warp-lang 1.0.1__py3-none-macosx_10_13_universal2.whl → 1.1.0__py3-none-macosx_10_13_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +108 -97
- warp/__init__.pyi +1 -1
- warp/bin/libwarp-clang.dylib +0 -0
- warp/bin/libwarp.dylib +0 -0
- warp/build.py +115 -113
- warp/build_dll.py +383 -375
- warp/builtins.py +3425 -3354
- warp/codegen.py +2878 -2792
- warp/config.py +40 -36
- warp/constants.py +45 -45
- warp/context.py +5194 -5102
- warp/dlpack.py +442 -442
- warp/examples/__init__.py +16 -16
- warp/examples/assets/bear.usd +0 -0
- warp/examples/assets/bunny.usd +0 -0
- warp/examples/assets/cartpole.urdf +110 -110
- warp/examples/assets/crazyflie.usd +0 -0
- warp/examples/assets/cube.usd +0 -0
- warp/examples/assets/nv_ant.xml +92 -92
- warp/examples/assets/nv_humanoid.xml +183 -183
- warp/examples/assets/quadruped.urdf +267 -267
- warp/examples/assets/rocks.nvdb +0 -0
- warp/examples/assets/rocks.usd +0 -0
- warp/examples/assets/sphere.usd +0 -0
- warp/examples/benchmarks/benchmark_api.py +383 -383
- warp/examples/benchmarks/benchmark_cloth.py +278 -279
- warp/examples/benchmarks/benchmark_cloth_cupy.py +88 -88
- warp/examples/benchmarks/benchmark_cloth_jax.py +97 -100
- warp/examples/benchmarks/benchmark_cloth_numba.py +146 -142
- warp/examples/benchmarks/benchmark_cloth_numpy.py +77 -77
- warp/examples/benchmarks/benchmark_cloth_pytorch.py +86 -86
- warp/examples/benchmarks/benchmark_cloth_taichi.py +112 -112
- warp/examples/benchmarks/benchmark_cloth_warp.py +146 -146
- warp/examples/benchmarks/benchmark_launches.py +295 -295
- warp/examples/browse.py +29 -28
- warp/examples/core/example_dem.py +234 -221
- warp/examples/core/example_fluid.py +293 -267
- warp/examples/core/example_graph_capture.py +144 -129
- warp/examples/core/example_marching_cubes.py +188 -176
- warp/examples/core/example_mesh.py +174 -154
- warp/examples/core/example_mesh_intersect.py +205 -193
- warp/examples/core/example_nvdb.py +176 -169
- warp/examples/core/example_raycast.py +105 -89
- warp/examples/core/example_raymarch.py +199 -178
- warp/examples/core/example_render_opengl.py +185 -141
- warp/examples/core/example_sph.py +405 -389
- warp/examples/core/example_torch.py +222 -181
- warp/examples/core/example_wave.py +263 -249
- warp/examples/fem/bsr_utils.py +378 -380
- warp/examples/fem/example_apic_fluid.py +407 -391
- warp/examples/fem/example_convection_diffusion.py +182 -168
- warp/examples/fem/example_convection_diffusion_dg.py +219 -209
- warp/examples/fem/example_convection_diffusion_dg0.py +204 -194
- warp/examples/fem/example_deformed_geometry.py +177 -159
- warp/examples/fem/example_diffusion.py +201 -173
- warp/examples/fem/example_diffusion_3d.py +177 -152
- warp/examples/fem/example_diffusion_mgpu.py +221 -214
- warp/examples/fem/example_mixed_elasticity.py +244 -222
- warp/examples/fem/example_navier_stokes.py +259 -243
- warp/examples/fem/example_stokes.py +220 -192
- warp/examples/fem/example_stokes_transfer.py +265 -249
- warp/examples/fem/mesh_utils.py +133 -109
- warp/examples/fem/plot_utils.py +292 -287
- warp/examples/optim/example_bounce.py +260 -248
- warp/examples/optim/example_cloth_throw.py +222 -210
- warp/examples/optim/example_diffray.py +566 -535
- warp/examples/optim/example_drone.py +864 -835
- warp/examples/optim/example_inverse_kinematics.py +176 -169
- warp/examples/optim/example_inverse_kinematics_torch.py +185 -170
- warp/examples/optim/example_spring_cage.py +239 -234
- warp/examples/optim/example_trajectory.py +223 -201
- warp/examples/optim/example_walker.py +306 -292
- warp/examples/sim/example_cartpole.py +139 -128
- warp/examples/sim/example_cloth.py +196 -184
- warp/examples/sim/example_granular.py +124 -113
- warp/examples/sim/example_granular_collision_sdf.py +197 -185
- warp/examples/sim/example_jacobian_ik.py +236 -213
- warp/examples/sim/example_particle_chain.py +118 -106
- warp/examples/sim/example_quadruped.py +193 -179
- warp/examples/sim/example_rigid_chain.py +197 -189
- warp/examples/sim/example_rigid_contact.py +189 -176
- warp/examples/sim/example_rigid_force.py +127 -126
- warp/examples/sim/example_rigid_gyroscopic.py +109 -97
- warp/examples/sim/example_rigid_soft_contact.py +134 -124
- warp/examples/sim/example_soft_body.py +190 -178
- warp/fabric.py +337 -335
- warp/fem/__init__.py +60 -27
- warp/fem/cache.py +401 -388
- warp/fem/dirichlet.py +178 -179
- warp/fem/domain.py +262 -263
- warp/fem/field/__init__.py +100 -101
- warp/fem/field/field.py +148 -149
- warp/fem/field/nodal_field.py +298 -299
- warp/fem/field/restriction.py +22 -21
- warp/fem/field/test.py +180 -181
- warp/fem/field/trial.py +183 -183
- warp/fem/geometry/__init__.py +15 -19
- warp/fem/geometry/closest_point.py +69 -70
- warp/fem/geometry/deformed_geometry.py +270 -271
- warp/fem/geometry/element.py +744 -744
- warp/fem/geometry/geometry.py +184 -186
- warp/fem/geometry/grid_2d.py +380 -373
- warp/fem/geometry/grid_3d.py +441 -435
- warp/fem/geometry/hexmesh.py +953 -953
- warp/fem/geometry/partition.py +374 -376
- warp/fem/geometry/quadmesh_2d.py +532 -532
- warp/fem/geometry/tetmesh.py +840 -840
- warp/fem/geometry/trimesh_2d.py +577 -577
- warp/fem/integrate.py +1630 -1615
- warp/fem/operator.py +190 -191
- warp/fem/polynomial.py +214 -213
- warp/fem/quadrature/__init__.py +2 -2
- warp/fem/quadrature/pic_quadrature.py +243 -245
- warp/fem/quadrature/quadrature.py +295 -294
- warp/fem/space/__init__.py +294 -292
- warp/fem/space/basis_space.py +488 -489
- warp/fem/space/collocated_function_space.py +100 -105
- warp/fem/space/dof_mapper.py +236 -236
- warp/fem/space/function_space.py +148 -145
- warp/fem/space/grid_2d_function_space.py +267 -267
- warp/fem/space/grid_3d_function_space.py +305 -306
- warp/fem/space/hexmesh_function_space.py +350 -352
- warp/fem/space/partition.py +350 -350
- warp/fem/space/quadmesh_2d_function_space.py +368 -369
- warp/fem/space/restriction.py +158 -160
- warp/fem/space/shape/__init__.py +13 -15
- warp/fem/space/shape/cube_shape_function.py +738 -738
- warp/fem/space/shape/shape_function.py +102 -103
- warp/fem/space/shape/square_shape_function.py +611 -611
- warp/fem/space/shape/tet_shape_function.py +565 -567
- warp/fem/space/shape/triangle_shape_function.py +429 -429
- warp/fem/space/tetmesh_function_space.py +294 -292
- warp/fem/space/topology.py +297 -295
- warp/fem/space/trimesh_2d_function_space.py +223 -221
- warp/fem/types.py +77 -77
- warp/fem/utils.py +495 -495
- warp/jax.py +166 -141
- warp/jax_experimental.py +341 -339
- warp/native/array.h +1072 -1025
- warp/native/builtin.h +1560 -1560
- warp/native/bvh.cpp +398 -398
- warp/native/bvh.cu +525 -525
- warp/native/bvh.h +429 -429
- warp/native/clang/clang.cpp +495 -464
- warp/native/crt.cpp +31 -31
- warp/native/crt.h +334 -334
- warp/native/cuda_crt.h +1049 -1049
- warp/native/cuda_util.cpp +549 -540
- warp/native/cuda_util.h +288 -203
- warp/native/cutlass_gemm.cpp +34 -34
- warp/native/cutlass_gemm.cu +372 -372
- warp/native/error.cpp +66 -66
- warp/native/error.h +27 -27
- warp/native/fabric.h +228 -228
- warp/native/hashgrid.cpp +301 -278
- warp/native/hashgrid.cu +78 -77
- warp/native/hashgrid.h +227 -227
- warp/native/initializer_array.h +32 -32
- warp/native/intersect.h +1204 -1204
- warp/native/intersect_adj.h +365 -365
- warp/native/intersect_tri.h +322 -322
- warp/native/marching.cpp +2 -2
- warp/native/marching.cu +497 -497
- warp/native/marching.h +2 -2
- warp/native/mat.h +1498 -1498
- warp/native/matnn.h +333 -333
- warp/native/mesh.cpp +203 -203
- warp/native/mesh.cu +293 -293
- warp/native/mesh.h +1887 -1887
- warp/native/nanovdb/NanoVDB.h +4782 -4782
- warp/native/nanovdb/PNanoVDB.h +2553 -2553
- warp/native/nanovdb/PNanoVDBWrite.h +294 -294
- warp/native/noise.h +850 -850
- warp/native/quat.h +1084 -1084
- warp/native/rand.h +299 -299
- warp/native/range.h +108 -108
- warp/native/reduce.cpp +156 -156
- warp/native/reduce.cu +348 -348
- warp/native/runlength_encode.cpp +61 -61
- warp/native/runlength_encode.cu +46 -46
- warp/native/scan.cpp +30 -30
- warp/native/scan.cu +36 -36
- warp/native/scan.h +7 -7
- warp/native/solid_angle.h +442 -442
- warp/native/sort.cpp +94 -94
- warp/native/sort.cu +97 -97
- warp/native/sort.h +14 -14
- warp/native/sparse.cpp +337 -337
- warp/native/sparse.cu +544 -544
- warp/native/spatial.h +630 -630
- warp/native/svd.h +562 -562
- warp/native/temp_buffer.h +30 -30
- warp/native/vec.h +1132 -1132
- warp/native/volume.cpp +297 -297
- warp/native/volume.cu +32 -32
- warp/native/volume.h +538 -538
- warp/native/volume_builder.cu +425 -425
- warp/native/volume_builder.h +19 -19
- warp/native/warp.cpp +1057 -1052
- warp/native/warp.cu +2943 -2828
- warp/native/warp.h +313 -305
- warp/optim/__init__.py +9 -9
- warp/optim/adam.py +120 -120
- warp/optim/linear.py +1104 -939
- warp/optim/sgd.py +104 -92
- warp/render/__init__.py +10 -10
- warp/render/render_opengl.py +3217 -3204
- warp/render/render_usd.py +768 -749
- warp/render/utils.py +152 -150
- warp/sim/__init__.py +52 -59
- warp/sim/articulation.py +685 -685
- warp/sim/collide.py +1594 -1590
- warp/sim/import_mjcf.py +489 -481
- warp/sim/import_snu.py +220 -221
- warp/sim/import_urdf.py +536 -516
- warp/sim/import_usd.py +887 -881
- warp/sim/inertia.py +316 -317
- warp/sim/integrator.py +234 -233
- warp/sim/integrator_euler.py +1956 -1956
- warp/sim/integrator_featherstone.py +1910 -1991
- warp/sim/integrator_xpbd.py +3294 -3312
- warp/sim/model.py +4473 -4314
- warp/sim/particles.py +113 -112
- warp/sim/render.py +417 -403
- warp/sim/utils.py +413 -410
- warp/sparse.py +1227 -1227
- warp/stubs.py +2109 -2469
- warp/tape.py +1162 -225
- warp/tests/__init__.py +1 -1
- warp/tests/__main__.py +4 -4
- warp/tests/assets/torus.usda +105 -105
- warp/tests/aux_test_class_kernel.py +26 -26
- warp/tests/aux_test_compile_consts_dummy.py +10 -10
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -21
- warp/tests/aux_test_dependent.py +22 -22
- warp/tests/aux_test_grad_customs.py +23 -23
- warp/tests/aux_test_reference.py +11 -11
- warp/tests/aux_test_reference_reference.py +10 -10
- warp/tests/aux_test_square.py +17 -17
- warp/tests/aux_test_unresolved_func.py +14 -14
- warp/tests/aux_test_unresolved_symbol.py +14 -14
- warp/tests/disabled_kinematics.py +239 -239
- warp/tests/run_coverage_serial.py +31 -31
- warp/tests/test_adam.py +157 -157
- warp/tests/test_arithmetic.py +1124 -1124
- warp/tests/test_array.py +2417 -2326
- warp/tests/test_array_reduce.py +150 -150
- warp/tests/test_async.py +668 -656
- warp/tests/test_atomic.py +141 -141
- warp/tests/test_bool.py +204 -149
- warp/tests/test_builtins_resolution.py +1292 -1292
- warp/tests/test_bvh.py +164 -171
- warp/tests/test_closest_point_edge_edge.py +228 -228
- warp/tests/test_codegen.py +566 -553
- warp/tests/test_compile_consts.py +97 -101
- warp/tests/test_conditional.py +246 -246
- warp/tests/test_copy.py +232 -215
- warp/tests/test_ctypes.py +632 -632
- warp/tests/test_dense.py +67 -67
- warp/tests/test_devices.py +91 -98
- warp/tests/test_dlpack.py +530 -529
- warp/tests/test_examples.py +400 -378
- warp/tests/test_fabricarray.py +955 -955
- warp/tests/test_fast_math.py +62 -54
- warp/tests/test_fem.py +1277 -1278
- warp/tests/test_fp16.py +130 -130
- warp/tests/test_func.py +338 -337
- warp/tests/test_generics.py +571 -571
- warp/tests/test_grad.py +746 -640
- warp/tests/test_grad_customs.py +333 -336
- warp/tests/test_hash_grid.py +210 -164
- warp/tests/test_import.py +39 -39
- warp/tests/test_indexedarray.py +1134 -1134
- warp/tests/test_intersect.py +67 -67
- warp/tests/test_jax.py +307 -307
- warp/tests/test_large.py +167 -164
- warp/tests/test_launch.py +354 -354
- warp/tests/test_lerp.py +261 -261
- warp/tests/test_linear_solvers.py +191 -171
- warp/tests/test_lvalue.py +421 -493
- warp/tests/test_marching_cubes.py +65 -65
- warp/tests/test_mat.py +1801 -1827
- warp/tests/test_mat_lite.py +115 -115
- warp/tests/test_mat_scalar_ops.py +2907 -2889
- warp/tests/test_math.py +126 -193
- warp/tests/test_matmul.py +500 -499
- warp/tests/test_matmul_lite.py +410 -410
- warp/tests/test_mempool.py +188 -190
- warp/tests/test_mesh.py +284 -324
- warp/tests/test_mesh_query_aabb.py +228 -241
- warp/tests/test_mesh_query_point.py +692 -702
- warp/tests/test_mesh_query_ray.py +292 -303
- warp/tests/test_mlp.py +276 -276
- warp/tests/test_model.py +110 -110
- warp/tests/test_modules_lite.py +39 -39
- warp/tests/test_multigpu.py +163 -163
- warp/tests/test_noise.py +248 -248
- warp/tests/test_operators.py +250 -250
- warp/tests/test_options.py +123 -125
- warp/tests/test_peer.py +133 -137
- warp/tests/test_pinned.py +78 -78
- warp/tests/test_print.py +54 -54
- warp/tests/test_quat.py +2086 -2086
- warp/tests/test_rand.py +288 -288
- warp/tests/test_reload.py +217 -217
- warp/tests/test_rounding.py +179 -179
- warp/tests/test_runlength_encode.py +190 -190
- warp/tests/test_sim_grad.py +243 -0
- warp/tests/test_sim_kinematics.py +91 -97
- warp/tests/test_smoothstep.py +168 -168
- warp/tests/test_snippet.py +305 -266
- warp/tests/test_sparse.py +468 -460
- warp/tests/test_spatial.py +2148 -2148
- warp/tests/test_streams.py +486 -473
- warp/tests/test_struct.py +710 -675
- warp/tests/test_tape.py +173 -148
- warp/tests/test_torch.py +743 -743
- warp/tests/test_transient_module.py +87 -87
- warp/tests/test_types.py +556 -659
- warp/tests/test_utils.py +490 -499
- warp/tests/test_vec.py +1264 -1268
- warp/tests/test_vec_lite.py +73 -73
- warp/tests/test_vec_scalar_ops.py +2099 -2099
- warp/tests/test_verify_fp.py +94 -94
- warp/tests/test_volume.py +737 -736
- warp/tests/test_volume_write.py +255 -265
- warp/tests/unittest_serial.py +37 -37
- warp/tests/unittest_suites.py +363 -359
- warp/tests/unittest_utils.py +603 -578
- warp/tests/unused_test_misc.py +71 -71
- warp/tests/walkthrough_debug.py +85 -85
- warp/thirdparty/appdirs.py +598 -598
- warp/thirdparty/dlpack.py +143 -143
- warp/thirdparty/unittest_parallel.py +566 -561
- warp/torch.py +321 -295
- warp/types.py +4504 -4450
- warp/utils.py +1008 -821
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/LICENSE.md +126 -126
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/METADATA +338 -400
- warp_lang-1.1.0.dist-info/RECORD +352 -0
- warp/examples/assets/cube.usda +0 -42
- warp/examples/assets/sphere.usda +0 -56
- warp/examples/assets/torus.usda +0 -105
- warp_lang-1.0.1.dist-info/RECORD +0 -352
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.0.1.dist-info → warp_lang-1.1.0.dist-info}/top_level.txt +0 -0
warp/tests/test_snippet.py
CHANGED
|
@@ -1,266 +1,305 @@
|
|
|
1
|
-
import unittest
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
|
|
5
|
-
import warp as wp
|
|
6
|
-
from warp.tests.unittest_utils import *
|
|
7
|
-
|
|
8
|
-
wp.init()
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
def test_basic(test, device):
|
|
12
|
-
snippet = """
|
|
13
|
-
out[tid] = a * x[tid] + y[tid];
|
|
14
|
-
"""
|
|
15
|
-
adj_snippet = """
|
|
16
|
-
adj_a += x[tid] * adj_out[tid];
|
|
17
|
-
adj_x[tid] += a * adj_out[tid];
|
|
18
|
-
adj_y[tid] += adj_out[tid];
|
|
19
|
-
"""
|
|
20
|
-
|
|
21
|
-
@wp.func_native(snippet, adj_snippet)
|
|
22
|
-
def saxpy(
|
|
23
|
-
a: wp.float32,
|
|
24
|
-
x: wp.array(dtype=wp.float32),
|
|
25
|
-
y: wp.array(dtype=wp.float32),
|
|
26
|
-
out: wp.array(dtype=wp.float32),
|
|
27
|
-
tid: int,
|
|
28
|
-
):
|
|
29
|
-
...
|
|
30
|
-
|
|
31
|
-
@wp.kernel
|
|
32
|
-
def saxpy_cu(
|
|
33
|
-
a: wp.float32, x: wp.array(dtype=wp.float32), y: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32)
|
|
34
|
-
):
|
|
35
|
-
tid = wp.tid()
|
|
36
|
-
saxpy(a, x, y, out, tid)
|
|
37
|
-
|
|
38
|
-
@wp.kernel
|
|
39
|
-
def saxpy_py(
|
|
40
|
-
a: wp.float32, x: wp.array(dtype=wp.float32), y: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32)
|
|
41
|
-
):
|
|
42
|
-
tid = wp.tid()
|
|
43
|
-
out[tid] = a * x[tid] + y[tid]
|
|
44
|
-
|
|
45
|
-
N = 128
|
|
46
|
-
|
|
47
|
-
a1 = 2.0
|
|
48
|
-
x1 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device, requires_grad=True)
|
|
49
|
-
y1 = wp.zeros_like(x1)
|
|
50
|
-
out1 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
51
|
-
adj_out1 = wp.array(np.ones(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
52
|
-
|
|
53
|
-
a2 = 2.0
|
|
54
|
-
x2 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device, requires_grad=True)
|
|
55
|
-
y2 = wp.zeros_like(x2)
|
|
56
|
-
out2 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
57
|
-
adj_out2 = wp.array(np.ones(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
58
|
-
|
|
59
|
-
tape = wp.Tape()
|
|
60
|
-
|
|
61
|
-
with tape:
|
|
62
|
-
wp.launch(kernel=saxpy_cu, dim=N, inputs=[a1, x1, y1], outputs=[out1], device=device)
|
|
63
|
-
wp.launch(kernel=saxpy_py, dim=N, inputs=[a2, x2, y2], outputs=[out2], device=device)
|
|
64
|
-
|
|
65
|
-
tape.backward(grads={out1: adj_out1, out2: adj_out2})
|
|
66
|
-
|
|
67
|
-
# test forward snippet
|
|
68
|
-
assert_np_equal(out1.numpy(), out2.numpy())
|
|
69
|
-
|
|
70
|
-
# test backward snippet
|
|
71
|
-
assert_np_equal(x1.grad.numpy(), a1 * np.ones(N, dtype=np.float32))
|
|
72
|
-
assert_np_equal(x1.grad.numpy(), x2.grad.numpy())
|
|
73
|
-
|
|
74
|
-
assert_np_equal(y1.grad.numpy(), np.ones(N, dtype=np.float32))
|
|
75
|
-
assert_np_equal(y1.grad.numpy(), y2.grad.numpy())
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
def test_shared_memory(test, device):
|
|
79
|
-
snippet = """
|
|
80
|
-
__shared__ int s[128];
|
|
81
|
-
|
|
82
|
-
s[tid] = d[tid];
|
|
83
|
-
__syncthreads();
|
|
84
|
-
d[tid] = s[N - tid - 1];
|
|
85
|
-
"""
|
|
86
|
-
|
|
87
|
-
@wp.func_native(snippet)
|
|
88
|
-
def reverse(d: wp.array(dtype=int), N: int, tid: int):
|
|
89
|
-
"""Reverse the array d in place using shared memory."""
|
|
90
|
-
return
|
|
91
|
-
|
|
92
|
-
@wp.kernel
|
|
93
|
-
def reverse_kernel(d: wp.array(dtype=int), N: int):
|
|
94
|
-
tid = wp.tid()
|
|
95
|
-
reverse(d, N, tid)
|
|
96
|
-
|
|
97
|
-
N = 128
|
|
98
|
-
x = wp.array(np.arange(N, dtype=int), dtype=int, device=device)
|
|
99
|
-
y = np.arange(127, -1, -1, dtype=int)
|
|
100
|
-
|
|
101
|
-
wp.launch(kernel=reverse_kernel, dim=N, inputs=[x, N], device=device)
|
|
102
|
-
|
|
103
|
-
assert_np_equal(x.numpy(), y)
|
|
104
|
-
assert reverse.__doc__ == "Reverse the array d in place using shared memory."
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
def test_cpu_snippet(test, device):
|
|
108
|
-
snippet = """
|
|
109
|
-
int inc = 1;
|
|
110
|
-
out[tid] = x[tid] + inc;
|
|
111
|
-
"""
|
|
112
|
-
|
|
113
|
-
@wp.func_native(snippet)
|
|
114
|
-
def increment_snippet(
|
|
115
|
-
x: wp.array(dtype=wp.int32),
|
|
116
|
-
out: wp.array(dtype=wp.int32),
|
|
117
|
-
tid: int,
|
|
118
|
-
):
|
|
119
|
-
...
|
|
120
|
-
|
|
121
|
-
@wp.kernel
|
|
122
|
-
def increment(x: wp.array(dtype=wp.int32), out: wp.array(dtype=wp.int32)):
|
|
123
|
-
tid = wp.tid()
|
|
124
|
-
increment_snippet(x, out, tid)
|
|
125
|
-
|
|
126
|
-
N = 128
|
|
127
|
-
x = wp.array(np.arange(N, dtype=np.int32), dtype=wp.int32, device=device)
|
|
128
|
-
out = wp.zeros(N, dtype=wp.int32, device=device)
|
|
129
|
-
|
|
130
|
-
wp.launch(kernel=increment, dim=N, inputs=[x], outputs=[out], device=device)
|
|
131
|
-
|
|
132
|
-
assert_np_equal(out.numpy(), np.arange(1, N + 1, 1, dtype=np.int32))
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
def test_custom_replay_grad(test, device):
|
|
136
|
-
num_threads = 16
|
|
137
|
-
counter = wp.zeros(1, dtype=wp.int32, device=device)
|
|
138
|
-
thread_ids = wp.zeros(num_threads, dtype=wp.int32, device=device)
|
|
139
|
-
inputs = wp.array(np.arange(num_threads, dtype=np.float32), device=device, requires_grad=True)
|
|
140
|
-
outputs = wp.zeros_like(inputs)
|
|
141
|
-
|
|
142
|
-
snippet = """
|
|
143
|
-
int next_index = atomicAdd(counter, 1);
|
|
144
|
-
thread_values[tid] = next_index;
|
|
145
|
-
"""
|
|
146
|
-
replay_snippet = ""
|
|
147
|
-
|
|
148
|
-
@wp.func_native(snippet, replay_snippet=replay_snippet)
|
|
149
|
-
def reversible_increment(
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
adj_snippet =
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
tid
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
N =
|
|
228
|
-
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
241
|
-
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
|
|
266
|
-
|
|
1
|
+
import unittest
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
|
|
5
|
+
import warp as wp
|
|
6
|
+
from warp.tests.unittest_utils import *
|
|
7
|
+
|
|
8
|
+
wp.init()
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
def test_basic(test, device):
|
|
12
|
+
snippet = """
|
|
13
|
+
out[tid] = a * x[tid] + y[tid];
|
|
14
|
+
"""
|
|
15
|
+
adj_snippet = """
|
|
16
|
+
adj_a += x[tid] * adj_out[tid];
|
|
17
|
+
adj_x[tid] += a * adj_out[tid];
|
|
18
|
+
adj_y[tid] += adj_out[tid];
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
@wp.func_native(snippet, adj_snippet)
|
|
22
|
+
def saxpy(
|
|
23
|
+
a: wp.float32,
|
|
24
|
+
x: wp.array(dtype=wp.float32),
|
|
25
|
+
y: wp.array(dtype=wp.float32),
|
|
26
|
+
out: wp.array(dtype=wp.float32),
|
|
27
|
+
tid: int,
|
|
28
|
+
): # fmt: skip
|
|
29
|
+
...
|
|
30
|
+
|
|
31
|
+
@wp.kernel
|
|
32
|
+
def saxpy_cu(
|
|
33
|
+
a: wp.float32, x: wp.array(dtype=wp.float32), y: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32)
|
|
34
|
+
):
|
|
35
|
+
tid = wp.tid()
|
|
36
|
+
saxpy(a, x, y, out, tid)
|
|
37
|
+
|
|
38
|
+
@wp.kernel
|
|
39
|
+
def saxpy_py(
|
|
40
|
+
a: wp.float32, x: wp.array(dtype=wp.float32), y: wp.array(dtype=wp.float32), out: wp.array(dtype=wp.float32)
|
|
41
|
+
):
|
|
42
|
+
tid = wp.tid()
|
|
43
|
+
out[tid] = a * x[tid] + y[tid]
|
|
44
|
+
|
|
45
|
+
N = 128
|
|
46
|
+
|
|
47
|
+
a1 = 2.0
|
|
48
|
+
x1 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device, requires_grad=True)
|
|
49
|
+
y1 = wp.zeros_like(x1)
|
|
50
|
+
out1 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
51
|
+
adj_out1 = wp.array(np.ones(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
52
|
+
|
|
53
|
+
a2 = 2.0
|
|
54
|
+
x2 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device, requires_grad=True)
|
|
55
|
+
y2 = wp.zeros_like(x2)
|
|
56
|
+
out2 = wp.array(np.arange(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
57
|
+
adj_out2 = wp.array(np.ones(N, dtype=np.float32), dtype=wp.float32, device=device)
|
|
58
|
+
|
|
59
|
+
tape = wp.Tape()
|
|
60
|
+
|
|
61
|
+
with tape:
|
|
62
|
+
wp.launch(kernel=saxpy_cu, dim=N, inputs=[a1, x1, y1], outputs=[out1], device=device)
|
|
63
|
+
wp.launch(kernel=saxpy_py, dim=N, inputs=[a2, x2, y2], outputs=[out2], device=device)
|
|
64
|
+
|
|
65
|
+
tape.backward(grads={out1: adj_out1, out2: adj_out2})
|
|
66
|
+
|
|
67
|
+
# test forward snippet
|
|
68
|
+
assert_np_equal(out1.numpy(), out2.numpy())
|
|
69
|
+
|
|
70
|
+
# test backward snippet
|
|
71
|
+
assert_np_equal(x1.grad.numpy(), a1 * np.ones(N, dtype=np.float32))
|
|
72
|
+
assert_np_equal(x1.grad.numpy(), x2.grad.numpy())
|
|
73
|
+
|
|
74
|
+
assert_np_equal(y1.grad.numpy(), np.ones(N, dtype=np.float32))
|
|
75
|
+
assert_np_equal(y1.grad.numpy(), y2.grad.numpy())
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def test_shared_memory(test, device):
|
|
79
|
+
snippet = """
|
|
80
|
+
__shared__ int s[128];
|
|
81
|
+
|
|
82
|
+
s[tid] = d[tid];
|
|
83
|
+
__syncthreads();
|
|
84
|
+
d[tid] = s[N - tid - 1];
|
|
85
|
+
"""
|
|
86
|
+
|
|
87
|
+
@wp.func_native(snippet)
|
|
88
|
+
def reverse(d: wp.array(dtype=int), N: int, tid: int):
|
|
89
|
+
"""Reverse the array d in place using shared memory."""
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
@wp.kernel
|
|
93
|
+
def reverse_kernel(d: wp.array(dtype=int), N: int):
|
|
94
|
+
tid = wp.tid()
|
|
95
|
+
reverse(d, N, tid)
|
|
96
|
+
|
|
97
|
+
N = 128
|
|
98
|
+
x = wp.array(np.arange(N, dtype=int), dtype=int, device=device)
|
|
99
|
+
y = np.arange(127, -1, -1, dtype=int)
|
|
100
|
+
|
|
101
|
+
wp.launch(kernel=reverse_kernel, dim=N, inputs=[x, N], device=device)
|
|
102
|
+
|
|
103
|
+
assert_np_equal(x.numpy(), y)
|
|
104
|
+
assert reverse.__doc__ == "Reverse the array d in place using shared memory."
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
def test_cpu_snippet(test, device):
|
|
108
|
+
snippet = """
|
|
109
|
+
int inc = 1;
|
|
110
|
+
out[tid] = x[tid] + inc;
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
@wp.func_native(snippet)
|
|
114
|
+
def increment_snippet(
|
|
115
|
+
x: wp.array(dtype=wp.int32),
|
|
116
|
+
out: wp.array(dtype=wp.int32),
|
|
117
|
+
tid: int,
|
|
118
|
+
): # fmt: skip
|
|
119
|
+
...
|
|
120
|
+
|
|
121
|
+
@wp.kernel
|
|
122
|
+
def increment(x: wp.array(dtype=wp.int32), out: wp.array(dtype=wp.int32)):
|
|
123
|
+
tid = wp.tid()
|
|
124
|
+
increment_snippet(x, out, tid)
|
|
125
|
+
|
|
126
|
+
N = 128
|
|
127
|
+
x = wp.array(np.arange(N, dtype=np.int32), dtype=wp.int32, device=device)
|
|
128
|
+
out = wp.zeros(N, dtype=wp.int32, device=device)
|
|
129
|
+
|
|
130
|
+
wp.launch(kernel=increment, dim=N, inputs=[x], outputs=[out], device=device)
|
|
131
|
+
|
|
132
|
+
assert_np_equal(out.numpy(), np.arange(1, N + 1, 1, dtype=np.int32))
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def test_custom_replay_grad(test, device):
|
|
136
|
+
num_threads = 16
|
|
137
|
+
counter = wp.zeros(1, dtype=wp.int32, device=device)
|
|
138
|
+
thread_ids = wp.zeros(num_threads, dtype=wp.int32, device=device)
|
|
139
|
+
inputs = wp.array(np.arange(num_threads, dtype=np.float32), device=device, requires_grad=True)
|
|
140
|
+
outputs = wp.zeros_like(inputs)
|
|
141
|
+
|
|
142
|
+
snippet = """
|
|
143
|
+
int next_index = atomicAdd(counter, 1);
|
|
144
|
+
thread_values[tid] = next_index;
|
|
145
|
+
"""
|
|
146
|
+
replay_snippet = ""
|
|
147
|
+
|
|
148
|
+
@wp.func_native(snippet, replay_snippet=replay_snippet)
|
|
149
|
+
def reversible_increment(counter: wp.array(dtype=int), thread_values: wp.array(dtype=int), tid: int): # fmt: skip
|
|
150
|
+
...
|
|
151
|
+
|
|
152
|
+
@wp.kernel
|
|
153
|
+
def run_atomic_add(
|
|
154
|
+
input: wp.array(dtype=float),
|
|
155
|
+
counter: wp.array(dtype=int),
|
|
156
|
+
thread_values: wp.array(dtype=int),
|
|
157
|
+
output: wp.array(dtype=float),
|
|
158
|
+
):
|
|
159
|
+
tid = wp.tid()
|
|
160
|
+
reversible_increment(counter, thread_values, tid)
|
|
161
|
+
idx = thread_values[tid]
|
|
162
|
+
output[idx] = input[idx] ** 2.0
|
|
163
|
+
|
|
164
|
+
tape = wp.Tape()
|
|
165
|
+
with tape:
|
|
166
|
+
wp.launch(
|
|
167
|
+
run_atomic_add, dim=num_threads, inputs=[inputs, counter, thread_ids], outputs=[outputs], device=device
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
tape.backward(grads={outputs: wp.array(np.ones(num_threads, dtype=np.float32), device=device)})
|
|
171
|
+
assert_np_equal(inputs.grad.numpy(), 2.0 * inputs.numpy(), tol=1e-4)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
def test_replay_simplification(test, device):
|
|
175
|
+
num_threads = 8
|
|
176
|
+
x = wp.array(1.0 + np.arange(num_threads, dtype=np.float32), device=device, requires_grad=True)
|
|
177
|
+
y = wp.zeros_like(x)
|
|
178
|
+
z = wp.zeros_like(x)
|
|
179
|
+
|
|
180
|
+
snippet = "y[tid] = powf(x[tid], 2.0);"
|
|
181
|
+
replay_snippet = "y[tid] = x[tid];"
|
|
182
|
+
adj_snippet = "adj_x[tid] += 2.0 * adj_y[tid];"
|
|
183
|
+
|
|
184
|
+
@wp.func_native(snippet, adj_snippet=adj_snippet, replay_snippet=replay_snippet)
|
|
185
|
+
def square(x: wp.array(dtype=float), y: wp.array(dtype=float), tid: int): # fmt: skip
|
|
186
|
+
...
|
|
187
|
+
|
|
188
|
+
@wp.kernel
|
|
189
|
+
def log_square_kernel(x: wp.array(dtype=float), y: wp.array(dtype=float), z: wp.array(dtype=float)):
|
|
190
|
+
tid = wp.tid()
|
|
191
|
+
square(x, y, tid)
|
|
192
|
+
z[tid] = wp.log(y[tid])
|
|
193
|
+
|
|
194
|
+
tape = wp.Tape()
|
|
195
|
+
with tape:
|
|
196
|
+
wp.launch(log_square_kernel, dim=num_threads, inputs=[x, y], outputs=[z], device=device)
|
|
197
|
+
|
|
198
|
+
tape.backward(grads={z: wp.array(np.ones(num_threads, dtype=np.float32), device=device)})
|
|
199
|
+
assert_np_equal(x.grad.numpy(), 2.0 / (1.0 + np.arange(num_threads)), tol=1e-6)
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
def test_recompile_snippet(test, device):
|
|
203
|
+
snippet = """
|
|
204
|
+
int inc = 1;
|
|
205
|
+
out[tid] = x[tid] + inc;
|
|
206
|
+
"""
|
|
207
|
+
|
|
208
|
+
@wp.func_native(snippet)
|
|
209
|
+
def increment_snippet(
|
|
210
|
+
x: wp.array(dtype=wp.int32),
|
|
211
|
+
out: wp.array(dtype=wp.int32),
|
|
212
|
+
tid: int,
|
|
213
|
+
): # fmt: skip
|
|
214
|
+
...
|
|
215
|
+
|
|
216
|
+
@wp.kernel
|
|
217
|
+
def increment(x: wp.array(dtype=wp.int32), out: wp.array(dtype=wp.int32)):
|
|
218
|
+
tid = wp.tid()
|
|
219
|
+
increment_snippet(x, out, tid)
|
|
220
|
+
|
|
221
|
+
N = 128
|
|
222
|
+
x = wp.array(np.arange(N, dtype=np.int32), dtype=wp.int32, device=device)
|
|
223
|
+
out = wp.zeros(N, dtype=wp.int32, device=device)
|
|
224
|
+
|
|
225
|
+
wp.launch(kernel=increment, dim=N, inputs=[x], outputs=[out], device=device)
|
|
226
|
+
|
|
227
|
+
assert_np_equal(out.numpy(), np.arange(1, N + 1, 1, dtype=np.int32))
|
|
228
|
+
|
|
229
|
+
snippet = """
|
|
230
|
+
int inc = 2;
|
|
231
|
+
out[tid] = x[tid] + inc;
|
|
232
|
+
"""
|
|
233
|
+
|
|
234
|
+
@wp.func_native(snippet)
|
|
235
|
+
def increment_snippet(
|
|
236
|
+
x: wp.array(dtype=wp.int32),
|
|
237
|
+
out: wp.array(dtype=wp.int32),
|
|
238
|
+
tid: int,
|
|
239
|
+
): # fmt: skip
|
|
240
|
+
...
|
|
241
|
+
|
|
242
|
+
wp.launch(kernel=increment, dim=N, inputs=[x], outputs=[out], device=device)
|
|
243
|
+
|
|
244
|
+
assert_np_equal(out.numpy(), 1 + np.arange(1, N + 1, 1, dtype=np.int32))
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def test_return_type(test, device):
|
|
248
|
+
snippet = """
|
|
249
|
+
float sq = x * x;
|
|
250
|
+
return sq;
|
|
251
|
+
"""
|
|
252
|
+
adj_snippet = """
|
|
253
|
+
adj_x += 2 * x * adj_ret;
|
|
254
|
+
"""
|
|
255
|
+
|
|
256
|
+
# check python built-in return type compilation
|
|
257
|
+
@wp.func_native(snippet, adj_snippet)
|
|
258
|
+
def square(x: float) -> float: ...
|
|
259
|
+
|
|
260
|
+
# check warp built-in return type compilation
|
|
261
|
+
@wp.func_native(snippet, adj_snippet)
|
|
262
|
+
def square(x: wp.float32) -> wp.float32: ...
|
|
263
|
+
|
|
264
|
+
@wp.kernel
|
|
265
|
+
def square_kernel(i: wp.array(dtype=float), o: wp.array(dtype=float)):
|
|
266
|
+
tid = wp.tid()
|
|
267
|
+
x = i[tid]
|
|
268
|
+
o[tid] = square(x)
|
|
269
|
+
|
|
270
|
+
N = 5
|
|
271
|
+
x = wp.array(np.arange(N, dtype=float), dtype=float, requires_grad=True, device=device)
|
|
272
|
+
y = wp.zeros_like(x)
|
|
273
|
+
|
|
274
|
+
tape = wp.Tape()
|
|
275
|
+
with tape:
|
|
276
|
+
wp.launch(kernel=square_kernel, dim=N, inputs=[x, y], device=device)
|
|
277
|
+
|
|
278
|
+
y.grad = wp.ones(N, dtype=float, device=device)
|
|
279
|
+
tape.backward()
|
|
280
|
+
|
|
281
|
+
assert_np_equal(y.numpy(), np.array([0.0, 1.0, 4.0, 9.0, 16.0]))
|
|
282
|
+
assert_np_equal(x.grad.numpy(), np.array([0.0, 2.0, 4.0, 6.0, 8.0]))
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
class TestSnippets(unittest.TestCase):
|
|
286
|
+
pass
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
add_function_test(TestSnippets, "test_basic", test_basic, devices=get_selected_cuda_test_devices())
|
|
290
|
+
add_function_test(TestSnippets, "test_shared_memory", test_shared_memory, devices=get_selected_cuda_test_devices())
|
|
291
|
+
add_function_test(TestSnippets, "test_cpu_snippet", test_cpu_snippet, devices=["cpu"])
|
|
292
|
+
add_function_test(
|
|
293
|
+
TestSnippets, "test_custom_replay_grad", test_custom_replay_grad, devices=get_selected_cuda_test_devices()
|
|
294
|
+
)
|
|
295
|
+
add_function_test(
|
|
296
|
+
TestSnippets, "test_replay_simplification", test_replay_simplification, devices=get_selected_cuda_test_devices()
|
|
297
|
+
)
|
|
298
|
+
add_function_test(
|
|
299
|
+
TestSnippets, "test_recompile_snippet", test_recompile_snippet, devices=get_selected_cuda_test_devices()
|
|
300
|
+
)
|
|
301
|
+
add_function_test(TestSnippets, "test_return_type", test_return_type, devices=get_selected_cuda_test_devices())
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
if __name__ == "__main__":
|
|
305
|
+
unittest.main(verbosity=2)
|