|
+
const float dAy_dDy = -Sz * A[kz];
|
|
532
|
+
const float dBy_dDy = -Sz * B[kz];
|
|
533
|
+
const float dCy_dDy = -Sz * C[kz];
|
|
534
|
+
const float dAz_dDy = 0.f;
|
|
535
|
+
const float dBz_dDy = 0.f;
|
|
536
|
+
const float dCz_dDy = 0.f;
|
|
537
|
+
|
|
538
|
+
const float dAx_dDz = Dx * Sz * Sz * A[kz];
|
|
539
|
+
const float dBx_dDz = Dx * Sz * Sz * B[kz];
|
|
540
|
+
const float dCx_dDz = Dx * Sz * Sz * C[kz];
|
|
541
|
+
const float dAy_dDz = Dy * Sz * Sz * A[kz];
|
|
542
|
+
const float dBy_dDz = Dy * Sz * Sz * B[kz];
|
|
543
|
+
const float dCy_dDz = Dy * Sz * Sz * C[kz];
|
|
544
|
+
const float dAz_dDz = -Sz * Sz * A[kz];
|
|
545
|
+
const float dBz_dDz = -Sz * Sz * B[kz];
|
|
546
|
+
const float dCz_dDz = -Sz * Sz * C[kz];
|
|
547
|
+
|
|
548
|
+
const float dU_dDx = Cx * dBy_dDx + By * dCx_dDx - Cy * dBx_dDx - Bx * dCy_dDx;
|
|
549
|
+
const float dU_dDy = Cx * dBy_dDy + By * dCx_dDy - Cy * dBx_dDy - Bx * dCy_dDy;
|
|
550
|
+
const float dU_dDz = Cx * dBy_dDz + By * dCx_dDz - Cy * dBx_dDz - Bx * dCy_dDz;
|
|
551
|
+
const vec3 dU_dD = vec3(dU_dDx, dU_dDy, dU_dDz);
|
|
552
|
+
|
|
553
|
+
const float dV_dDx = Ax * dCy_dDx + Cy * dAx_dDx - Ay * dCx_dDx - Cx * dAy_dDx;
|
|
554
|
+
const float dV_dDy = Ax * dCy_dDy + Cy * dAx_dDy - Ay * dCx_dDy - Cx * dAy_dDy;
|
|
555
|
+
const float dV_dDz = Ax * dCy_dDz + Cy * dAx_dDz - Ay * dCx_dDz - Cx * dAy_dDz;
|
|
556
|
+
const vec3 dV_dD = vec3(dV_dDx, dV_dDy, dV_dDz);
|
|
557
|
+
|
|
558
|
+
const float dW_dDx = Bx * dAy_dDx + Ay * dBx_dDx - By * dAx_dDx - Ax * dBy_dDx;
|
|
559
|
+
const float dW_dDy = Bx * dAy_dDy + Ay * dBx_dDy - By * dAx_dDy - Ax * dBy_dDy;
|
|
560
|
+
const float dW_dDz = Bx * dAy_dDz + Ay * dBx_dDz - By * dAx_dDz - Ax * dBy_dDz;
|
|
561
|
+
const vec3 dW_dD = vec3(dW_dDx, dW_dDy, dW_dDz);
|
|
562
|
+
|
|
563
|
+
const float dT_dDx = dU_dDx * Az + U * dAz_dDx + dV_dDx * Bz + V * dBz_dDx + dW_dDx * Cz + W * dCz_dDx;
|
|
564
|
+
const float dT_dDy = dU_dDy * Az + U * dAz_dDy + dV_dDy * Bz + V * dBz_dDy + dW_dDy * Cz + W * dCz_dDy;
|
|
565
|
+
const float dT_dDz = dU_dDz * Az + U * dAz_dDz + dV_dDz * Bz + V * dBz_dDz + dW_dDz * Cz + W * dCz_dDz;
|
|
566
|
+
const vec3 dT_dD = vec3(dT_dDx, dT_dDy, dT_dDz);
|
|
567
|
+
|
|
568
|
+
const float dDet_dDx = dU_dDx + dV_dDx + dW_dDx;
|
|
569
|
+
const float dDet_dDy = dU_dDy + dV_dDy + dW_dDy;
|
|
570
|
+
const float dDet_dDz = dU_dDz + dV_dDz + dW_dDz;
|
|
571
|
+
const vec3 dDet_dD = vec3(dDet_dDx, dDet_dDy, dDet_dDz);
|
|
572
|
+
|
|
573
|
+
const vec3 du_dD = rcpDet * dU_dD + -U * rcpDetSq * dDet_dD;
|
|
574
|
+
const vec3 dv_dD = rcpDet * dV_dD + -V * rcpDetSq * dDet_dD;
|
|
575
|
+
const vec3 dt_dD = rcpDet * dT_dD + -T * rcpDetSq * dDet_dD;
|
|
576
|
+
|
|
577
|
+
vec3 adj_dir_swapped = adj_u*du_dD + adj_v*dv_dD + adj_t*dt_dD;
|
|
578
|
+
adj_dir[kx] += adj_dir_swapped[0];
|
|
579
|
+
adj_dir[ky] += adj_dir_swapped[1];
|
|
580
|
+
adj_dir[kz] += adj_dir_swapped[2];
|
|
581
|
+
}
|
|
582
|
+
|
|
583
|
+
// Möller's method
|
|
584
|
+
#include "intersect_tri.h"
|
|
585
|
+
|
|
586
|
+
CUDA_CALLABLE inline int intersect_tri_tri(
|
|
587
|
+
vec3& v0, vec3& v1, vec3& v2,
|
|
588
|
+
vec3& u0, vec3& u1, vec3& u2)
|
|
589
|
+
{
|
|
590
|
+
return NoDivTriTriIsect(&v0[0], &v1[0], &v2[0], &u0[0], &u1[0], &u2[0]);
|
|
591
|
+
}
|
|
592
|
+
|
|
593
|
+
CUDA_CALLABLE inline void adj_intersect_tri_tri(const vec3& var_v0,
|
|
594
|
+
const vec3& var_v1,
|
|
595
|
+
const vec3& var_v2,
|
|
596
|
+
const vec3& var_u0,
|
|
597
|
+
const vec3& var_u1,
|
|
598
|
+
const vec3& var_u2,
|
|
599
|
+
vec3& adj_v0,
|
|
600
|
+
vec3& adj_v1,
|
|
601
|
+
vec3& adj_v2,
|
|
602
|
+
vec3& adj_u0,
|
|
603
|
+
vec3& adj_u1,
|
|
604
|
+
vec3& adj_u2,
|
|
605
|
+
int adj_ret) {}
|
|
606
|
+
|
|
607
|
+
|
|
608
|
+
CUDA_CALLABLE inline void adj_closest_point_to_triangle(
|
|
609
|
+
const vec3& var_a, const vec3& var_b, const vec3& var_c, const vec3& var_p,
|
|
610
|
+
vec3& adj_a, vec3& adj_b, vec3& adj_c, vec3& adj_p, vec2& adj_ret)
|
|
611
|
+
{
|
|
612
|
+
|
|
613
|
+
// primal vars
|
|
614
|
+
vec3 var_0;
|
|
615
|
+
vec3 var_1;
|
|
616
|
+
vec3 var_2;
|
|
617
|
+
float32 var_3;
|
|
618
|
+
float32 var_4;
|
|
619
|
+
const float32 var_5 = 0.0;
|
|
620
|
+
bool var_6;
|
|
621
|
+
bool var_7;
|
|
622
|
+
bool var_8;
|
|
623
|
+
const float32 var_9 = 1.0;
|
|
624
|
+
vec2 var_10;
|
|
625
|
+
vec3 var_11;
|
|
626
|
+
float32 var_12;
|
|
627
|
+
float32 var_13;
|
|
628
|
+
bool var_14;
|
|
629
|
+
bool var_15;
|
|
630
|
+
bool var_16;
|
|
631
|
+
vec2 var_17;
|
|
632
|
+
vec2 var_18;
|
|
633
|
+
float32 var_19;
|
|
634
|
+
float32 var_20;
|
|
635
|
+
float32 var_21;
|
|
636
|
+
float32 var_22;
|
|
637
|
+
float32 var_23;
|
|
638
|
+
bool var_24;
|
|
639
|
+
bool var_25;
|
|
640
|
+
bool var_26;
|
|
641
|
+
bool var_27;
|
|
642
|
+
float32 var_28;
|
|
643
|
+
vec2 var_29;
|
|
644
|
+
vec2 var_30;
|
|
645
|
+
vec3 var_31;
|
|
646
|
+
float32 var_32;
|
|
647
|
+
float32 var_33;
|
|
648
|
+
bool var_34;
|
|
649
|
+
bool var_35;
|
|
650
|
+
bool var_36;
|
|
651
|
+
vec2 var_37;
|
|
652
|
+
vec2 var_38;
|
|
653
|
+
float32 var_39;
|
|
654
|
+
float32 var_40;
|
|
655
|
+
float32 var_41;
|
|
656
|
+
float32 var_42;
|
|
657
|
+
float32 var_43;
|
|
658
|
+
bool var_44;
|
|
659
|
+
bool var_45;
|
|
660
|
+
bool var_46;
|
|
661
|
+
bool var_47;
|
|
662
|
+
float32 var_48;
|
|
663
|
+
vec2 var_49;
|
|
664
|
+
vec2 var_50;
|
|
665
|
+
float32 var_51;
|
|
666
|
+
float32 var_52;
|
|
667
|
+
float32 var_53;
|
|
668
|
+
float32 var_54;
|
|
669
|
+
float32 var_55;
|
|
670
|
+
float32 var_56;
|
|
671
|
+
float32 var_57;
|
|
672
|
+
float32 var_58;
|
|
673
|
+
bool var_59;
|
|
674
|
+
float32 var_60;
|
|
675
|
+
bool var_61;
|
|
676
|
+
float32 var_62;
|
|
677
|
+
bool var_63;
|
|
678
|
+
bool var_64;
|
|
679
|
+
float32 var_65;
|
|
680
|
+
vec2 var_66;
|
|
681
|
+
// vec2 var_67;
|
|
682
|
+
float32 var_68;
|
|
683
|
+
float32 var_69;
|
|
684
|
+
float32 var_70;
|
|
685
|
+
float32 var_71;
|
|
686
|
+
float32 var_72;
|
|
687
|
+
float32 var_73;
|
|
688
|
+
float32 var_74;
|
|
689
|
+
// vec2 var_75;
|
|
690
|
+
//---------
|
|
691
|
+
// dual vars
|
|
692
|
+
vec3 adj_0 = 0;
|
|
693
|
+
vec3 adj_1 = 0;
|
|
694
|
+
vec3 adj_2 = 0;
|
|
695
|
+
float32 adj_3 = 0;
|
|
696
|
+
float32 adj_4 = 0;
|
|
697
|
+
float32 adj_5 = 0;
|
|
698
|
+
//bool adj_6 = 0;
|
|
699
|
+
//bool adj_7 = 0;
|
|
700
|
+
//bool adj_8 = 0;
|
|
701
|
+
float32 adj_9 = 0;
|
|
702
|
+
vec2 adj_10 = 0;
|
|
703
|
+
vec3 adj_11 = 0;
|
|
704
|
+
float32 adj_12 = 0;
|
|
705
|
+
float32 adj_13 = 0;
|
|
706
|
+
//bool adj_14 = 0;
|
|
707
|
+
//bool adj_15 = 0;
|
|
708
|
+
bool adj_16 = 0;
|
|
709
|
+
vec2 adj_17 = 0;
|
|
710
|
+
vec2 adj_18 = 0;
|
|
711
|
+
float32 adj_19 = 0;
|
|
712
|
+
float32 adj_20 = 0;
|
|
713
|
+
float32 adj_21 = 0;
|
|
714
|
+
float32 adj_22 = 0;
|
|
715
|
+
float32 adj_23 = 0;
|
|
716
|
+
//bool adj_24 = 0;
|
|
717
|
+
//bool adj_25 = 0;
|
|
718
|
+
//bool adj_26 = 0;
|
|
719
|
+
bool adj_27 = 0;
|
|
720
|
+
float32 adj_28 = 0;
|
|
721
|
+
vec2 adj_29 = 0;
|
|
722
|
+
vec2 adj_30 = 0;
|
|
723
|
+
vec3 adj_31 = 0;
|
|
724
|
+
float32 adj_32 = 0;
|
|
725
|
+
float32 adj_33 = 0;
|
|
726
|
+
//bool adj_34 = 0;
|
|
727
|
+
//bool adj_35 = 0;
|
|
728
|
+
bool adj_36 = 0;
|
|
729
|
+
vec2 adj_37 = 0;
|
|
730
|
+
vec2 adj_38 = 0;
|
|
731
|
+
float32 adj_39 = 0;
|
|
732
|
+
float32 adj_40 = 0;
|
|
733
|
+
float32 adj_41 = 0;
|
|
734
|
+
float32 adj_42 = 0;
|
|
735
|
+
float32 adj_43 = 0;
|
|
736
|
+
//bool adj_44 = 0;
|
|
737
|
+
//bool adj_45 = 0;
|
|
738
|
+
//bool adj_46 = 0;
|
|
739
|
+
bool adj_47 = 0;
|
|
740
|
+
float32 adj_48 = 0;
|
|
741
|
+
vec2 adj_49 = 0;
|
|
742
|
+
vec2 adj_50 = 0;
|
|
743
|
+
float32 adj_51 = 0;
|
|
744
|
+
float32 adj_52 = 0;
|
|
745
|
+
float32 adj_53 = 0;
|
|
746
|
+
float32 adj_54 = 0;
|
|
747
|
+
float32 adj_55 = 0;
|
|
748
|
+
float32 adj_56 = 0;
|
|
749
|
+
float32 adj_57 = 0;
|
|
750
|
+
float32 adj_58 = 0;
|
|
751
|
+
//bool adj_59 = 0;
|
|
752
|
+
float32 adj_60 = 0;
|
|
753
|
+
//bool adj_61 = 0;
|
|
754
|
+
float32 adj_62 = 0;
|
|
755
|
+
//bool adj_63 = 0;
|
|
756
|
+
bool adj_64 = 0;
|
|
757
|
+
float32 adj_65 = 0;
|
|
758
|
+
vec2 adj_66 = 0;
|
|
759
|
+
vec2 adj_67 = 0;
|
|
760
|
+
float32 adj_68 = 0;
|
|
761
|
+
float32 adj_69 = 0;
|
|
762
|
+
float32 adj_70 = 0;
|
|
763
|
+
float32 adj_71 = 0;
|
|
764
|
+
float32 adj_72 = 0;
|
|
765
|
+
float32 adj_73 = 0;
|
|
766
|
+
float32 adj_74 = 0;
|
|
767
|
+
vec2 adj_75 = 0;
|
|
768
|
+
//---------
|
|
769
|
+
// forward
|
|
770
|
+
var_0 = wp::sub(var_b, var_a);
|
|
771
|
+
var_1 = wp::sub(var_c, var_a);
|
|
772
|
+
var_2 = wp::sub(var_p, var_a);
|
|
773
|
+
var_3 = wp::dot(var_0, var_2);
|
|
774
|
+
var_4 = wp::dot(var_1, var_2);
|
|
775
|
+
var_6 = (var_3 <= var_5);
|
|
776
|
+
var_7 = (var_4 <= var_5);
|
|
777
|
+
var_8 = var_6 && var_7;
|
|
778
|
+
if (var_8) {
|
|
779
|
+
var_10 = wp::vec2(var_9, var_5);
|
|
780
|
+
goto label0;
|
|
781
|
+
}
|
|
782
|
+
var_11 = wp::sub(var_p, var_b);
|
|
783
|
+
var_12 = wp::dot(var_0, var_11);
|
|
784
|
+
var_13 = wp::dot(var_1, var_11);
|
|
785
|
+
var_14 = (var_12 >= var_5);
|
|
786
|
+
var_15 = (var_13 <= var_12);
|
|
787
|
+
var_16 = var_14 && var_15;
|
|
788
|
+
if (var_16) {
|
|
789
|
+
var_17 = wp::vec2(var_5, var_9);
|
|
790
|
+
goto label1;
|
|
791
|
+
}
|
|
792
|
+
var_18 = wp::select(var_16, var_10, var_17);
|
|
793
|
+
var_19 = wp::mul(var_3, var_13);
|
|
794
|
+
var_20 = wp::mul(var_12, var_4);
|
|
795
|
+
var_21 = wp::sub(var_19, var_20);
|
|
796
|
+
var_22 = wp::sub(var_3, var_12);
|
|
797
|
+
var_23 = wp::div(var_3, var_22);
|
|
798
|
+
var_24 = (var_21 <= var_5);
|
|
799
|
+
var_25 = (var_3 >= var_5);
|
|
800
|
+
var_26 = (var_12 <= var_5);
|
|
801
|
+
var_27 = var_24 && var_25 && var_26;
|
|
802
|
+
if (var_27) {
|
|
803
|
+
var_28 = wp::sub(var_9, var_23);
|
|
804
|
+
var_29 = wp::vec2(var_28, var_23);
|
|
805
|
+
goto label2;
|
|
806
|
+
}
|
|
807
|
+
var_30 = wp::select(var_27, var_18, var_29);
|
|
808
|
+
var_31 = wp::sub(var_p, var_c);
|
|
809
|
+
var_32 = wp::dot(var_0, var_31);
|
|
810
|
+
var_33 = wp::dot(var_1, var_31);
|
|
811
|
+
var_34 = (var_33 >= var_5);
|
|
812
|
+
var_35 = (var_32 <= var_33);
|
|
813
|
+
var_36 = var_34 && var_35;
|
|
814
|
+
if (var_36) {
|
|
815
|
+
var_37 = wp::vec2(var_5, var_5);
|
|
816
|
+
goto label3;
|
|
817
|
+
}
|
|
818
|
+
var_38 = wp::select(var_36, var_30, var_37);
|
|
819
|
+
var_39 = wp::mul(var_32, var_4);
|
|
820
|
+
var_40 = wp::mul(var_3, var_33);
|
|
821
|
+
var_41 = wp::sub(var_39, var_40);
|
|
822
|
+
var_42 = wp::sub(var_4, var_33);
|
|
823
|
+
var_43 = wp::div(var_4, var_42);
|
|
824
|
+
var_44 = (var_41 <= var_5);
|
|
825
|
+
var_45 = (var_4 >= var_5);
|
|
826
|
+
var_46 = (var_33 <= var_5);
|
|
827
|
+
var_47 = var_44 && var_45 && var_46;
|
|
828
|
+
if (var_47) {
|
|
829
|
+
var_48 = wp::sub(var_9, var_43);
|
|
830
|
+
var_49 = wp::vec2(var_48, var_5);
|
|
831
|
+
goto label4;
|
|
832
|
+
}
|
|
833
|
+
var_50 = wp::select(var_47, var_38, var_49);
|
|
834
|
+
var_51 = wp::mul(var_12, var_33);
|
|
835
|
+
var_52 = wp::mul(var_32, var_13);
|
|
836
|
+
var_53 = wp::sub(var_51, var_52);
|
|
837
|
+
var_54 = wp::sub(var_13, var_12);
|
|
838
|
+
var_55 = wp::sub(var_13, var_12);
|
|
839
|
+
var_56 = wp::sub(var_32, var_33);
|
|
840
|
+
var_57 = wp::add(var_55, var_56);
|
|
841
|
+
var_58 = wp::div(var_54, var_57);
|
|
842
|
+
var_59 = (var_53 <= var_5);
|
|
843
|
+
var_60 = wp::sub(var_13, var_12);
|
|
844
|
+
var_61 = (var_60 >= var_5);
|
|
845
|
+
var_62 = wp::sub(var_32, var_33);
|
|
846
|
+
var_63 = (var_62 >= var_5);
|
|
847
|
+
var_64 = var_59 && var_61 && var_63;
|
|
848
|
+
if (var_64) {
|
|
849
|
+
var_65 = wp::sub(var_9, var_58);
|
|
850
|
+
var_66 = wp::vec2(var_5, var_65);
|
|
851
|
+
goto label5;
|
|
852
|
+
}
|
|
853
|
+
// var_67 = wp::select(var_64, var_50, var_66);
|
|
854
|
+
var_68 = wp::add(var_53, var_41);
|
|
855
|
+
var_69 = wp::add(var_68, var_21);
|
|
856
|
+
var_70 = wp::div(var_9, var_69);
|
|
857
|
+
var_71 = wp::mul(var_41, var_70);
|
|
858
|
+
var_72 = wp::mul(var_21, var_70);
|
|
859
|
+
var_73 = wp::sub(var_9, var_71);
|
|
860
|
+
var_74 = wp::sub(var_73, var_72);
|
|
861
|
+
// var_75 = wp::vec2(var_74, var_71);
|
|
862
|
+
goto label6;
|
|
863
|
+
//---------
|
|
864
|
+
// reverse
|
|
865
|
+
label6:;
|
|
866
|
+
adj_75 += adj_ret;
|
|
867
|
+
wp::adj_vec2(var_74, var_71, adj_74, adj_71, adj_75);
|
|
868
|
+
wp::adj_sub(var_73, var_72, adj_73, adj_72, adj_74);
|
|
869
|
+
wp::adj_sub(var_9, var_71, adj_9, adj_71, adj_73);
|
|
870
|
+
wp::adj_mul(var_21, var_70, adj_21, adj_70, adj_72);
|
|
871
|
+
wp::adj_mul(var_41, var_70, adj_41, adj_70, adj_71);
|
|
872
|
+
wp::adj_div(var_9, var_69, var_70, adj_9, adj_69, adj_70);
|
|
873
|
+
wp::adj_add(var_68, var_21, adj_68, adj_21, adj_69);
|
|
874
|
+
wp::adj_add(var_53, var_41, adj_53, adj_41, adj_68);
|
|
875
|
+
wp::adj_select(var_64, var_50, var_66, adj_64, adj_50, adj_66, adj_67);
|
|
876
|
+
if (var_64) {
|
|
877
|
+
label5:;
|
|
878
|
+
adj_66 += adj_ret;
|
|
879
|
+
wp::adj_vec2(var_5, var_65, adj_5, adj_65, adj_66);
|
|
880
|
+
wp::adj_sub(var_9, var_58, adj_9, adj_58, adj_65);
|
|
881
|
+
}
|
|
882
|
+
wp::adj_sub(var_32, var_33, adj_32, adj_33, adj_62);
|
|
883
|
+
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_60);
|
|
884
|
+
wp::adj_div(var_54, var_57, var_58, adj_54, adj_57, adj_58);
|
|
885
|
+
wp::adj_add(var_55, var_56, adj_55, adj_56, adj_57);
|
|
886
|
+
wp::adj_sub(var_32, var_33, adj_32, adj_33, adj_56);
|
|
887
|
+
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_55);
|
|
888
|
+
wp::adj_sub(var_13, var_12, adj_13, adj_12, adj_54);
|
|
889
|
+
wp::adj_sub(var_51, var_52, adj_51, adj_52, adj_53);
|
|
890
|
+
wp::adj_mul(var_32, var_13, adj_32, adj_13, adj_52);
|
|
891
|
+
wp::adj_mul(var_12, var_33, adj_12, adj_33, adj_51);
|
|
892
|
+
wp::adj_select(var_47, var_38, var_49, adj_47, adj_38, adj_49, adj_50);
|
|
893
|
+
if (var_47) {
|
|
894
|
+
label4:;
|
|
895
|
+
adj_49 += adj_ret;
|
|
896
|
+
wp::adj_vec2(var_48, var_5, adj_48, adj_5, adj_49);
|
|
897
|
+
wp::adj_sub(var_9, var_43, adj_9, adj_43, adj_48);
|
|
898
|
+
}
|
|
899
|
+
wp::adj_div(var_4, var_42, var_43, adj_4, adj_42, adj_43);
|
|
900
|
+
wp::adj_sub(var_4, var_33, adj_4, adj_33, adj_42);
|
|
901
|
+
wp::adj_sub(var_39, var_40, adj_39, adj_40, adj_41);
|
|
902
|
+
wp::adj_mul(var_3, var_33, adj_3, adj_33, adj_40);
|
|
903
|
+
wp::adj_mul(var_32, var_4, adj_32, adj_4, adj_39);
|
|
904
|
+
wp::adj_select(var_36, var_30, var_37, adj_36, adj_30, adj_37, adj_38);
|
|
905
|
+
if (var_36) {
|
|
906
|
+
label3:;
|
|
907
|
+
adj_37 += adj_ret;
|
|
908
|
+
wp::adj_vec2(var_5, var_5, adj_5, adj_5, adj_37);
|
|
909
|
+
}
|
|
910
|
+
wp::adj_dot(var_1, var_31, adj_1, adj_31, adj_33);
|
|
911
|
+
wp::adj_dot(var_0, var_31, adj_0, adj_31, adj_32);
|
|
912
|
+
wp::adj_sub(var_p, var_c, adj_p, adj_c, adj_31);
|
|
913
|
+
wp::adj_select(var_27, var_18, var_29, adj_27, adj_18, adj_29, adj_30);
|
|
914
|
+
if (var_27) {
|
|
915
|
+
label2:;
|
|
916
|
+
adj_29 += adj_ret;
|
|
917
|
+
wp::adj_vec2(var_28, var_23, adj_28, adj_23, adj_29);
|
|
918
|
+
wp::adj_sub(var_9, var_23, adj_9, adj_23, adj_28);
|
|
919
|
+
}
|
|
920
|
+
wp::adj_div(var_3, var_22, var_23, adj_3, adj_22, adj_23);
|
|
921
|
+
wp::adj_sub(var_3, var_12, adj_3, adj_12, adj_22);
|
|
922
|
+
wp::adj_sub(var_19, var_20, adj_19, adj_20, adj_21);
|
|
923
|
+
wp::adj_mul(var_12, var_4, adj_12, adj_4, adj_20);
|
|
924
|
+
wp::adj_mul(var_3, var_13, adj_3, adj_13, adj_19);
|
|
925
|
+
wp::adj_select(var_16, var_10, var_17, adj_16, adj_10, adj_17, adj_18);
|
|
926
|
+
if (var_16) {
|
|
927
|
+
label1:;
|
|
928
|
+
adj_17 += adj_ret;
|
|
929
|
+
wp::adj_vec2(var_5, var_9, adj_5, adj_9, adj_17);
|
|
930
|
+
}
|
|
931
|
+
wp::adj_dot(var_1, var_11, adj_1, adj_11, adj_13);
|
|
932
|
+
wp::adj_dot(var_0, var_11, adj_0, adj_11, adj_12);
|
|
933
|
+
wp::adj_sub(var_p, var_b, adj_p, adj_b, adj_11);
|
|
934
|
+
if (var_8) {
|
|
935
|
+
label0:;
|
|
936
|
+
adj_10 += adj_ret;
|
|
937
|
+
wp::adj_vec2(var_9, var_5, adj_9, adj_5, adj_10);
|
|
938
|
+
}
|
|
939
|
+
wp::adj_dot(var_1, var_2, adj_1, adj_2, adj_4);
|
|
940
|
+
wp::adj_dot(var_0, var_2, adj_0, adj_2, adj_3);
|
|
941
|
+
wp::adj_sub(var_p, var_a, adj_p, adj_a, adj_2);
|
|
942
|
+
wp::adj_sub(var_c, var_a, adj_c, adj_a, adj_1);
|
|
943
|
+
wp::adj_sub(var_b, var_a, adj_b, adj_a, adj_0);
|
|
944
|
+
return;
|
|
945
|
+
|
|
946
|
+
}
|
|
947
|
+
|
|
948
|
+
|
|
949
|
+
|
|
950
|
+
// ----------------------------------------------------------------
|
|
951
|
+
// jleaf: I needed to replace "float(" with "cast_float(" manually below because
|
|
952
|
+
// "#define float(x) cast_float(x)"" in this header affects other files.
|
|
953
|
+
// See adjoint in "intersect_adj.h" for the generated adjoint.
|
|
954
|
+
/*
|
|
955
|
+
Here is the original warp implementation that was used to generate this code:
|
|
956
|
+
|
|
957
|
+
# https://books.google.ca/books?id=WGpL6Sk9qNAC&printsec=frontcover&hl=en#v=onepage&q=triangle&f=false
|
|
958
|
+
# From 5.1.9
|
|
959
|
+
# p1 and q1 are points of edge 1.
|
|
960
|
+
# p2 and q2 are points of edge 2.
|
|
961
|
+
# epsilon zero tolerance for determining if points in an edge are degenerate
|
|
962
|
+
# output: A single wp.vec3, containing s and t for edges 1 and 2 respectively,
|
|
963
|
+
# and the distance between their closest points.
|
|
964
|
+
@wp.func
|
|
965
|
+
def closest_point_edge_edge(
|
|
966
|
+
p1: wp.vec3, q1: wp.vec3, p2: wp.vec3, q2: wp.vec3, epsilon: float
|
|
967
|
+
):
|
|
968
|
+
# direction vectors of each segment/edge
|
|
969
|
+
d1 = q1 - p1
|
|
970
|
+
d2 = q2 - p2
|
|
971
|
+
r = p1 - p2
|
|
972
|
+
|
|
973
|
+
a = wp.dot(d1, d1) # squared length of segment s1, always nonnegative
|
|
974
|
+
e = wp.dot(d2, d2) # squared length of segment s2, always nonnegative
|
|
975
|
+
f = wp.dot(d2, r)
|
|
976
|
+
|
|
977
|
+
s = float(0.0)
|
|
978
|
+
t = float(0.0)
|
|
979
|
+
dist = wp.length(p2 - p1)
|
|
980
|
+
|
|
981
|
+
# Check if either or both segments degenerate into points
|
|
982
|
+
if a <= epsilon and e <= epsilon:
|
|
983
|
+
# both segments degenerate into points
|
|
984
|
+
return wp.vec3(s, t, dist)
|
|
985
|
+
|
|
986
|
+
if a <= epsilon:
|
|
987
|
+
s = float(0.0)
|
|
988
|
+
t = float(f / e) # s = 0 => t = (b*s + f) / e = f / e
|
|
989
|
+
else:
|
|
990
|
+
c = wp.dot(d1, r)
|
|
991
|
+
if e <= epsilon:
|
|
992
|
+
# second segment generates into a point
|
|
993
|
+
s = wp.clamp(-c / a, 0.0, 1.0) # t = 0 => s = (b*t-c)/a = -c/a
|
|
994
|
+
t = float(0.0)
|
|
995
|
+
else:
|
|
996
|
+
# The general nondegenerate case starts here
|
|
997
|
+
b = wp.dot(d1, d2)
|
|
998
|
+
denom = a * e - b * b # always nonnegative
|
|
999
|
+
|
|
1000
|
+
# if segments not parallel, compute closest point on L1 to L2 and
|
|
1001
|
+
# clamp to segment S1. Else pick arbitrary s (here 0)
|
|
1002
|
+
if denom != 0.0:
|
|
1003
|
+
s = wp.clamp((b * f - c * e) / denom, 0.0, 1.0)
|
|
1004
|
+
else:
|
|
1005
|
+
s = 0.0
|
|
1006
|
+
|
|
1007
|
+
# compute point on L2 closest to S1(s) using
|
|
1008
|
+
# t = dot((p1+d2*s) - p2,d2)/dot(d2,d2) = (b*s+f)/e
|
|
1009
|
+
t = (b * s + f) / e
|
|
1010
|
+
|
|
1011
|
+
# if t in [0,1] done. Else clamp t, recompute s for the new value
|
|
1012
|
+
# of t using s = dot((p2+d2*t-p1,d1)/dot(d1,d1) = (t*b - c)/a
|
|
1013
|
+
# and clamp s to [0,1]
|
|
1014
|
+
if t < 0.0:
|
|
1015
|
+
t = 0.0
|
|
1016
|
+
s = wp.clamp(-c / a, 0.0, 1.0)
|
|
1017
|
+
elif t > 1.0:
|
|
1018
|
+
t = 1.0
|
|
1019
|
+
s = wp.clamp((b - c) / a, 0.0, 1.0)
|
|
1020
|
+
|
|
1021
|
+
c1 = p1 + (q1 - p1) * s
|
|
1022
|
+
c2 = p2 + (q2 - p2) * t
|
|
1023
|
+
dist = wp.length(c2 - c1)
|
|
1024
|
+
return wp.vec3(s, t, dist)
|
|
1025
|
+
|
|
1026
|
+
*/
|
|
1027
|
+
|
|
1028
|
+
static CUDA_CALLABLE vec3 closest_point_edge_edge(vec3 var_p1,
|
|
1029
|
+
vec3 var_q1,
|
|
1030
|
+
vec3 var_p2,
|
|
1031
|
+
vec3 var_q2,
|
|
1032
|
+
float32 var_epsilon)
|
|
1033
|
+
{
|
|
1034
|
+
//---------
|
|
1035
|
+
// primal vars
|
|
1036
|
+
vec3 var_0;
|
|
1037
|
+
vec3 var_1;
|
|
1038
|
+
vec3 var_2;
|
|
1039
|
+
float32 var_3;
|
|
1040
|
+
float32 var_4;
|
|
1041
|
+
float32 var_5;
|
|
1042
|
+
const float32 var_6 = 0.0;
|
|
1043
|
+
float32 var_7;
|
|
1044
|
+
float32 var_8;
|
|
1045
|
+
vec3 var_9;
|
|
1046
|
+
float32 var_10;
|
|
1047
|
+
bool var_11;
|
|
1048
|
+
bool var_12;
|
|
1049
|
+
bool var_13;
|
|
1050
|
+
vec3 var_14;
|
|
1051
|
+
bool var_15;
|
|
1052
|
+
float32 var_16;
|
|
1053
|
+
float32 var_17;
|
|
1054
|
+
float32 var_18;
|
|
1055
|
+
float32 var_19;
|
|
1056
|
+
float32 var_20;
|
|
1057
|
+
float32 var_21;
|
|
1058
|
+
bool var_22;
|
|
1059
|
+
float32 var_23;
|
|
1060
|
+
float32 var_24;
|
|
1061
|
+
const float32 var_25 = 1.0;
|
|
1062
|
+
float32 var_26;
|
|
1063
|
+
float32 var_27;
|
|
1064
|
+
float32 var_28;
|
|
1065
|
+
float32 var_29;
|
|
1066
|
+
float32 var_30;
|
|
1067
|
+
float32 var_31;
|
|
1068
|
+
float32 var_32;
|
|
1069
|
+
float32 var_33;
|
|
1070
|
+
bool var_34;
|
|
1071
|
+
float32 var_35;
|
|
1072
|
+
float32 var_36;
|
|
1073
|
+
float32 var_37;
|
|
1074
|
+
float32 var_38;
|
|
1075
|
+
float32 var_39;
|
|
1076
|
+
float32 var_40;
|
|
1077
|
+
float32 var_41;
|
|
1078
|
+
float32 var_42;
|
|
1079
|
+
float32 var_43;
|
|
1080
|
+
float32 var_44;
|
|
1081
|
+
bool var_45;
|
|
1082
|
+
float32 var_46;
|
|
1083
|
+
float32 var_47;
|
|
1084
|
+
float32 var_48;
|
|
1085
|
+
float32 var_49;
|
|
1086
|
+
float32 var_50;
|
|
1087
|
+
bool var_51;
|
|
1088
|
+
float32 var_52;
|
|
1089
|
+
float32 var_53;
|
|
1090
|
+
float32 var_54;
|
|
1091
|
+
float32 var_55;
|
|
1092
|
+
float32 var_56;
|
|
1093
|
+
float32 var_57;
|
|
1094
|
+
float32 var_58;
|
|
1095
|
+
float32 var_59;
|
|
1096
|
+
float32 var_60;
|
|
1097
|
+
float32 var_61;
|
|
1098
|
+
float32 var_62;
|
|
1099
|
+
vec3 var_63;
|
|
1100
|
+
vec3 var_64;
|
|
1101
|
+
vec3 var_65;
|
|
1102
|
+
vec3 var_66;
|
|
1103
|
+
vec3 var_67;
|
|
1104
|
+
vec3 var_68;
|
|
1105
|
+
vec3 var_69;
|
|
1106
|
+
float32 var_70;
|
|
1107
|
+
vec3 var_71;
|
|
1108
|
+
//---------
|
|
1109
|
+
// forward
|
|
1110
|
+
var_0 = wp::sub(var_q1, var_p1);
|
|
1111
|
+
var_1 = wp::sub(var_q2, var_p2);
|
|
1112
|
+
var_2 = wp::sub(var_p1, var_p2);
|
|
1113
|
+
var_3 = wp::dot(var_0, var_0);
|
|
1114
|
+
var_4 = wp::dot(var_1, var_1);
|
|
1115
|
+
var_5 = wp::dot(var_1, var_2);
|
|
1116
|
+
var_7 = wp::cast_float(var_6);
|
|
1117
|
+
var_8 = wp::cast_float(var_6);
|
|
1118
|
+
var_9 = wp::sub(var_p2, var_p1);
|
|
1119
|
+
var_10 = wp::length(var_9);
|
|
1120
|
+
var_11 = (var_3 <= var_epsilon);
|
|
1121
|
+
var_12 = (var_4 <= var_epsilon);
|
|
1122
|
+
var_13 = var_11 && var_12;
|
|
1123
|
+
if (var_13) {
|
|
1124
|
+
var_14 = wp::vec3(var_7, var_8, var_10);
|
|
1125
|
+
return var_14;
|
|
1126
|
+
}
|
|
1127
|
+
var_15 = (var_3 <= var_epsilon);
|
|
1128
|
+
if (var_15) {
|
|
1129
|
+
var_16 = wp::cast_float(var_6);
|
|
1130
|
+
var_17 = wp::div(var_5, var_4);
|
|
1131
|
+
var_18 = wp::cast_float(var_17);
|
|
1132
|
+
}
|
|
1133
|
+
var_19 = wp::select(var_15, var_7, var_16);
|
|
1134
|
+
var_20 = wp::select(var_15, var_8, var_18);
|
|
1135
|
+
if (!var_15) {
|
|
1136
|
+
var_21 = wp::dot(var_0, var_2);
|
|
1137
|
+
var_22 = (var_4 <= var_epsilon);
|
|
1138
|
+
if (var_22) {
|
|
1139
|
+
var_23 = wp::neg(var_21);
|
|
1140
|
+
var_24 = wp::div(var_23, var_3);
|
|
1141
|
+
var_26 = wp::clamp(var_24, var_6, var_25);
|
|
1142
|
+
var_27 = wp::cast_float(var_6);
|
|
1143
|
+
}
|
|
1144
|
+
var_28 = wp::select(var_22, var_19, var_26);
|
|
1145
|
+
var_29 = wp::select(var_22, var_20, var_27);
|
|
1146
|
+
if (!var_22) {
|
|
1147
|
+
var_30 = wp::dot(var_0, var_1);
|
|
1148
|
+
var_31 = wp::mul(var_3, var_4);
|
|
1149
|
+
var_32 = wp::mul(var_30, var_30);
|
|
1150
|
+
var_33 = wp::sub(var_31, var_32);
|
|
1151
|
+
var_34 = (var_33 != var_6);
|
|
1152
|
+
if (var_34) {
|
|
1153
|
+
var_35 = wp::mul(var_30, var_5);
|
|
1154
|
+
var_36 = wp::mul(var_21, var_4);
|
|
1155
|
+
var_37 = wp::sub(var_35, var_36);
|
|
1156
|
+
var_38 = wp::div(var_37, var_33);
|
|
1157
|
+
var_39 = wp::clamp(var_38, var_6, var_25);
|
|
1158
|
+
}
|
|
1159
|
+
var_40 = wp::select(var_34, var_28, var_39);
|
|
1160
|
+
if (!var_34) {
|
|
1161
|
+
}
|
|
1162
|
+
var_41 = wp::select(var_34, var_6, var_40);
|
|
1163
|
+
var_42 = wp::mul(var_30, var_41);
|
|
1164
|
+
var_43 = wp::add(var_42, var_5);
|
|
1165
|
+
var_44 = wp::div(var_43, var_4);
|
|
1166
|
+
var_45 = (var_44 < var_6);
|
|
1167
|
+
if (var_45) {
|
|
1168
|
+
var_46 = wp::neg(var_21);
|
|
1169
|
+
var_47 = wp::div(var_46, var_3);
|
|
1170
|
+
var_48 = wp::clamp(var_47, var_6, var_25);
|
|
1171
|
+
}
|
|
1172
|
+
var_49 = wp::select(var_45, var_41, var_48);
|
|
1173
|
+
var_50 = wp::select(var_45, var_44, var_6);
|
|
1174
|
+
if (!var_45) {
|
|
1175
|
+
var_51 = (var_50 > var_25);
|
|
1176
|
+
if (var_51) {
|
|
1177
|
+
var_52 = wp::sub(var_30, var_21);
|
|
1178
|
+
var_53 = wp::div(var_52, var_3);
|
|
1179
|
+
var_54 = wp::clamp(var_53, var_6, var_25);
|
|
1180
|
+
}
|
|
1181
|
+
var_55 = wp::select(var_51, var_49, var_54);
|
|
1182
|
+
var_56 = wp::select(var_51, var_50, var_25);
|
|
1183
|
+
}
|
|
1184
|
+
var_57 = wp::select(var_45, var_55, var_49);
|
|
1185
|
+
var_58 = wp::select(var_45, var_56, var_50);
|
|
1186
|
+
}
|
|
1187
|
+
var_59 = wp::select(var_22, var_57, var_28);
|
|
1188
|
+
var_60 = wp::select(var_22, var_58, var_29);
|
|
1189
|
+
}
|
|
1190
|
+
var_61 = wp::select(var_15, var_59, var_19);
|
|
1191
|
+
var_62 = wp::select(var_15, var_60, var_20);
|
|
1192
|
+
var_63 = wp::sub(var_q1, var_p1);
|
|
1193
|
+
var_64 = wp::mul(var_63, var_61);
|
|
1194
|
+
var_65 = wp::add(var_p1, var_64);
|
|
1195
|
+
var_66 = wp::sub(var_q2, var_p2);
|
|
1196
|
+
var_67 = wp::mul(var_66, var_62);
|
|
1197
|
+
var_68 = wp::add(var_p2, var_67);
|
|
1198
|
+
var_69 = wp::sub(var_68, var_65);
|
|
1199
|
+
var_70 = wp::length(var_69);
|
|
1200
|
+
var_71 = wp::vec3(var_61, var_62, var_70);
|
|
1201
|
+
return var_71;
|
|
1202
|
+
|
|
1203
|
+
}
|
|
1204
|
+
} // namespace wp
|