vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2526 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import contextlib
4
+ import copy
5
+ import logging
6
+ import math
7
+ import queue
8
+ import threading
9
+ import time
10
+ import uuid
11
+ from collections import defaultdict
12
+ from collections.abc import Iterator
13
+ from concurrent.futures import Future, ThreadPoolExecutor
14
+ from dataclasses import dataclass
15
+ from typing import TYPE_CHECKING, Any, Optional
16
+
17
+ import msgspec
18
+ import numpy as np
19
+ import torch
20
+ import zmq
21
+
22
+ from vllm import envs
23
+ from vllm.attention.backends.abstract import AttentionMetadata
24
+ from vllm.attention.selector import get_attn_backend
25
+ from vllm.config import VllmConfig
26
+ from vllm.distributed.kv_transfer.kv_connector.utils import TpKVTopology
27
+ from vllm.distributed.kv_transfer.kv_connector.v1.base import (
28
+ CopyBlocksOp,
29
+ KVConnectorBase_V1,
30
+ KVConnectorHandshakeMetadata,
31
+ KVConnectorMetadata,
32
+ KVConnectorRole,
33
+ )
34
+ from vllm.distributed.kv_transfer.kv_connector.v1.metrics import (
35
+ KVConnectorPromMetrics,
36
+ KVConnectorStats,
37
+ PromMetric,
38
+ PromMetricT,
39
+ )
40
+ from vllm.distributed.parallel_state import (
41
+ get_tensor_model_parallel_rank,
42
+ get_tensor_model_parallel_world_size,
43
+ get_tp_group,
44
+ )
45
+ from vllm.forward_context import ForwardContext
46
+ from vllm.logger import init_logger
47
+ from vllm.platforms import current_platform
48
+ from vllm.utils.network_utils import make_zmq_path, make_zmq_socket
49
+ from vllm.v1.attention.backends.utils import get_kv_cache_layout
50
+ from vllm.v1.core.sched.output import SchedulerOutput
51
+ from vllm.v1.worker.block_table import BlockTable
52
+
53
+ if TYPE_CHECKING:
54
+ from vllm.v1.core.kv_cache_manager import KVCacheBlocks
55
+ from vllm.v1.kv_cache_interface import KVCacheConfig
56
+ from vllm.v1.request import Request
57
+
58
+ TransferHandle = int
59
+ EngineId = str
60
+ ReqId = str
61
+
62
+ #
63
+ # NIXL Connector Version
64
+ #
65
+ # Increment this version whenever there is an incompatible change to:
66
+ # - NixlAgentMetadata schema
67
+ # - kv_transfer_params schema or semantics
68
+ # - NIXL transfer protocol or wire format
69
+ # - KV cache memory layout or block organization
70
+ # - Any other change that breaks P/D interoperability
71
+ #
72
+ # Version History:
73
+ # 1: Initial version with compatibility checking
74
+ # 2: Add remote_request_id to kv_transfer_params
75
+ #
76
+ NIXL_CONNECTOR_VERSION: int = 2
77
+
78
+ GET_META_MSG = b"get_meta_msg"
79
+
80
+ logger = init_logger(__name__)
81
+
82
+ # Lazy import nixl_wrapper to avoid loading nixl_bindings if nixl is not used
83
+ try:
84
+ from nixl._api import nixl_agent as NixlWrapper
85
+ from nixl._bindings import nixlXferTelemetry
86
+
87
+ logger.info("NIXL is available")
88
+ except ImportError:
89
+ logger.warning("NIXL is not available")
90
+ NixlWrapper = None
91
+ nixlXferTelemetry = None
92
+
93
+
94
+ try:
95
+ from nixl._api import nixl_agent_config
96
+ except ImportError:
97
+ nixl_agent_config = None
98
+ logger.warning("NIXL agent config is not available")
99
+
100
+ # Supported platforms and types of kv transfer buffer.
101
+ # {device: tuple of supported kv buffer types}
102
+ _NIXL_SUPPORTED_DEVICE = {
103
+ "cuda": (
104
+ "cuda",
105
+ "cpu",
106
+ ),
107
+ "tpu": ("cpu",),
108
+ "xpu": ("cpu",),
109
+ "cpu": ("cpu",),
110
+ }
111
+ # support for oot platform by providing mapping in current_platform
112
+ _NIXL_SUPPORTED_DEVICE.update(current_platform.get_nixl_supported_devices())
113
+
114
+
115
+ @dataclass
116
+ class NixlAgentMetadata:
117
+ engine_id: str
118
+ agent_metadata: bytes
119
+ kv_caches_base_addr: list[int]
120
+ device_id: int
121
+ num_blocks: int
122
+ block_lens: list[int]
123
+ kv_cache_layout: str
124
+ block_size: int
125
+
126
+
127
+ @dataclass
128
+ class NixlHandshakePayload(KVConnectorHandshakeMetadata):
129
+ """
130
+ Wrapper for NIXL handshake sent over the wire.
131
+
132
+ Enables two-phase decoding for graceful compatibility checking:
133
+ 1. Decode NixlHandshakePayload to get compatibility_hash
134
+ 2. Compute local hash and compare
135
+ 3. Only if hashes match, decode agent_metadata_bytes
136
+
137
+ This prevents decoder errors when NixlAgentMetadata schema is
138
+ incompatible, allowing graceful failure with clear error message.
139
+ """
140
+
141
+ compatibility_hash: str
142
+ agent_metadata_bytes: bytes # NixlAgentMetadata encoded
143
+
144
+
145
+ def compute_nixl_compatibility_hash(
146
+ vllm_config: VllmConfig, attn_backend_name: str
147
+ ) -> str:
148
+ """
149
+ Compute compatibility hash for NIXL KV transfer.
150
+
151
+ Hash only the factors that affect whether two NIXL instances can
152
+ successfully transfer KV cache data.
153
+
154
+ Factors included:
155
+ - vLLM version and NIXL connector version
156
+ - Model architecture (name, dtype, KV heads, layers)
157
+ - KV cache format (dtype, sliding window)
158
+ - Attention backend
159
+
160
+ Note: Factors like tensor_parallel_size, block_size, and kv_cache_layout
161
+ are validated at runtime in _validate_remote_agent_handshake and are not
162
+ included in this hash to support heterogeneous deployments.
163
+
164
+ Note - the set of factors are likely to evolve significantly over
165
+ time to be more or less permissive.
166
+
167
+ Returns:
168
+ SHA-256 hex digest
169
+ """
170
+ from vllm import __version__ as vllm_version
171
+ from vllm.config.utils import hash_factors
172
+
173
+ model_config = vllm_config.model_config
174
+ cache_config = vllm_config.cache_config
175
+
176
+ factors = {
177
+ # Version compatibility
178
+ "vllm_version": vllm_version,
179
+ "nixl_connector_version": NIXL_CONNECTOR_VERSION,
180
+ # Model architecture - affects KV cache shape
181
+ "model": model_config.model,
182
+ "dtype": str(model_config.dtype),
183
+ "num_kv_heads": model_config.get_total_num_kv_heads(),
184
+ "head_size": model_config.get_head_size(),
185
+ "num_hidden_layers": model_config.get_total_num_hidden_layers(),
186
+ # Attention backend and KV cache dtype affect memory layout
187
+ "attn_backend_name": attn_backend_name,
188
+ "cache_dtype": str(cache_config.cache_dtype),
189
+ }
190
+
191
+ compat_hash = hash_factors(factors)
192
+ logger.debug(
193
+ "NIXL compatibility hash: %s (model=%s, dtype=%s, num_kv_heads=%d, "
194
+ "cache_dtype=%s, attn_backend=%s)",
195
+ compat_hash,
196
+ factors["model"],
197
+ factors["dtype"],
198
+ factors["num_kv_heads"],
199
+ factors["cache_dtype"],
200
+ attn_backend_name,
201
+ )
202
+ return compat_hash
203
+
204
+
205
+ @dataclass
206
+ class RemoteMeta:
207
+ block_ids: list[int]
208
+ host: str
209
+ port: int
210
+ engine_id: str
211
+ request_id: str
212
+
213
+
214
+ @dataclass
215
+ class ReqMeta:
216
+ local_block_ids: list[int]
217
+ # To be used when logical block size does not match the kernel block size
218
+ local_physical_block_ids: list[int]
219
+ tp_size: int
220
+ remote: RemoteMeta | None = None
221
+
222
+
223
+ class NixlConnectorMetadata(KVConnectorMetadata):
224
+ def __init__(self):
225
+ self.reqs_to_recv: dict[ReqId, ReqMeta] = {}
226
+ self.reqs_to_save: dict[ReqId, ReqMeta] = {}
227
+ self.reqs_to_send: dict[ReqId, float] = {}
228
+ self.reqs_in_batch: set[ReqId] = set()
229
+ self.reqs_not_processed: set[ReqId] = set()
230
+
231
+ def _add_new_req(
232
+ self,
233
+ local_block_ids: list[int],
234
+ kv_transfer_params: dict[str, Any],
235
+ ) -> ReqMeta:
236
+ return ReqMeta(
237
+ local_block_ids=local_block_ids,
238
+ local_physical_block_ids=local_block_ids,
239
+ # P workers don't need to receive tp_size from proxy here.
240
+ tp_size=kv_transfer_params.get("tp_size", 1),
241
+ )
242
+
243
+ def add_new_req_to_save(
244
+ self,
245
+ request_id: ReqId,
246
+ local_block_ids: list[int],
247
+ kv_transfer_params: dict[str, Any],
248
+ ):
249
+ self.reqs_to_save[request_id] = self._add_new_req(
250
+ local_block_ids, kv_transfer_params
251
+ )
252
+
253
+ def add_new_req_to_recv(
254
+ self,
255
+ request_id: ReqId,
256
+ local_block_ids: list[int],
257
+ kv_transfer_params: dict[str, Any],
258
+ ):
259
+ req = self._add_new_req(local_block_ids, kv_transfer_params)
260
+ req.remote = RemoteMeta(
261
+ block_ids=kv_transfer_params["remote_block_ids"],
262
+ engine_id=kv_transfer_params["remote_engine_id"],
263
+ request_id=kv_transfer_params["remote_request_id"],
264
+ host=kv_transfer_params["remote_host"],
265
+ port=kv_transfer_params["remote_port"],
266
+ )
267
+ self.reqs_to_recv[request_id] = req
268
+
269
+
270
+ class NixlConnector(KVConnectorBase_V1):
271
+ def __init__(
272
+ self,
273
+ vllm_config: VllmConfig,
274
+ role: KVConnectorRole,
275
+ kv_cache_config: Optional["KVCacheConfig"] = None,
276
+ ):
277
+ super().__init__(vllm_config, role, kv_cache_config)
278
+
279
+ assert vllm_config.kv_transfer_config is not None
280
+ assert vllm_config.kv_transfer_config.engine_id is not None
281
+ self.engine_id: EngineId = vllm_config.kv_transfer_config.engine_id
282
+
283
+ if role == KVConnectorRole.SCHEDULER:
284
+ self.connector_scheduler: NixlConnectorScheduler | None = (
285
+ NixlConnectorScheduler(vllm_config, self.engine_id)
286
+ )
287
+ self.connector_worker: NixlConnectorWorker | None = None
288
+ elif role == KVConnectorRole.WORKER:
289
+ self.connector_scheduler = None
290
+ self.connector_worker = NixlConnectorWorker(vllm_config, self.engine_id)
291
+
292
+ ############################################################
293
+ # Class Methods
294
+ ############################################################
295
+ @classmethod
296
+ def get_required_kvcache_layout(cls, vllm_config: VllmConfig):
297
+ if vllm_config.model_config is None:
298
+ logger.warning_once(
299
+ "Unable to detect current VLLM config. "
300
+ "Fallback to default kv cache layout."
301
+ )
302
+ return None
303
+ use_mla = vllm_config.model_config.use_mla
304
+ if use_mla:
305
+ # return None when we have mla
306
+ # as the layout should not matter in that case,
307
+ # which fallback to the default behavior.
308
+ return None
309
+ logger.info_once(
310
+ "NixlConnector setting KV cache layout to HND for better xfer performance."
311
+ )
312
+ return "HND"
313
+
314
+ ############################################################
315
+ # Scheduler Side Methods
316
+ ############################################################
317
+
318
+ def get_num_new_matched_tokens(
319
+ self, request: "Request", num_computed_tokens: int
320
+ ) -> tuple[int | None, bool]:
321
+ assert self.connector_scheduler is not None
322
+ return self.connector_scheduler.get_num_new_matched_tokens(
323
+ request, num_computed_tokens
324
+ )
325
+
326
+ def update_state_after_alloc(
327
+ self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
328
+ ):
329
+ assert self.connector_scheduler is not None
330
+ return self.connector_scheduler.update_state_after_alloc(
331
+ request, blocks, num_external_tokens
332
+ )
333
+
334
+ def build_connector_meta(
335
+ self,
336
+ scheduler_output: SchedulerOutput,
337
+ ) -> KVConnectorMetadata:
338
+ assert self.connector_scheduler is not None
339
+ return self.connector_scheduler.build_connector_meta(scheduler_output)
340
+
341
+ def request_finished(
342
+ self,
343
+ request: "Request",
344
+ block_ids: list[int],
345
+ ) -> tuple[bool, dict[str, Any] | None]:
346
+ assert self.connector_scheduler is not None
347
+ return self.connector_scheduler.request_finished(request, block_ids)
348
+
349
+ def set_xfer_handshake_metadata(
350
+ self, metadata: dict[int, KVConnectorHandshakeMetadata]
351
+ ) -> None:
352
+ """
353
+ Set the KV connector handshake metadata for this connector.
354
+
355
+ Args:
356
+ metadata (dict): the handshake metadata to set.
357
+ """
358
+ assert self.connector_scheduler is not None
359
+ self.connector_scheduler.set_xfer_handshake_metadata(metadata)
360
+
361
+ ############################################################
362
+ # Worker Side Methods
363
+ ############################################################
364
+ def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
365
+ assert self.connector_worker is not None
366
+ self.connector_worker.register_kv_caches(kv_caches)
367
+
368
+ def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
369
+ assert self.connector_worker is not None
370
+ self.connector_worker.set_host_xfer_buffer_ops(copy_operation)
371
+
372
+ def get_finished(self, finished_req_ids: set[str]) -> tuple[set[str], set[str]]:
373
+ """Get the finished recving and sending requests."""
374
+ assert self.connector_worker is not None
375
+ return self.connector_worker.get_finished()
376
+
377
+ def get_block_ids_with_load_errors(self) -> set[int]:
378
+ """Get block IDs that failed to load via NIXL."""
379
+ assert self.connector_worker is not None
380
+ return self.connector_worker.get_block_ids_with_load_errors()
381
+
382
+ def get_kv_connector_stats(self) -> KVConnectorStats | None:
383
+ if self.connector_worker is None:
384
+ return None
385
+ return self.connector_worker.get_kv_connector_stats()
386
+
387
+ @classmethod
388
+ def build_kv_connector_stats(
389
+ cls, data: dict[str, Any] | None = None
390
+ ) -> KVConnectorStats | None:
391
+ return (
392
+ NixlKVConnectorStats(data=data)
393
+ if data is not None
394
+ else NixlKVConnectorStats()
395
+ )
396
+
397
+ @classmethod
398
+ def build_prom_metrics(
399
+ cls,
400
+ vllm_config: VllmConfig,
401
+ metric_types: dict[type[PromMetric], type[PromMetricT]],
402
+ labelnames: list[str],
403
+ per_engine_labelvalues: dict[int, list[object]],
404
+ ) -> KVConnectorPromMetrics:
405
+ return NixlPromMetrics(
406
+ vllm_config, metric_types, labelnames, per_engine_labelvalues
407
+ )
408
+
409
+ def start_load_kv(self, forward_context: "ForwardContext", **kwargs) -> None:
410
+ assert self.connector_worker is not None
411
+ assert isinstance(self._connector_metadata, NixlConnectorMetadata)
412
+ self.connector_worker.start_load_kv(self._connector_metadata)
413
+
414
+ def wait_for_layer_load(self, layer_name: str) -> None:
415
+ """NixlConnector does not do layerwise saving."""
416
+ pass
417
+
418
+ def save_kv_layer(
419
+ self,
420
+ layer_name: str,
421
+ kv_layer: torch.Tensor,
422
+ attn_metadata: AttentionMetadata,
423
+ **kwargs,
424
+ ) -> None:
425
+ """NixlConnector does not save explicitly."""
426
+ pass
427
+
428
+ def wait_for_save(self):
429
+ assert self.connector_worker is not None
430
+ assert isinstance(self._connector_metadata, NixlConnectorMetadata)
431
+ if self.connector_worker.use_host_buffer and self.connector_worker.copy_blocks:
432
+ self.connector_worker.save_kv_to_host(self._connector_metadata)
433
+
434
+ def shutdown(self):
435
+ if self.connector_worker is not None:
436
+ self.connector_worker.shutdown()
437
+ if self.connector_scheduler is not None:
438
+ self.connector_scheduler.shutdown()
439
+
440
+ def get_handshake_metadata(self) -> KVConnectorHandshakeMetadata | None:
441
+ """
442
+ Get the KVConnector handshake metadata for this connector.
443
+ This metadata is used for out-of-band connector handshake
444
+ between P/D workers.
445
+
446
+ Returns:
447
+ KVConnectorHandshakeMetadata: the handshake metadata.
448
+ None if no handshake metadata is available.
449
+ """
450
+ assert self.connector_worker is not None
451
+ return self.connector_worker.xfer_handshake_metadata
452
+
453
+
454
+ class NixlConnectorScheduler:
455
+ """Implementation of Scheduler side methods"""
456
+
457
+ def __init__(self, vllm_config: VllmConfig, engine_id: str):
458
+ self.vllm_config = vllm_config
459
+ self.block_size = vllm_config.cache_config.block_size
460
+ self.engine_id: EngineId = engine_id
461
+ self.side_channel_host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
462
+ self.side_channel_port = (
463
+ envs.VLLM_NIXL_SIDE_CHANNEL_PORT
464
+ + vllm_config.parallel_config.data_parallel_rank
465
+ )
466
+ assert vllm_config.kv_transfer_config is not None
467
+ if current_platform.device_type == "cpu":
468
+ self.use_host_buffer = False
469
+ else:
470
+ self.use_host_buffer = (
471
+ vllm_config.kv_transfer_config.kv_buffer_device == "cpu"
472
+ )
473
+
474
+ logger.info("Initializing NIXL Scheduler %s", engine_id)
475
+
476
+ # Background thread for handling new handshake requests.
477
+ self._nixl_handshake_listener_t: threading.Thread | None = None
478
+ self._encoded_xfer_handshake_metadata: dict[int, Any] = {}
479
+ self._stop_event = threading.Event()
480
+
481
+ # Requests that need to start recv/send.
482
+ # New requests are added by update_state_after_alloc in
483
+ # the scheduler. Used to make metadata passed to Worker.
484
+ self._reqs_need_recv: dict[ReqId, tuple[Request, list[int]]] = {}
485
+ self._reqs_need_save: dict[ReqId, tuple[Request, list[int]]] = {}
486
+ # Reqs to send and their expiration time
487
+ self._reqs_need_send: dict[ReqId, float] = {}
488
+ self._reqs_in_batch: set[ReqId] = set()
489
+ # Reqs to remove from processed set because they're not to send after
490
+ # remote prefill or aborted.
491
+ self._reqs_not_processed: set[ReqId] = set()
492
+
493
+ def shutdown(self):
494
+ self._stop_event.set()
495
+ if self._nixl_handshake_listener_t is not None:
496
+ self._nixl_handshake_listener_t.join()
497
+ self._nixl_handshake_listener_t = None
498
+
499
+ def set_xfer_handshake_metadata(
500
+ self, metadata: dict[int, KVConnectorHandshakeMetadata]
501
+ ) -> None:
502
+ """
503
+ Set the KV connector handshake metadata for this connector.
504
+
505
+ Args:
506
+ metadata (dict): the handshake metadata to set.
507
+ """
508
+ encoded_data: dict[int, bytes] = {}
509
+ encoder = msgspec.msgpack.Encoder()
510
+ for tp_rank, rank_metadata in metadata.items():
511
+ if not isinstance(rank_metadata, NixlHandshakePayload):
512
+ raise ValueError(
513
+ "NixlConnectorScheduler expects NixlHandshakePayload for "
514
+ "handshake metadata."
515
+ )
516
+ encoded_data[tp_rank] = encoder.encode(rank_metadata)
517
+ logger.debug(
518
+ "Tp rank %d: encoded NixlHandshakePayload size: %s bytes",
519
+ tp_rank,
520
+ str(len(encoded_data[tp_rank])),
521
+ )
522
+ self._encoded_xfer_handshake_metadata = encoded_data
523
+
524
+ # Only start the listener when we have metadata to serve.
525
+ if self._nixl_handshake_listener_t is None:
526
+ ready_event = threading.Event()
527
+ self._nixl_handshake_listener_t = threading.Thread(
528
+ target=self._nixl_handshake_listener,
529
+ args=(
530
+ encoded_data,
531
+ ready_event,
532
+ self._stop_event,
533
+ self.side_channel_port,
534
+ ),
535
+ daemon=True,
536
+ name="nixl_handshake_listener",
537
+ )
538
+ self._nixl_handshake_listener_t.start()
539
+ ready_event.wait() # Wait for listener ZMQ socket to be ready.
540
+
541
+ @staticmethod
542
+ def _nixl_handshake_listener(
543
+ encoded_data: dict[int, Any],
544
+ ready_event: threading.Event,
545
+ stop_event: threading.Event,
546
+ port: int,
547
+ ):
548
+ """Background thread for getting new NIXL handshakes."""
549
+ # NOTE(rob): this is a simple implementation. We will move
550
+ # to a better approach via HTTP endpoint soon.
551
+
552
+ # Listen for new requests for metadata.
553
+ host = envs.VLLM_NIXL_SIDE_CHANNEL_HOST
554
+ path = make_zmq_path("tcp", host, port)
555
+ logger.debug("Starting listening on path: %s", path)
556
+ with zmq_ctx(zmq.ROUTER, path) as sock:
557
+ sock.setsockopt(zmq.RCVTIMEO, 1000)
558
+ ready_event.set()
559
+ while True:
560
+ try:
561
+ identity, _, msg = sock.recv_multipart()
562
+ except zmq.Again:
563
+ if stop_event.is_set():
564
+ break
565
+ continue
566
+ # Decode the message which contains (GET_META_MSG, rank)
567
+ msg, target_tp_rank = msgspec.msgpack.decode(msg)
568
+ logger.debug(
569
+ "Received message for tp rank %s",
570
+ target_tp_rank,
571
+ )
572
+ if msg != GET_META_MSG:
573
+ logger.warning("Connection listener got unexpected message %s", msg)
574
+ sock.send_multipart((identity, b"", encoded_data[target_tp_rank]))
575
+
576
+ def get_num_new_matched_tokens(
577
+ self, request: "Request", num_computed_tokens: int
578
+ ) -> tuple[int, bool]:
579
+ """
580
+ For remote prefill, pull all prompt blocks from remote
581
+ asynchronously relative to engine execution.
582
+
583
+ Args:
584
+ request (Request): the request object.
585
+ num_computed_tokens (int): the number of locally
586
+ computed tokens for this request
587
+ Returns:
588
+ * the number of tokens that can be loaded from the
589
+ external KV cache beyond what is already computed.
590
+ * true if the external KV cache tokens will be loaded
591
+ asynchronously (between scheduler steps).
592
+ """
593
+
594
+ params = request.kv_transfer_params
595
+ logger.debug(
596
+ "NIXLConnector get_num_new_matched_tokens: "
597
+ "num_computed_tokens=%s, kv_transfer_params=%s",
598
+ num_computed_tokens,
599
+ params,
600
+ )
601
+
602
+ if params is not None and params.get("do_remote_prefill"):
603
+ # Remote prefill: get all prompt blocks from remote.
604
+ token_ids = request.prompt_token_ids or []
605
+ count = len(token_ids) - num_computed_tokens
606
+ if count > 0:
607
+ return count, True
608
+
609
+ # No remote prefill for this request.
610
+ return 0, False
611
+
612
+ def update_state_after_alloc(
613
+ self, request: "Request", blocks: "KVCacheBlocks", num_external_tokens: int
614
+ ):
615
+ params = request.kv_transfer_params
616
+ logger.debug(
617
+ "NIXLConnector update_state_after_alloc: "
618
+ "num_external_tokens=%s, kv_transfer_params=%s",
619
+ num_external_tokens,
620
+ params,
621
+ )
622
+
623
+ if not params:
624
+ return
625
+
626
+ if params.get("do_remote_decode"):
627
+ self._reqs_in_batch.add(request.request_id)
628
+ if self.use_host_buffer and params.get("do_remote_decode"):
629
+ # NOTE: when accelerator is not directly supported by Nixl,
630
+ # prefilled blocks need to be saved to host memory before transfer.
631
+
632
+ # save all blocks
633
+ block_ids = blocks.get_block_ids()[0]
634
+ # TODO: skip the blocks that are already in the host xfer buffer.
635
+ # Currently, the host xfer buffer block is 1-to-1 mapped to device
636
+ # kv blocks, so host blocks won't be flushed as long as its device
637
+ # block is not overwritten; and it will be safe to skip saving them
638
+ # to host xfer buffer.
639
+ if block_ids:
640
+ self._reqs_need_save[request.request_id] = (request, block_ids)
641
+ elif params.get("do_remote_prefill"):
642
+ if params.get("remote_block_ids"):
643
+ if all(
644
+ p in params
645
+ for p in (
646
+ "remote_engine_id",
647
+ "remote_request_id",
648
+ "remote_host",
649
+ "remote_port",
650
+ )
651
+ ):
652
+ # If remote_blocks and num_external_tokens = 0, we have
653
+ # a full prefix cache hit on the D worker. We need to call
654
+ # send_notif in _read_blocks to free the memory on the P.
655
+ local_block_ids = (
656
+ blocks.get_unhashed_block_ids()
657
+ if num_external_tokens > 0
658
+ else []
659
+ )
660
+ # Get unhashed blocks to pull from remote.
661
+ self._reqs_need_recv[request.request_id] = (
662
+ request,
663
+ local_block_ids,
664
+ )
665
+
666
+ else:
667
+ logger.warning(
668
+ "Got invalid KVTransferParams: %s. This "
669
+ "request will not utilize KVTransfer",
670
+ params,
671
+ )
672
+ else:
673
+ assert num_external_tokens == 0
674
+ # Only trigger 1 KV transfer per request.
675
+ params["do_remote_prefill"] = False
676
+
677
+ def build_connector_meta(
678
+ self,
679
+ scheduler_output: SchedulerOutput,
680
+ ) -> KVConnectorMetadata:
681
+ meta = NixlConnectorMetadata()
682
+
683
+ # Loop through scheduled reqs and convert to ReqMeta.
684
+ for req_id, (req, block_ids) in self._reqs_need_recv.items():
685
+ assert req.kv_transfer_params is not None
686
+ meta.add_new_req_to_recv(
687
+ request_id=req_id,
688
+ local_block_ids=block_ids,
689
+ kv_transfer_params=req.kv_transfer_params,
690
+ )
691
+
692
+ for req_id, (req, block_ids) in self._reqs_need_save.items():
693
+ assert req.kv_transfer_params is not None
694
+ meta.add_new_req_to_save(
695
+ request_id=req_id,
696
+ local_block_ids=block_ids,
697
+ kv_transfer_params=req.kv_transfer_params,
698
+ )
699
+
700
+ meta.reqs_to_send = self._reqs_need_send
701
+ meta.reqs_in_batch = self._reqs_in_batch
702
+ meta.reqs_not_processed = self._reqs_not_processed
703
+
704
+ # Clear the list once workers start the transfers
705
+ self._reqs_need_recv.clear()
706
+ self._reqs_need_save.clear()
707
+ self._reqs_in_batch = set()
708
+ self._reqs_not_processed = set()
709
+ self._reqs_need_send = {}
710
+
711
+ return meta
712
+
713
+ def request_finished(
714
+ self,
715
+ request: "Request",
716
+ block_ids: list[int],
717
+ ) -> tuple[bool, dict[str, Any] | None]:
718
+ """
719
+ Once a request is finished, determine whether request blocks
720
+ should be freed now or will be sent asynchronously and freed later.
721
+ """
722
+ from vllm.v1.request import RequestStatus
723
+
724
+ params = request.kv_transfer_params
725
+ logger.debug(
726
+ "NIXLConnector request_finished(%s), request_status=%s, "
727
+ "kv_transfer_params=%s",
728
+ request.request_id,
729
+ request.status,
730
+ params,
731
+ )
732
+ if not params:
733
+ return False, None
734
+
735
+ if params.get("do_remote_prefill"):
736
+ # If do_remote_prefill is still True when the request is finished,
737
+ # update_state_after_alloc must not have been called (the request
738
+ # must have been aborted before it was scheduled).
739
+ # To avoid stranding the prefill blocks in the prefill instance,
740
+ # we must add empty block_ids to _reqs_need_recv so that our
741
+ # worker side will notify and free blocks in the prefill instance.
742
+ self._reqs_need_recv[request.request_id] = (request, [])
743
+ params["do_remote_prefill"] = False
744
+ return False, None
745
+
746
+ if not params.get("do_remote_decode"):
747
+ return False, None
748
+ if request.status != RequestStatus.FINISHED_LENGTH_CAPPED:
749
+ # Also include the case of a P/D Prefill request with immediate
750
+ # block free (eg abort). Stop tracking this request.
751
+ self._reqs_not_processed.add(request.request_id)
752
+ return False, None
753
+
754
+ # TODO: check whether block_ids actually ever be 0. If not we could
755
+ # remove the conditional below
756
+ delay_free_blocks = len(block_ids) > 0
757
+
758
+ if delay_free_blocks:
759
+ # Prefill request on remote. It will be read from D upon completion
760
+ logger.debug(
761
+ "NIXLConnector request_finished(%s) waiting for %d seconds "
762
+ "for remote decode to fetch blocks",
763
+ request.request_id,
764
+ envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
765
+ )
766
+ self._reqs_need_send[request.request_id] = (
767
+ time.perf_counter() + envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT
768
+ )
769
+
770
+ return delay_free_blocks, dict(
771
+ do_remote_prefill=True,
772
+ do_remote_decode=False,
773
+ remote_block_ids=block_ids,
774
+ remote_engine_id=self.engine_id,
775
+ remote_request_id=request.request_id,
776
+ remote_host=self.side_channel_host,
777
+ remote_port=self.side_channel_port,
778
+ tp_size=self.vllm_config.parallel_config.tensor_parallel_size,
779
+ )
780
+
781
+
782
+ class NixlConnectorWorker:
783
+ """Implementation of Worker side methods"""
784
+
785
+ def __init__(self, vllm_config: VllmConfig, engine_id: str):
786
+ if NixlWrapper is None:
787
+ logger.error("NIXL is not available")
788
+ raise RuntimeError("NIXL is not available")
789
+ logger.info("Initializing NIXL wrapper")
790
+ logger.info("Initializing NIXL worker %s", engine_id)
791
+
792
+ # Config.
793
+ self.vllm_config = vllm_config
794
+ self.block_size = vllm_config.cache_config.block_size
795
+
796
+ if vllm_config.kv_transfer_config is None:
797
+ raise ValueError("kv_transfer_config must be set for NixlConnector")
798
+ self.kv_transfer_config = vllm_config.kv_transfer_config
799
+
800
+ self.nixl_backends = vllm_config.kv_transfer_config.get_from_extra_config(
801
+ "backends", ["UCX"]
802
+ )
803
+
804
+ # Agent.
805
+ non_ucx_backends = [b for b in self.nixl_backends if b != "UCX"]
806
+ # Configure NIXL num_threads to avoid UAR exhaustion on Mellanox NICs.
807
+ # Each UCX thread allocates UARs (doorbell pages) via DevX, and
808
+ # excessive NIXL UAR usage can exhaust NIC UAR space. This can cause
809
+ # components like NVSHMEM (used by DeepEP kernels) to fail during RDMA
810
+ # initialization with "mlx5dv_devx_alloc_uar" errors.
811
+ # Ref: https://network.nvidia.com/files/doc-2020/ethernet-adapters-programming-manual.pdf#page=63
812
+ num_threads = vllm_config.kv_transfer_config.get_from_extra_config(
813
+ "num_threads", 4
814
+ )
815
+ if nixl_agent_config is None:
816
+ config = None
817
+ else:
818
+ # Enable telemetry by default for NIXL 0.7.1 and above.
819
+ config = (
820
+ nixl_agent_config(backends=self.nixl_backends, capture_telemetry=True)
821
+ if len(non_ucx_backends) > 0
822
+ else nixl_agent_config(num_threads=num_threads, capture_telemetry=True)
823
+ )
824
+
825
+ self.nixl_wrapper = NixlWrapper(str(uuid.uuid4()), config)
826
+ # Map of engine_id -> {rank0: agent_name0, rank1: agent_name1..}.
827
+ self._remote_agents: dict[EngineId, dict[int, str]] = defaultdict(dict)
828
+
829
+ # Metadata.
830
+ self.engine_id: EngineId = engine_id
831
+ self.tp_rank = get_tensor_model_parallel_rank()
832
+ self.world_size = get_tensor_model_parallel_world_size()
833
+ self.tp_group = get_tp_group()
834
+ self.num_blocks = 0
835
+ self.enable_permute_local_kv = False
836
+
837
+ # KV Caches and nixl tracking data.
838
+ self.device_type = current_platform.device_type
839
+ self.kv_buffer_device: str = vllm_config.kv_transfer_config.kv_buffer_device
840
+ if self.device_type not in _NIXL_SUPPORTED_DEVICE:
841
+ raise RuntimeError(f"{self.device_type} is not supported.")
842
+ elif self.kv_buffer_device not in _NIXL_SUPPORTED_DEVICE[self.device_type]:
843
+ raise RuntimeError(
844
+ f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
845
+ "is not supported."
846
+ )
847
+ self.device_kv_caches: dict[str, torch.Tensor] = {}
848
+
849
+ # cpu kv buffer for xfer
850
+ # used when device memory can not be registered under nixl
851
+ self.host_xfer_buffers: dict[str, torch.Tensor] = {}
852
+ if self.device_type == "cpu":
853
+ self.use_host_buffer = False
854
+ else:
855
+ self.use_host_buffer = self.kv_buffer_device == "cpu"
856
+
857
+ # support for oot platform which can't register nixl memory
858
+ # type based on kv_buffer_device
859
+ nixl_memory_type = current_platform.get_nixl_memory_type()
860
+ if nixl_memory_type is None:
861
+ if self.kv_buffer_device == "cuda":
862
+ nixl_memory_type = "VRAM"
863
+ elif self.kv_buffer_device == "cpu":
864
+ nixl_memory_type = "DRAM"
865
+ if nixl_memory_type is None:
866
+ raise RuntimeError(
867
+ f"{self.device_type} with {self.kv_buffer_device} kv_buffer "
868
+ "is not supported."
869
+ )
870
+ self.nixl_memory_type = nixl_memory_type
871
+
872
+ # Note: host xfer buffer ops when use_host_buffer is True
873
+ self.copy_blocks: CopyBlocksOp | None = None
874
+
875
+ # Map of engine_id -> kv_caches_base_addr. For TP case, each local
876
+ # rank will still only pull from a single remote TP worker.
877
+ self.kv_caches_base_addr: dict[EngineId, list[int]] = {}
878
+ self.device_id: int = 0
879
+
880
+ # Number of NIXL regions. Currently one region per cache
881
+ # (so 1 per layer for MLA, otherwise 2 per layer)
882
+ self.num_regions = 0
883
+ self.num_layers = 0
884
+
885
+ # nixl_prepped_dlist_handle.
886
+ self.src_xfer_side_handle: int = 0
887
+ self.src_xfer_side_handles: dict[int, int] = {}
888
+ # Map of engine_id -> nixl_prepped_dlist_handle (int)].
889
+ self.dst_xfer_side_handles: dict[EngineId, int] = {}
890
+
891
+ # Map of engine_id -> num_blocks. All ranks in the same deployment will
892
+ # have the same number of blocks.
893
+ self.dst_num_blocks: dict[EngineId, int] = {}
894
+ self._registered_descs: list[Any] = []
895
+
896
+ # In progress transfers.
897
+ # [req_id -> list[handle]]
898
+ self._recving_metadata: dict[ReqId, ReqMeta] = {}
899
+ self._recving_transfers = defaultdict[ReqId, list[TransferHandle]](list)
900
+ # Track the expiration time of requests that are waiting to be sent.
901
+ self._reqs_to_send: dict[ReqId, float] = {}
902
+ # Set of requests that have been part of a batch, regardless of status.
903
+ self._reqs_to_process: set[ReqId] = set()
904
+
905
+ # invalid blocks from failed NIXL operations
906
+ self._invalid_block_ids: set[int] = set()
907
+ # requests that skipped transfer (handshake or transfer failures)
908
+ self._failed_recv_reqs: set[ReqId] = set()
909
+
910
+ # Handshake metadata of this worker for NIXL transfers.
911
+ self.xfer_handshake_metadata: NixlHandshakePayload | None = None
912
+ # Background thread for initializing new NIXL handshakes.
913
+ self._handshake_initiation_executor = ThreadPoolExecutor(
914
+ # NIXL is not guaranteed to be thread-safe, limit 1 worker.
915
+ max_workers=1,
916
+ thread_name_prefix="vllm-nixl-handshake-initiator",
917
+ )
918
+ self._ready_requests = queue.Queue[tuple[ReqId, ReqMeta]]()
919
+ self._handshake_futures: dict[EngineId, Future[dict[int, str]]] = {}
920
+ # Protects _handshake_futures and _remote_agents.
921
+ self._handshake_lock = threading.RLock()
922
+
923
+ self.block_size = vllm_config.cache_config.block_size
924
+ self.model_config = vllm_config.model_config
925
+ self.cache_config = vllm_config.cache_config
926
+
927
+ # TODO(mgoin): remove this once we have hybrid memory allocator
928
+ # Optimization for models with local attention (Llama 4)
929
+ # List of block window sizes for each layer for local attention
930
+ self.block_window_per_layer: list[int | None] = []
931
+ self.use_mla = self.model_config.use_mla
932
+
933
+ backend = get_attn_backend(
934
+ self.model_config.get_head_size(),
935
+ self.model_config.dtype,
936
+ self.cache_config.cache_dtype,
937
+ self.block_size,
938
+ use_mla=self.use_mla,
939
+ )
940
+ self.backend_name = backend.get_name()
941
+ self.kv_cache_layout = get_kv_cache_layout()
942
+ self.host_buffer_kv_cache_layout = self.kv_cache_layout
943
+ logger.debug("Detected attention backend %s", self.backend_name)
944
+ logger.debug("Detected kv cache layout %s", self.kv_cache_layout)
945
+
946
+ self.compat_hash = compute_nixl_compatibility_hash(
947
+ self.vllm_config, self.backend_name
948
+ )
949
+ self.enforce_compat_hash = self.kv_transfer_config.get_from_extra_config(
950
+ "enforce_handshake_compat", True
951
+ )
952
+
953
+ self._tp_size: dict[EngineId, int] = {self.engine_id: self.world_size}
954
+ self._block_size: dict[EngineId, int] = {self.engine_id: self.block_size}
955
+ # With heterogeneous TP, P must wait for all assigned D TP workers to
956
+ # finish reading before safely freeing the blocks.
957
+ self.consumer_notification_counts_by_req = defaultdict[ReqId, int](int)
958
+ self.xfer_stats = NixlKVConnectorStats()
959
+
960
+ self.kv_topo = TpKVTopology(
961
+ tp_rank=self.tp_rank,
962
+ engine_id=self.engine_id,
963
+ remote_tp_size=self._tp_size, # shared state
964
+ remote_block_size=self._block_size, # shared state
965
+ is_mla=self.use_mla,
966
+ total_num_kv_heads=self.model_config.get_total_num_kv_heads(),
967
+ attn_backend=backend,
968
+ )
969
+ self._use_pallas = self.kv_topo._use_pallas
970
+ self._physical_blocks_per_logical_kv_block = 1
971
+
972
+ def _nixl_handshake(
973
+ self,
974
+ host: str,
975
+ port: int,
976
+ remote_tp_size: int,
977
+ expected_engine_id: str,
978
+ ) -> dict[int, str]:
979
+ """Do a NIXL handshake with a remote instance."""
980
+
981
+ start_time = time.perf_counter()
982
+
983
+ # NOTE(rob): we need each rank to have a unique port. This is
984
+ # a hack to keep us moving. We will switch when moving to etcd
985
+ # or where we have a single ZMQ socket in the scheduler.
986
+
987
+ # Handshake only with the remote TP rank that current local rank will
988
+ # pull from. With homogeneous TP it happens to be the same rank_i.
989
+ p_remote_rank = self.kv_topo.get_target_remote_rank(remote_tp_size)
990
+ path = make_zmq_path("tcp", host, port)
991
+ logger.debug(
992
+ "Querying metadata on path: %s at remote tp rank %s", path, p_remote_rank
993
+ )
994
+
995
+ # Send query for the request.
996
+ with zmq_ctx(zmq.REQ, path) as sock:
997
+ msg = msgspec.msgpack.encode((GET_META_MSG, p_remote_rank))
998
+ # Set receive timeout to 5 seconds to avoid hanging on dead server
999
+ sock.setsockopt(zmq.RCVTIMEO, 5000) # milliseconds
1000
+ sock.send(msg)
1001
+ handshake_bytes = sock.recv()
1002
+
1003
+ # Decode handshake payload to get compatibility hash
1004
+ handshake_decoder = msgspec.msgpack.Decoder(NixlHandshakePayload)
1005
+ try:
1006
+ handshake_payload = handshake_decoder.decode(handshake_bytes)
1007
+ except (msgspec.DecodeError, msgspec.ValidationError) as e:
1008
+ raise RuntimeError(
1009
+ f"Failed to decode NixlHandshakePayload. This likely indicates "
1010
+ f"an incompatibility between connector version. Error: {e}"
1011
+ ) from e
1012
+
1013
+ got_metadata_time = time.perf_counter()
1014
+ logger.debug(
1015
+ "NIXL handshake: get metadata took: %s", got_metadata_time - start_time
1016
+ )
1017
+
1018
+ # Check compatibility hash BEFORE decoding agent metadata
1019
+ if (
1020
+ self.enforce_compat_hash
1021
+ and handshake_payload.compatibility_hash != self.compat_hash
1022
+ ):
1023
+ raise RuntimeError(
1024
+ f"NIXL compatibility hash mismatch. "
1025
+ f"Local: {self.compat_hash}, "
1026
+ f"Remote: {handshake_payload.compatibility_hash}. "
1027
+ f"Prefill and decode instances have incompatible configurations. "
1028
+ f"This may be due to: different vLLM versions, models, dtypes, "
1029
+ f"KV cache layouts, attention backends, etc. "
1030
+ f"Both instances must use identical configurations."
1031
+ f"Disable this check using "
1032
+ f'--kv-transfer-config \'{{"kv_connector_extra_config": '
1033
+ f'{{"enforce_handshake_compat": false}}}}\''
1034
+ )
1035
+
1036
+ logger.info(
1037
+ "NIXL compatibility check passed (hash: %s)",
1038
+ handshake_payload.compatibility_hash,
1039
+ )
1040
+
1041
+ # Decode agent metadata
1042
+ metadata_decoder = msgspec.msgpack.Decoder(NixlAgentMetadata)
1043
+ try:
1044
+ metadata = metadata_decoder.decode(
1045
+ handshake_payload.agent_metadata_bytes
1046
+ )
1047
+ except (msgspec.DecodeError, msgspec.ValidationError) as e:
1048
+ # This should not happen if hash matched
1049
+ raise RuntimeError(
1050
+ f"Failed to decode NixlAgentMetadata. Error: {e}"
1051
+ ) from e
1052
+
1053
+ # Ensure engine id matches.
1054
+ if metadata.engine_id != expected_engine_id:
1055
+ raise RuntimeError(
1056
+ f"Remote NIXL agent engine ID mismatch. "
1057
+ f"Expected {expected_engine_id},"
1058
+ f"received {metadata.engine_id}."
1059
+ )
1060
+
1061
+ # Register Remote agent.
1062
+ assert metadata.block_size <= self.block_size, (
1063
+ "nP > nD is not supported yet."
1064
+ )
1065
+ remote_agent_name = self.add_remote_agent(
1066
+ metadata, p_remote_rank, remote_tp_size
1067
+ )
1068
+
1069
+ setup_agent_time = time.perf_counter()
1070
+ logger.debug(
1071
+ "NIXL handshake: add agent took: %s",
1072
+ setup_agent_time - got_metadata_time,
1073
+ )
1074
+
1075
+ # Remote rank -> agent name.
1076
+ return {p_remote_rank: remote_agent_name}
1077
+
1078
+ def initialize_host_xfer_buffer(self, kv_caches: dict[str, torch.Tensor]) -> None:
1079
+ """
1080
+ Initialize transfer buffer in CPU mem for accelerators
1081
+ NOT directly supported by NIXL (e.g., tpu)
1082
+ """
1083
+ xfer_buffers: dict[str, torch.Tensor] = {}
1084
+ inv_order = [0, 1, 3, 2, 4]
1085
+ try:
1086
+ for layer_name, kv_cache in kv_caches.items():
1087
+ kv_shape = kv_cache.shape
1088
+ kv_dtype = kv_cache.dtype
1089
+ permute_shape = False
1090
+ if (
1091
+ self.kv_cache_layout == "NHD"
1092
+ and self.vllm_config.kv_transfer_config is not None
1093
+ and self.vllm_config.kv_transfer_config.enable_permute_local_kv
1094
+ ):
1095
+ logger.info_once(
1096
+ "'enable_permute_local_kv' flag is enabled while "
1097
+ "device KV Layout is NHD. Init host buffer with"
1098
+ " HND to better support Decode/Prefill TP_ratio > 1."
1099
+ )
1100
+ # Since NHD will not support Decode/Prefill TP_ratio > 1,
1101
+ # we can leverage host_buffer for permute
1102
+ self.host_buffer_kv_cache_layout = "HND"
1103
+ kv_shape = (
1104
+ tuple(kv_shape[i] for i in inv_order)
1105
+ if not self.use_mla
1106
+ else kv_shape
1107
+ )
1108
+ permute_shape = not self.use_mla
1109
+
1110
+ xfer_buffers[layer_name] = torch.empty(
1111
+ kv_shape, dtype=kv_dtype, device="cpu"
1112
+ )
1113
+ if permute_shape:
1114
+ xfer_buffers[layer_name] = xfer_buffers[layer_name].permute(
1115
+ inv_order
1116
+ )
1117
+ except MemoryError as e:
1118
+ logger.error("NIXLConnectorWorker gets %s.", e)
1119
+ raise
1120
+
1121
+ self.host_xfer_buffers = xfer_buffers
1122
+
1123
+ def set_host_xfer_buffer_ops(self, copy_operation: CopyBlocksOp):
1124
+ """Assign copy (d2h, h2d) operations when host buffer is used."""
1125
+ # Set a no-op if the host buffer is not cpu.
1126
+ if self.kv_buffer_device != "cpu":
1127
+ return
1128
+ # Set a no-op if self.device_type is 'cpu'.
1129
+ if self.device_type == "cpu":
1130
+ return
1131
+ assert self.use_host_buffer
1132
+ self.copy_blocks = copy_operation
1133
+
1134
+ def _background_nixl_handshake(
1135
+ self, req_id: str, remote_engine_id: EngineId, meta: ReqMeta
1136
+ ):
1137
+ # Do NIXL handshake in background and add to _ready_requests when done.
1138
+ fut = self._handshake_futures.get(remote_engine_id)
1139
+ if fut is None:
1140
+ assert meta.remote is not None
1141
+ fut = self._handshake_initiation_executor.submit(
1142
+ self._nixl_handshake,
1143
+ meta.remote.host,
1144
+ meta.remote.port,
1145
+ meta.tp_size,
1146
+ remote_engine_id,
1147
+ )
1148
+ self._handshake_futures[remote_engine_id] = fut
1149
+
1150
+ def done_callback(f: Future[dict[int, str]], eid=remote_engine_id):
1151
+ with self._handshake_lock:
1152
+ del self._handshake_futures[eid]
1153
+ try:
1154
+ self._remote_agents[eid] = f.result()
1155
+ except Exception:
1156
+ logger.exception("Handshake with %s failed", eid)
1157
+
1158
+ fut.add_done_callback(done_callback)
1159
+
1160
+ # check handshake success before proceeding with request
1161
+ def request_ready(f: Future[Any], entry=(req_id, meta)):
1162
+ try:
1163
+ # check if handshake succeeded
1164
+ f.result()
1165
+ self._ready_requests.put(entry)
1166
+ except Exception:
1167
+ # handshake failed - mark blocks as invalid
1168
+ logger.exception(
1169
+ "Handshake failed for request %s, marking blocks as invalid", req_id
1170
+ )
1171
+ if req_meta := self._recving_metadata.get(req_id):
1172
+ self._invalid_block_ids.update(req_meta.local_block_ids)
1173
+ self._failed_recv_reqs.add(req_id)
1174
+
1175
+ fut.add_done_callback(request_ready)
1176
+
1177
+ def register_kv_caches(self, kv_caches: dict[str, torch.Tensor]):
1178
+ """Register the KV Cache data in nixl."""
1179
+
1180
+ if self.use_host_buffer:
1181
+ self.initialize_host_xfer_buffer(kv_caches=kv_caches)
1182
+ assert len(self.host_xfer_buffers) == len(kv_caches), (
1183
+ f"host_buffer: {len(self.host_xfer_buffers)}, "
1184
+ f"kv_caches: {len(kv_caches)}"
1185
+ )
1186
+ xfer_buffers = self.host_xfer_buffers
1187
+ else:
1188
+ xfer_buffers = kv_caches
1189
+ assert not self.host_xfer_buffers, (
1190
+ "host_xfer_buffer should not be initialized when "
1191
+ f"kv_buffer_device is {self.kv_buffer_device}"
1192
+ )
1193
+
1194
+ logger.info(
1195
+ "Registering KV_Caches. use_mla: %s, kv_buffer_device: %s, "
1196
+ "use_host_buffer: %s",
1197
+ self.use_mla,
1198
+ self.kv_buffer_device,
1199
+ self.use_host_buffer,
1200
+ )
1201
+
1202
+ caches_data = []
1203
+ # With hybrid allocator, layers can share a kv cache tensor
1204
+ seen_base_addresses = []
1205
+
1206
+ # Note(tms): I modified this from the original region setup code.
1207
+ # K and V are now in different regions. Advantage is that we can
1208
+ # elegantly support MLA and any cases where the K and V tensors
1209
+ # are non-contiguous (it's not locally guaranteed that they will be)
1210
+ # Disadvantage is that the encoded NixlAgentMetadata is now larger
1211
+ # (roughly 8KB vs 5KB).
1212
+ # Conversely for FlashInfer, K and V are registered in the same region
1213
+ # to better exploit the memory layout (ie num_blocks is the first dim).
1214
+ split_k_and_v = self.kv_topo.split_k_and_v
1215
+ tensor_size_bytes = None
1216
+
1217
+ # TODO (NickLucche): Get kernel_block_size in a cleaner way
1218
+ # NHD default "view" for non-MLA cache
1219
+ if self.device_type == "cpu":
1220
+ block_size_position = -2
1221
+ else:
1222
+ block_size_position = -2 if self.use_mla else -3
1223
+
1224
+ # Enable different block lengths for different layers when MLA is used.
1225
+ self.block_len_per_layer = list[int]()
1226
+ self.slot_size_per_layer = list[int]() # HD bytes in kv terms
1227
+ for layer_name, cache_or_caches in xfer_buffers.items():
1228
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1229
+
1230
+ for cache in cache_list:
1231
+ base_addr = cache.data_ptr()
1232
+ if base_addr in seen_base_addresses:
1233
+ continue
1234
+
1235
+ kernel_block_size = cache.shape[block_size_position]
1236
+
1237
+ if self.block_size != kernel_block_size:
1238
+ logger.info_once(
1239
+ "User-specified logical block size (%s) does not match"
1240
+ " physical kernel block size (%s). Using the latter. ",
1241
+ self.block_size,
1242
+ kernel_block_size,
1243
+ )
1244
+ self._physical_blocks_per_logical_kv_block = (
1245
+ self.block_size // kernel_block_size
1246
+ )
1247
+ self.block_size = kernel_block_size
1248
+ self._block_size[self.engine_id] = kernel_block_size
1249
+
1250
+ seen_base_addresses.append(base_addr)
1251
+ curr_tensor_size_bytes = cache.numel() * cache.element_size()
1252
+
1253
+ if tensor_size_bytes is None:
1254
+ tensor_size_bytes = curr_tensor_size_bytes
1255
+ self.num_blocks = cache.shape[0]
1256
+
1257
+ assert cache.shape[0] == self.num_blocks, (
1258
+ "All kv cache tensors must have the same number of blocks"
1259
+ )
1260
+
1261
+ self.block_len_per_layer.append(
1262
+ curr_tensor_size_bytes // self.num_blocks
1263
+ )
1264
+ self.slot_size_per_layer.append(
1265
+ self.block_len_per_layer[-1] // self.block_size
1266
+ )
1267
+
1268
+ if not self.use_mla:
1269
+ # Different kv cache shape is not supported by HeteroTP
1270
+ assert tensor_size_bytes == curr_tensor_size_bytes, (
1271
+ "All kv cache tensors must have the same size"
1272
+ )
1273
+ # Need to make sure the device ID is non-negative for NIXL,
1274
+ # Torch uses -1 to indicate CPU tensors.
1275
+ self.device_id = max(cache.get_device(), 0)
1276
+ caches_data.append(
1277
+ (base_addr, curr_tensor_size_bytes, self.device_id, "")
1278
+ )
1279
+
1280
+ logger.debug(
1281
+ "Different block lengths collected: %s", set(self.block_len_per_layer)
1282
+ )
1283
+ assert len(self.block_len_per_layer) == len(seen_base_addresses)
1284
+ assert self.num_blocks != 0
1285
+
1286
+ self.kv_caches_base_addr[self.engine_id] = seen_base_addresses
1287
+ self.num_regions = len(caches_data)
1288
+ self.num_layers = len(xfer_buffers.keys())
1289
+
1290
+ descs = self.nixl_wrapper.get_reg_descs(caches_data, self.nixl_memory_type)
1291
+ logger.debug("Registering descs: %s", caches_data)
1292
+ self.nixl_wrapper.register_memory(descs, backends=self.nixl_backends)
1293
+ logger.debug("Done registering descs")
1294
+ self._registered_descs.append(descs)
1295
+
1296
+ self.device_kv_caches = kv_caches
1297
+ self.dst_num_blocks[self.engine_id] = self.num_blocks
1298
+ if self.kv_topo.is_kv_layout_blocks_first:
1299
+ for i in range(len(self.slot_size_per_layer)):
1300
+ assert self.slot_size_per_layer[i] % 2 == 0
1301
+ self.slot_size_per_layer[i] //= 2
1302
+
1303
+ # NOTE (NickLucche) When FlashInfer is used, memory is registered
1304
+ # with joint KV for each block. This minimizes the overhead in
1305
+ # registerMem allowing faster descs queries. In order to be able to
1306
+ # split on kv_heads dim as required by heterogeneous TP, one must
1307
+ # be able to index K/V separately. Hence we double the number
1308
+ # of 'virtual' regions here and halve `block_len` below.
1309
+ self.num_regions *= 2
1310
+
1311
+ # Register local/src descr for NIXL xfer.
1312
+ self.seen_base_addresses = seen_base_addresses
1313
+ self.src_xfer_side_handle = self.register_local_xfer_handler(self.block_size)
1314
+
1315
+ self.src_xfer_side_handles[self.block_size] = self.src_xfer_side_handle
1316
+
1317
+ # TODO(mgoin): Hybrid memory allocator is currently disabled for
1318
+ # models with local attention (Llama 4). Can remove this once enabled.
1319
+ if self.model_config.hf_config.model_type == "llama4":
1320
+ from transformers import Llama4TextConfig
1321
+
1322
+ assert isinstance(self.model_config.hf_text_config, Llama4TextConfig)
1323
+ llama4_config = self.model_config.hf_text_config
1324
+ no_rope_layers = llama4_config.no_rope_layers
1325
+ chunk_size = llama4_config.attention_chunk_size
1326
+ chunk_block_size = math.ceil(chunk_size / self.block_size)
1327
+ for layer_idx in range(self.num_layers):
1328
+ # no_rope_layers[layer_idx] == 0 means NoPE (global)
1329
+ # Any other value means RoPE (local chunked)
1330
+ is_local_attention = no_rope_layers[layer_idx] != 0
1331
+ block_window = chunk_block_size if is_local_attention else None
1332
+ self.block_window_per_layer.append(block_window)
1333
+ logger.debug(
1334
+ "Llama 4 block window per layer mapping: %s",
1335
+ self.block_window_per_layer,
1336
+ )
1337
+ assert len(self.block_window_per_layer) == self.num_layers
1338
+
1339
+ # After KV Caches registered, listen for new connections.
1340
+ agent_metadata = NixlAgentMetadata(
1341
+ engine_id=self.engine_id,
1342
+ agent_metadata=self.nixl_wrapper.get_agent_metadata(),
1343
+ kv_caches_base_addr=self.kv_caches_base_addr[self.engine_id],
1344
+ device_id=self.device_id,
1345
+ num_blocks=self.num_blocks,
1346
+ block_lens=self.block_len_per_layer,
1347
+ kv_cache_layout=self.kv_cache_layout
1348
+ if not self.use_host_buffer
1349
+ else self.host_buffer_kv_cache_layout,
1350
+ block_size=self.block_size,
1351
+ )
1352
+ # Wrap metadata in payload with hash for defensive decoding
1353
+ encoder = msgspec.msgpack.Encoder()
1354
+ self.xfer_handshake_metadata = NixlHandshakePayload(
1355
+ compatibility_hash=self.compat_hash,
1356
+ agent_metadata_bytes=encoder.encode(agent_metadata),
1357
+ )
1358
+
1359
+ def register_local_xfer_handler(
1360
+ self,
1361
+ block_size: int,
1362
+ ) -> int:
1363
+ """
1364
+ Function used for register local xfer handler with local block_size or
1365
+ Remote block_size.
1366
+
1367
+ When local block_size is same as remote block_size, we use local block_size
1368
+ to register local_xfer_handler during init.
1369
+
1370
+ When remote block size is less than local block size, we need to use
1371
+ register another local_xfer_handler using remote block len to ensure
1372
+ data copy correctness.
1373
+ """
1374
+ block_size_ratio = self.block_size // block_size
1375
+ blocks_data = []
1376
+ for i, base_addr in enumerate(self.seen_base_addresses):
1377
+ # The new block_len is using prefill block_len;
1378
+ # and num_blocks is multiple with N
1379
+ kv_block_len = (
1380
+ self.get_backend_aware_kv_block_len(layer_idx=i) // block_size_ratio
1381
+ )
1382
+ block_len_per_layer = self.block_len_per_layer[i] // block_size_ratio
1383
+ num_blocks = self.num_blocks * block_size_ratio
1384
+ for block_id in range(num_blocks):
1385
+ block_offset = block_id * block_len_per_layer
1386
+ addr = base_addr + block_offset
1387
+ # (addr, len, device id)
1388
+ blocks_data.append((addr, kv_block_len, self.device_id))
1389
+
1390
+ if self.kv_topo.is_kv_layout_blocks_first:
1391
+ # Separate and interleave K/V regions to maintain the same
1392
+ # descs ordering. This is needed for selecting contiguous heads
1393
+ # when split across TP ranks.
1394
+ for block_id in range(num_blocks):
1395
+ block_offset = block_id * block_len_per_layer
1396
+ addr = base_addr + block_offset
1397
+ # Register addresses for V cache (K registered first).
1398
+ v_addr = addr + kv_block_len
1399
+ blocks_data.append((v_addr, kv_block_len, self.device_id))
1400
+ logger.debug(
1401
+ "Created %s blocks for src engine %s and rank %s on device id %s",
1402
+ len(blocks_data),
1403
+ self.engine_id,
1404
+ self.tp_rank,
1405
+ self.device_id,
1406
+ )
1407
+
1408
+ descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
1409
+ # NIXL_INIT_AGENT to be used for preparations of local descs.
1410
+ return self.nixl_wrapper.prep_xfer_dlist("NIXL_INIT_AGENT", descs)
1411
+
1412
+ def add_remote_agent(
1413
+ self,
1414
+ nixl_agent_meta: NixlAgentMetadata,
1415
+ remote_tp_rank: int = 0,
1416
+ remote_tp_size: int = 1,
1417
+ ) -> str:
1418
+ """
1419
+ Add the remote NIXL agent and prepare the descriptors for reading cache
1420
+ blocks from remote.
1421
+
1422
+ In particular, handle both homogeneous and heterogeneous TP. The former
1423
+ requires local rank_i to read from remote rank_i.
1424
+ The latter, assuming D.world_size > P.world_size, requires that two or
1425
+ more local TP worker share the xfer from a single TP worker.
1426
+
1427
+ Here's an example (non-MLA case):
1428
+
1429
+ rank_offset p_remote_tp_rank
1430
+ (kv split no)
1431
+ --------------------------------
1432
+ 0 0 Worker0 ---- 1st half of KV ----> Worker0 [ KV Cache ]
1433
+ /
1434
+ 1 0 Worker1 ---- 2nd half of KV -----/
1435
+
1436
+ 0 1 Worker2 ---- 1st half of KV ----> Worker1 [ KV Cache ]
1437
+ /
1438
+ 1 1 Worker3 ---- 2nd half of KV -----/
1439
+
1440
+
1441
+ Decoder TP workers Prefix TP workers
1442
+ (world_size=4) (world_size=2)
1443
+ tp_ratio = 4 // 2 = 2
1444
+
1445
+ Considering the KV Caches, if P-Worker_i has cache size [2, num_blocksP, kv_heads, block_size, head_dim]
1446
+ then D-Worker_j has [2, num_blocksD, kv_heads//tp_ratio, block_size, head_dim]. Mind the "HND" layout format.
1447
+ Assuming num_blocksD >= num_blocksP, D-Worker0 reads from P-Worker0 by preparing the kv_heads//tp_ratio
1448
+ first heads from all the slots of all the blocks. D-Worker1 will do the same, but reading the second split
1449
+ along the kv_heads dimension, and so forth until "tp_ratio" D TP workers have pulled from P-Worker0.
1450
+
1451
+ Note that the above will also hold true for the homogeneous TP case, where tp_ratio evaluates to 1.
1452
+
1453
+ Regarding MLA case, the cache is replicated across TP workers so the rank_offset will just always be 0
1454
+ so that the whole cache is shared by "tp_ratio" D TP workers.
1455
+ """ # noqa: E501
1456
+ engine_id = nixl_agent_meta.engine_id
1457
+ # TODO re-evaluate refreshing for scaling/recovery
1458
+ if remote_tp_rank in self._remote_agents.get(engine_id, {}):
1459
+ logger.debug(
1460
+ "Remote agent with engine_id %s and rank"
1461
+ "%s already exchanged metadata, skip handshake.",
1462
+ engine_id,
1463
+ remote_tp_rank,
1464
+ )
1465
+ return self._remote_agents[engine_id][remote_tp_rank]
1466
+
1467
+ ### Register remote agent metadata
1468
+ if engine_id not in self._tp_size:
1469
+ self._tp_size[engine_id] = remote_tp_size
1470
+ if engine_id not in self._block_size:
1471
+ self._block_size[engine_id] = nixl_agent_meta.block_size
1472
+
1473
+ remote_agent_name = self.nixl_wrapper.add_remote_agent(
1474
+ nixl_agent_meta.agent_metadata
1475
+ )
1476
+
1477
+ # Handle tp_size>num_kv_heads: replicate KV cache.
1478
+ replicates_kv_cache = self.kv_topo.replicates_kv_cache(engine_id)
1479
+
1480
+ # Create dst descs and xfer side handles. TP workers have same #blocks
1481
+ # so we only register once per engine_id.
1482
+ # Example:
1483
+ # block_size_ratio > 1:
1484
+ # remote: | 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|
1485
+ # local origin:| 0| 1| 8| 12|
1486
+ # local mapped:| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|
1487
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(engine_id)
1488
+
1489
+ if engine_id not in self.dst_num_blocks:
1490
+ self.dst_num_blocks[engine_id] = nixl_agent_meta.num_blocks
1491
+
1492
+ # Keep track of remote agent kv caches base addresses.
1493
+ self.kv_caches_base_addr[engine_id] = nixl_agent_meta.kv_caches_base_addr
1494
+
1495
+ self._validate_remote_agent_handshake(nixl_agent_meta, remote_tp_size)
1496
+
1497
+ # Number of D TP workers reading from a single P TP worker. This is
1498
+ # 1 when P and D `--tensor-parallel-size` match.
1499
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(engine_id)
1500
+
1501
+ ### Register remote agent memory regions
1502
+ blocks_data = []
1503
+ # With homogeneous TP, D pulls the whole kv cache from corresponding
1504
+ # rank. With heterogeneous TP, prepare the descriptors by splitting the
1505
+ # P KV cache along kv_head dim, of D worker's kv_head size (D>P).
1506
+ # Eg. PTP1 DTP2 => P0 KV:[block0-KV_0 | block0-KV_1..].
1507
+
1508
+ # Register all remote blocks, but only the corresponding kv heads.
1509
+ for i, base_addr in enumerate(nixl_agent_meta.kv_caches_base_addr):
1510
+ kv_block_len = self.get_backend_aware_kv_block_len(layer_idx=i)
1511
+ remote_kv_block_len = kv_block_len // block_size_ratio
1512
+ if block_size_ratio > 1:
1513
+ # using remote kv_block_len as transfer unit
1514
+ kv_block_len = remote_kv_block_len
1515
+ rank_offset = (
1516
+ self.tp_rank % tp_ratio * remote_kv_block_len
1517
+ if not replicates_kv_cache
1518
+ else 0
1519
+ )
1520
+ for block_id in range(nixl_agent_meta.num_blocks):
1521
+ block_offset = block_id * nixl_agent_meta.block_lens[i]
1522
+ # For each block, grab the heads chunk belonging to rank_i
1523
+ # of size remote_nheads // tp_ratio, which correspond to
1524
+ # self.block_len == remote_block_len//tp_ratio bytes.
1525
+ addr = base_addr + block_offset + rank_offset
1526
+ # (addr, len, device id)
1527
+ blocks_data.append((addr, kv_block_len, nixl_agent_meta.device_id))
1528
+
1529
+ if self.kv_topo.is_kv_layout_blocks_first:
1530
+ # With FlashInfer index V separately to allow head splitting.
1531
+ for block_id in range(nixl_agent_meta.num_blocks):
1532
+ block_offset = block_id * nixl_agent_meta.block_lens[i]
1533
+ addr = base_addr + block_offset + rank_offset
1534
+ v_addr = addr + nixl_agent_meta.block_lens[i] // 2
1535
+ blocks_data.append(
1536
+ (v_addr, kv_block_len, nixl_agent_meta.device_id)
1537
+ )
1538
+
1539
+ logger.debug(
1540
+ "Created %s blocks for dst engine %s with remote rank %s and local rank %s",
1541
+ len(blocks_data),
1542
+ engine_id,
1543
+ remote_tp_rank,
1544
+ self.tp_rank,
1545
+ )
1546
+
1547
+ # Register with NIXL.
1548
+ descs = self.nixl_wrapper.get_xfer_descs(blocks_data, self.nixl_memory_type)
1549
+ self.dst_xfer_side_handles[engine_id] = self.nixl_wrapper.prep_xfer_dlist(
1550
+ remote_agent_name, descs
1551
+ )
1552
+
1553
+ if block_size_ratio > 1:
1554
+ # when prefill with smaller block_size, we need to init a
1555
+ # new handler with same block_len to match
1556
+ self.src_xfer_side_handles[nixl_agent_meta.block_size] = (
1557
+ self.register_local_xfer_handler(nixl_agent_meta.block_size)
1558
+ )
1559
+
1560
+ return remote_agent_name
1561
+
1562
+ def _validate_remote_agent_handshake(
1563
+ self, nixl_agent_meta: NixlAgentMetadata, remote_tp_size: int
1564
+ ):
1565
+ """
1566
+ Validate the remote agent handshake metadata ensuring the
1567
+ invariants hold true.
1568
+ """
1569
+ remote_engine_id = nixl_agent_meta.engine_id
1570
+
1571
+ assert self._tp_size[remote_engine_id] == remote_tp_size
1572
+
1573
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(remote_engine_id)
1574
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
1575
+ remote_engine_id
1576
+ )
1577
+ assert tp_ratio > 0, "Decode TP cannot be smaller than prefill TP"
1578
+ assert not self._use_pallas or tp_ratio == 1, (
1579
+ "TPU (pallas_v1) DOES NOT support heterogeneous TP yet."
1580
+ )
1581
+ kv_cache_layout = (
1582
+ self.kv_cache_layout
1583
+ if not self.use_host_buffer
1584
+ else self.host_buffer_kv_cache_layout
1585
+ )
1586
+ if not self.use_mla and nixl_agent_meta.kv_cache_layout != kv_cache_layout:
1587
+ if (
1588
+ self.kv_transfer_config.enable_permute_local_kv
1589
+ and nixl_agent_meta.kv_cache_layout == "HND"
1590
+ ):
1591
+ logger.info(
1592
+ "Remote is HND and local is NHD, enabled additional permute "
1593
+ "on local device KV."
1594
+ )
1595
+ self.enable_permute_local_kv = True
1596
+ else:
1597
+ raise RuntimeError(
1598
+ "Heterogeneous TP expects same kv_cache_layout. "
1599
+ "Or enable experimental feature to use HND to NHD support by "
1600
+ "setting 'enable_permute_local_kv'=True in --kv-transfer-config."
1601
+ )
1602
+
1603
+ # Block len can only vary across layers when using MLA.
1604
+ remote_block_len = nixl_agent_meta.block_lens[0]
1605
+ if self.use_mla or self.kv_topo.is_kv_replicated(remote_engine_id):
1606
+ # With replicated KV cache, only the number of blocks can differ.
1607
+ for i in range(len(self.block_len_per_layer)):
1608
+ assert (
1609
+ self.block_len_per_layer[i] // block_size_ratio
1610
+ == nixl_agent_meta.block_lens[i]
1611
+ ), "KV cache sizes must match between P and D when replicated"
1612
+ else:
1613
+ # When MLA is not used, this is a list of the same block length
1614
+ for block_len in nixl_agent_meta.block_lens:
1615
+ assert block_len == remote_block_len, (
1616
+ "All remote layers must have the same block size"
1617
+ )
1618
+
1619
+ assert (
1620
+ remote_block_len
1621
+ == (self.block_len_per_layer[0] * tp_ratio) // block_size_ratio
1622
+ ), (
1623
+ "Remote P worker KV layer cache must be of shape [2, N, "
1624
+ "local_kv_heads*tp_ratio, block_size, head_dim] and same dtype."
1625
+ )
1626
+
1627
+ # TP workers have same #blocks.
1628
+ assert self.dst_num_blocks[remote_engine_id] == nixl_agent_meta.num_blocks
1629
+
1630
+ assert len(nixl_agent_meta.kv_caches_base_addr) == len(self.block_len_per_layer)
1631
+
1632
+ def sync_recved_kv_to_device(self, req_id: str, meta: ReqMeta):
1633
+ """copy recved kv from host buffer to device."""
1634
+ assert self.use_host_buffer
1635
+ assert self.copy_blocks is not None
1636
+
1637
+ local_block_ids = meta.local_physical_block_ids
1638
+ self.copy_blocks(
1639
+ self.host_xfer_buffers,
1640
+ self.device_kv_caches,
1641
+ local_block_ids,
1642
+ local_block_ids,
1643
+ "h2d",
1644
+ )
1645
+ if logger.isEnabledFor(logging.DEBUG):
1646
+ logger.debug(
1647
+ "synced recved kv of request[%s] to device kv buffer,"
1648
+ "local_block_ids: %s. ",
1649
+ req_id,
1650
+ ",".join(map(str, local_block_ids)),
1651
+ )
1652
+
1653
+ def save_kv_to_host(self, metadata: NixlConnectorMetadata):
1654
+ """copy kv from device to host buffer."""
1655
+ assert self.use_host_buffer
1656
+ assert self.copy_blocks is not None
1657
+
1658
+ for req_id, meta in metadata.reqs_to_save.items():
1659
+ meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
1660
+ meta.local_block_ids
1661
+ )
1662
+ if logger.isEnabledFor(logging.DEBUG):
1663
+ logger.debug(
1664
+ "save_load_kv for request[%s] to host xfer buffer."
1665
+ "local_block_ids: %s. ",
1666
+ req_id,
1667
+ ",".join(map(str, meta.local_physical_block_ids)),
1668
+ )
1669
+ # blocking
1670
+ self.copy_blocks(
1671
+ self.device_kv_caches,
1672
+ self.host_xfer_buffers,
1673
+ meta.local_physical_block_ids,
1674
+ meta.local_physical_block_ids,
1675
+ "d2h",
1676
+ )
1677
+
1678
+ def permute_device_kv(self, block_ids: list[int]):
1679
+ """Transforms the layout of received KV cache blocks to the local format.
1680
+
1681
+ This method corrects layout mismatches from direct memory copies by
1682
+ permuting the tensor dimensions.
1683
+
1684
+ - **Source Layout:** `[num_blocks, n_kv_head, block_size, head_dim]`
1685
+ - **Target Layout:** `[num_blocks, block_size, n_kv_head, head_dim]`
1686
+
1687
+ Args:
1688
+ block_ids: A list of block IDs to update and permute.
1689
+
1690
+ Implementation:
1691
+ - x = blocks_to_update.reshape(src_shape) # view local kv with sender layout
1692
+ - permuted_blocks = x.permute(*inv_order) # transpose n_kv_heads, block_size
1693
+ - cache.index_copy_(0, indices, permuted_blocks) # copy permuted kv back
1694
+
1695
+ """
1696
+ split_k_and_v = self.kv_topo.split_k_and_v
1697
+ inv_order = [0, 2, 1, 3]
1698
+ sample_cache = list(self.device_kv_caches.values())[0][0]
1699
+ target_shape = list(sample_cache.shape)
1700
+ target_shape[0] = -1
1701
+ src_shape = tuple(target_shape[i] for i in inv_order)
1702
+ indices = torch.tensor(block_ids, device=sample_cache.device)
1703
+
1704
+ for _, cache_or_caches in self.device_kv_caches.items():
1705
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1706
+ for cache in cache_list:
1707
+ blocks_to_update = cache.index_select(0, indices)
1708
+ permuted_blocks = blocks_to_update.reshape(src_shape).permute(
1709
+ *inv_order
1710
+ )
1711
+ cache.index_copy_(0, indices, permuted_blocks)
1712
+
1713
+ def blocksize_post_process(self, block_ids_per_ratio: dict[float, list[list[int]]]):
1714
+ def _process_local_gt_remote(blocks_to_update, block_size_ratio):
1715
+ n_kv_heads, block_size, head_size = blocks_to_update.shape[1:]
1716
+ remote_block_size = block_size // block_size_ratio
1717
+ n_blocks = block_size_ratio
1718
+ # actual permute is to convert
1719
+ # for local blocksize > remote blocksize
1720
+ # ex: local blocksize = 16 tokens, remote blocksize = 4 tokens
1721
+ # local block[0] = remote block[0, 1, 2, 3]
1722
+ # remote is |h0-b0|h1-b0|h2-b0|h3-b0|h0-b1|h1-b1|h2-b1|h3-b1|...
1723
+ # local is |h0-b0..................|h1-b0..................|...
1724
+ # permute is to:
1725
+ # 1. view => view remote as n_blocks * remote_shape(H,remoteN,D)
1726
+ # 2. permute => (H, nblocks, remoteN, D)
1727
+ # 3. flatten => (H, localN, D)
1728
+ permuted_blocks = (
1729
+ blocks_to_update.reshape(
1730
+ -1, n_blocks, n_kv_heads, remote_block_size, head_size
1731
+ )
1732
+ .permute(0, 2, 1, 3, 4)
1733
+ .flatten(2, 3)
1734
+ )
1735
+ return permuted_blocks
1736
+
1737
+ if len(self.device_kv_caches) == 0:
1738
+ return
1739
+ split_k_and_v = not (
1740
+ self.use_mla or self._use_pallas or self.kv_topo.is_kv_layout_blocks_first
1741
+ )
1742
+ sample_cache = list(self.device_kv_caches.values())[0][0]
1743
+ for block_size_ratio, block_ids_list in block_ids_per_ratio.items():
1744
+ assert block_size_ratio > 1, "Only nP < nD supported currently."
1745
+ block_ids_list = [[item for sublist in block_ids_list for item in sublist]]
1746
+
1747
+ for block_ids in block_ids_list:
1748
+ indices = torch.tensor(block_ids, device=sample_cache.device)
1749
+
1750
+ for _, cache_or_caches in self.device_kv_caches.items():
1751
+ cache_list = cache_or_caches if split_k_and_v else [cache_or_caches]
1752
+ for cache in cache_list:
1753
+ blocks_to_update = cache.index_select(0, indices)
1754
+ # because kv_cache is always using original layout NHD as
1755
+ # virtual shape while stride can be either HND / NHD at
1756
+ # initialization.
1757
+ # we need to firstly get physical view of the tensor
1758
+ permuted_blocks = _process_local_gt_remote(
1759
+ blocks_to_update.permute(0, 2, 1, 3), block_size_ratio
1760
+ ).permute(0, 2, 1, 3)
1761
+ cache.index_copy_(0, indices, permuted_blocks)
1762
+
1763
+ def get_finished(self) -> tuple[set[str], set[str]]:
1764
+ """
1765
+ Get requests that are done sending or recving on this specific worker.
1766
+ The scheduler process (via the MultiprocExecutor) will use this output
1767
+ to track which workers are done.
1768
+ """
1769
+ done_sending = self._get_new_notifs()
1770
+ done_recving = self._pop_done_transfers(self._recving_transfers)
1771
+
1772
+ # add requests that skipped transfer to done_recving
1773
+ done_recving.update(self._failed_recv_reqs)
1774
+ self._failed_recv_reqs.clear()
1775
+
1776
+ if len(done_sending) > 0 or len(done_recving) > 0:
1777
+ logger.debug(
1778
+ "Rank %s, get_finished: %s requests done sending "
1779
+ "and %s requests done recving",
1780
+ self.tp_rank,
1781
+ len(done_sending),
1782
+ len(done_recving),
1783
+ )
1784
+
1785
+ block_ids_to_permute = []
1786
+ block_ids_for_blocksize_post_process = defaultdict(list)
1787
+ for req_id in done_recving:
1788
+ # clean up metadata for completed requests
1789
+ meta = self._recving_metadata.pop(req_id, None)
1790
+ assert meta is not None, f"{req_id} not found in recving_metadata list"
1791
+ assert meta.remote is not None
1792
+ if self.use_host_buffer:
1793
+ self.sync_recved_kv_to_device(req_id, meta)
1794
+ if self.enable_permute_local_kv:
1795
+ block_ids_to_permute += meta.local_physical_block_ids
1796
+
1797
+ # post processing for heteroblocksize
1798
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(
1799
+ meta.remote.engine_id
1800
+ )
1801
+ if (
1802
+ not self.use_mla
1803
+ and block_size_ratio > 1
1804
+ and self.kv_cache_layout == "HND"
1805
+ ):
1806
+ block_ids_for_blocksize_post_process[block_size_ratio].append(
1807
+ meta.local_block_ids
1808
+ )
1809
+ self.blocksize_post_process(block_ids_for_blocksize_post_process)
1810
+ if len(block_ids_to_permute) > 0:
1811
+ self.permute_device_kv(block_ids_to_permute)
1812
+
1813
+ # Handle timeout to avoid stranding blocks on remote.
1814
+ now = time.perf_counter()
1815
+ while self._reqs_to_send:
1816
+ req_id, expires = next(iter(self._reqs_to_send.items()))
1817
+ # Sorted dict, oldest requests are put first so we can exit early.
1818
+ if now < expires:
1819
+ break
1820
+ count = self.consumer_notification_counts_by_req.pop(req_id, 0)
1821
+ logger.warning(
1822
+ "Releasing expired KV blocks for request %s which were "
1823
+ "retrieved by %d decode worker(s) within %d seconds.",
1824
+ req_id,
1825
+ count,
1826
+ envs.VLLM_NIXL_ABORT_REQUEST_TIMEOUT,
1827
+ )
1828
+ self._reqs_to_process.remove(req_id)
1829
+ del self._reqs_to_send[req_id]
1830
+ done_sending.add(req_id)
1831
+
1832
+ return done_sending, done_recving
1833
+
1834
+ def _get_new_notifs(self) -> set[str]:
1835
+ """
1836
+ Get req_ids which got a remote xfer message. When multiple consumers
1837
+ are reading from the same producer (heterogeneous TP scenario), wait
1838
+ for all consumers to be done pulling.
1839
+ """
1840
+ notified_req_ids: set[str] = set()
1841
+ for notifs in self.nixl_wrapper.get_new_notifs().values():
1842
+ for notif in notifs:
1843
+ req_id, tp_ratio = notif.decode("utf-8").rsplit(":", 1)
1844
+ if (
1845
+ req_id not in self._reqs_to_send
1846
+ and req_id not in self._reqs_to_process
1847
+ ):
1848
+ logger.error(
1849
+ "Potentially invalid KV blocks for "
1850
+ "unrecognized request %s were retrieved by "
1851
+ "a decode worker. They may have expired.",
1852
+ req_id,
1853
+ )
1854
+ continue
1855
+
1856
+ self.consumer_notification_counts_by_req[req_id] += 1
1857
+ # Wait all consumers (D) to be done reading before freeing.
1858
+ if self.consumer_notification_counts_by_req[req_id] == int(tp_ratio):
1859
+ notified_req_ids.add(req_id)
1860
+ del self.consumer_notification_counts_by_req[req_id]
1861
+ self._reqs_to_process.remove(req_id)
1862
+ self._reqs_to_send.pop(req_id, None)
1863
+ return notified_req_ids
1864
+
1865
+ def _pop_done_transfers(self, transfers: dict[str, list[int]]) -> set[str]:
1866
+ """
1867
+ Pop completed xfers by checking for DONE state.
1868
+ Args:
1869
+ transfers: dict of req_id -> list[running_xfer]
1870
+ Returns:
1871
+ set of req_ids that have all done xfers
1872
+ """
1873
+ done_req_ids: set[str] = set()
1874
+ for req_id, handles in list(transfers.items()):
1875
+ in_progress = False
1876
+ for handle in handles:
1877
+ try:
1878
+ xfer_state = self.nixl_wrapper.check_xfer_state(handle)
1879
+ if xfer_state == "DONE":
1880
+ # Get telemetry from NIXL
1881
+ res = self.nixl_wrapper.get_xfer_telemetry(handle)
1882
+ self.xfer_stats.record_transfer(res)
1883
+ self.nixl_wrapper.release_xfer_handle(handle)
1884
+ elif xfer_state == "PROC":
1885
+ in_progress = True
1886
+ continue
1887
+ else:
1888
+ logger.error(
1889
+ "NIXL transfer failed for request %s with state "
1890
+ "%s. Marking blocks as invalid.",
1891
+ req_id,
1892
+ xfer_state,
1893
+ )
1894
+ self._handle_failed_transfer(req_id, handle)
1895
+ in_progress = False
1896
+ except Exception:
1897
+ logger.exception(
1898
+ "NIXL transfer exception for request %s. "
1899
+ "Marking blocks as invalid.",
1900
+ req_id,
1901
+ )
1902
+ self._handle_failed_transfer(req_id, handle)
1903
+ in_progress = False
1904
+
1905
+ if not in_progress:
1906
+ done_req_ids.add(req_id)
1907
+ del transfers[req_id]
1908
+ return done_req_ids
1909
+
1910
+ def _handle_failed_transfer(self, req_id: str, handle: int):
1911
+ """
1912
+ Handle a failed transfer by marking all (logical) blocks as invalid and
1913
+ recording the failure.
1914
+
1915
+ Args:
1916
+ req_id: The request ID.
1917
+ handle: The transfer handle.
1918
+ """
1919
+ if meta := self._recving_metadata.pop(req_id, None):
1920
+ self._invalid_block_ids.update(meta.local_block_ids)
1921
+ self._recving_metadata.pop(req_id, None)
1922
+ self.nixl_wrapper.release_xfer_handle(handle)
1923
+ self.xfer_stats.record_failed_transfer()
1924
+
1925
+ def start_load_kv(self, metadata: NixlConnectorMetadata):
1926
+ """
1927
+ Start loading by triggering non-blocking nixl_xfer.
1928
+ We check for these trnxs to complete in each step().
1929
+ """
1930
+ for req_id, meta in metadata.reqs_to_recv.items():
1931
+ meta.local_physical_block_ids = self._logical_to_kernel_block_ids(
1932
+ meta.local_block_ids
1933
+ )
1934
+ assert meta.remote is not None
1935
+ meta.remote.block_ids = self._logical_to_kernel_block_ids(
1936
+ meta.remote.block_ids
1937
+ )
1938
+ remote_engine_id = meta.remote.engine_id
1939
+ logger.debug(
1940
+ "start_load_kv for request %s from remote engine %s. "
1941
+ "Num local_block_ids: %s. Num remote_block_ids: %s. ",
1942
+ req_id,
1943
+ remote_engine_id,
1944
+ len(meta.local_physical_block_ids),
1945
+ len(meta.remote.block_ids),
1946
+ )
1947
+ # always store metadata for failure recovery
1948
+ self._recving_metadata[req_id] = meta
1949
+ if remote_engine_id not in self._remote_agents:
1950
+ # Initiate handshake with remote engine to exchange metadata.
1951
+ with self._handshake_lock:
1952
+ if remote_engine_id not in self._remote_agents:
1953
+ self._background_nixl_handshake(req_id, remote_engine_id, meta)
1954
+ continue
1955
+
1956
+ # Handshake already completed, start async read xfer.
1957
+ self._read_blocks_for_req(req_id, meta)
1958
+
1959
+ # Start transfers for requests whose handshakes have now finished.
1960
+ while not self._ready_requests.empty():
1961
+ self._read_blocks_for_req(*self._ready_requests.get_nowait())
1962
+
1963
+ # Keep around the requests that have been part of a batch. This is
1964
+ # needed because async scheduling pushes the misalignment between the
1965
+ # moment in which requests expiration is set (P side) and the moment in
1966
+ # which blocks are read from D. As P can now more easily lag behind D
1967
+ # while processing the next batch, we make sure to only set an
1968
+ # expiration for requests that have not been read from D yet.
1969
+ for req_id in metadata.reqs_in_batch:
1970
+ self._reqs_to_process.add(req_id)
1971
+
1972
+ # Remove all requests that are not to be processed (eg aborted).
1973
+ for req_id in metadata.reqs_not_processed:
1974
+ self._reqs_to_process.discard(req_id)
1975
+ # We should never get an abort after setting an expiry timer
1976
+ assert req_id not in self._reqs_to_send
1977
+
1978
+ # Add to requests that are waiting to be read and track expiration.
1979
+ for req_id, expiration_time in metadata.reqs_to_send.items():
1980
+ if req_id in self._reqs_to_process:
1981
+ self._reqs_to_send[req_id] = expiration_time
1982
+
1983
+ def _read_blocks_for_req(self, req_id: str, meta: ReqMeta):
1984
+ assert meta.remote is not None
1985
+ logger.debug(
1986
+ "Remote agent %s available, calling _read_blocks for req %s",
1987
+ meta.remote.engine_id,
1988
+ req_id,
1989
+ )
1990
+ self._read_blocks(
1991
+ request_id=req_id,
1992
+ dst_engine_id=meta.remote.engine_id,
1993
+ remote_request_id=meta.remote.request_id,
1994
+ local_block_ids=meta.local_physical_block_ids,
1995
+ remote_block_ids=meta.remote.block_ids,
1996
+ )
1997
+
1998
+ def _read_blocks(
1999
+ self,
2000
+ local_block_ids: list[int],
2001
+ remote_block_ids: list[int],
2002
+ dst_engine_id: str,
2003
+ request_id: str,
2004
+ remote_request_id: str,
2005
+ ):
2006
+ block_size_ratio = self.kv_topo.block_size_ratio_from_engine_id(dst_engine_id)
2007
+ if block_size_ratio > 1:
2008
+ local_block_ids = self.get_mapped_blocks(
2009
+ np.asarray(local_block_ids), block_size_ratio
2010
+ )
2011
+ if len(local_block_ids) > len(remote_block_ids):
2012
+ # NOTE:
2013
+ # get_mapped_blocks will always expand block_ids for n times.
2014
+ # ex:
2015
+ # prefill block_ids with block_size as 4:
2016
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2017
+ # Local decode block_ids with block_size as 16: [1, 2, 3]
2018
+ # expland ecode block_ids with get_mapped_blocks from [1, 2, 3] to
2019
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
2020
+ # Then we clip local to align with prefill
2021
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] to
2022
+ # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2023
+ local_block_ids = local_block_ids[: len(remote_block_ids)]
2024
+ # NOTE(rob): having the staging blocks be on the READER side is
2025
+ # not going to work well (since we will have to call rearrange tensors).
2026
+ # after we detect the txn is complete (which means we cannot make the
2027
+ # read trxn async easily). If we want to make "READ" happen cleanly,
2028
+ # then we will need to have the staging blocks on the remote side.
2029
+
2030
+ # NOTE(rob): according to nvidia the staging blocks are used to
2031
+ # saturate IB with heterogeneous TP sizes. We should remove the staging
2032
+ # blocks until we are ready.
2033
+
2034
+ # Number of D TP workers that will read from dst P. Propagate tp_ratio
2035
+ # on notification so that dst worker can wait before freeing blocks.
2036
+ tp_ratio = self.kv_topo.tp_ratio_from_engine_id(dst_engine_id)
2037
+ notif_id = f"{remote_request_id}:{tp_ratio}".encode()
2038
+
2039
+ # Full prefix cache hit: do not need to read remote blocks,
2040
+ # just notify P worker that we have the blocks we need.
2041
+ num_local_blocks = len(local_block_ids)
2042
+ if num_local_blocks == 0:
2043
+ remote_rank = self.kv_topo.get_target_remote_rank_from_engine_id(
2044
+ dst_engine_id
2045
+ )
2046
+ agent_name = self._remote_agents[dst_engine_id][remote_rank]
2047
+ try:
2048
+ self.nixl_wrapper.send_notif(agent_name, notif_msg=notif_id)
2049
+ except Exception:
2050
+ logger.exception(
2051
+ "NIXL send_notif failed for request %s: "
2052
+ "P worker blocks will be freed after timeout. "
2053
+ "This may indicate network issues.",
2054
+ request_id,
2055
+ )
2056
+ self.xfer_stats.record_failed_notification()
2057
+ return
2058
+
2059
+ # Partial prefix cache hit: just read uncomputed blocks.
2060
+ num_remote_blocks = len(remote_block_ids)
2061
+ assert num_local_blocks <= num_remote_blocks
2062
+ if num_local_blocks < num_remote_blocks:
2063
+ remote_block_ids = remote_block_ids[-num_local_blocks:]
2064
+
2065
+ # Get side handles.
2066
+ remote_block_size = self.kv_topo.remote_block_size[dst_engine_id]
2067
+ local_xfer_side_handle = self.src_xfer_side_handles.get(
2068
+ remote_block_size, self.src_xfer_side_handle
2069
+ )
2070
+ remote_xfer_side_handle = self.dst_xfer_side_handles[dst_engine_id]
2071
+
2072
+ # NOTE (nicolo) With homogeneous TP, each TP worker loads KV from
2073
+ # corresponding rank. With heterogeneous TP, fixing D>P, the D tp
2074
+ # workers will issue xfers to parts of the P worker remote kv caches.
2075
+
2076
+ # Get descs ids.
2077
+ local_block_descs_ids: np.ndarray
2078
+ remote_block_descs_ids: np.ndarray
2079
+
2080
+ if not self.block_window_per_layer:
2081
+ # Default case: assume global attention
2082
+ remote_block_descs_ids = self._get_block_descs_ids(
2083
+ dst_engine_id,
2084
+ remote_block_ids,
2085
+ )
2086
+ local_block_descs_ids = self._get_block_descs_ids(
2087
+ self.engine_id,
2088
+ local_block_ids,
2089
+ block_size_ratio=block_size_ratio,
2090
+ )
2091
+ else:
2092
+ # TODO(mgoin): remove this once we have hybrid memory allocator
2093
+ # Optimization for models with local attention (Llama 4)
2094
+ local_descs_list = []
2095
+ remote_descs_list = []
2096
+ for layer_idx, block_window in enumerate(self.block_window_per_layer):
2097
+ # For each layer:
2098
+ if block_window is None:
2099
+ # If not chunked, we just use the
2100
+ # full block lists (global attention)
2101
+ layer_local_block_ids = local_block_ids
2102
+ layer_remote_block_ids = remote_block_ids
2103
+ else:
2104
+ # If chunked, get the last block_window blocks
2105
+ layer_local_block_ids = local_block_ids[-block_window:]
2106
+ layer_remote_block_ids = remote_block_ids[-block_window:]
2107
+
2108
+ # Get descs ids for the layer.
2109
+ layer_local_desc_ids = self._get_block_descs_ids(
2110
+ dst_engine_id,
2111
+ layer_local_block_ids,
2112
+ layer_idx,
2113
+ )
2114
+ layer_remote_desc_ids = self._get_block_descs_ids(
2115
+ self.engine_id,
2116
+ layer_remote_block_ids,
2117
+ layer_idx,
2118
+ block_size_ratio=block_size_ratio,
2119
+ )
2120
+
2121
+ local_descs_list.append(layer_local_desc_ids)
2122
+ remote_descs_list.append(layer_remote_desc_ids)
2123
+
2124
+ local_block_descs_ids = np.concatenate(local_descs_list)
2125
+ remote_block_descs_ids = np.concatenate(remote_descs_list)
2126
+
2127
+ assert len(local_block_descs_ids) == len(remote_block_descs_ids)
2128
+
2129
+ # Prepare transfer with Nixl.
2130
+ handle = None
2131
+ try:
2132
+ handle = self.nixl_wrapper.make_prepped_xfer(
2133
+ "READ",
2134
+ local_xfer_side_handle,
2135
+ local_block_descs_ids,
2136
+ remote_xfer_side_handle,
2137
+ remote_block_descs_ids,
2138
+ notif_msg=notif_id,
2139
+ )
2140
+
2141
+ # Begin async xfer.
2142
+ self.nixl_wrapper.transfer(handle)
2143
+
2144
+ # Use handle to check completion in future step().
2145
+ self._recving_transfers[request_id].append(handle)
2146
+ except Exception:
2147
+ logger.exception(
2148
+ "NIXL transfer setup/initiation failed for request %s. "
2149
+ "Marking blocks as invalid.",
2150
+ request_id,
2151
+ )
2152
+ # mark all (logical) blocks for this request as invalid
2153
+ if meta := self._recving_metadata.get(request_id):
2154
+ self._invalid_block_ids.update(meta.local_block_ids)
2155
+ self.xfer_stats.record_failed_transfer()
2156
+ if handle is not None:
2157
+ self.nixl_wrapper.release_xfer_handle(handle)
2158
+ self._failed_recv_reqs.add(request_id)
2159
+
2160
+ def get_mapped_blocks(self, block_ids, block_size_ratio):
2161
+ """
2162
+ Calculates the new set of block IDs by mapping every element
2163
+ in the (potentially sparse) input array.
2164
+ Example: block_ids=[0, 2], block_size_ratio=2
2165
+ get_mapped_blocks 0 1 [2 3] 4 5
2166
+ # remote is |h0-b0|h1-b0||h0-b1|h1-b1||h0-b1|h1-b1||
2167
+ # local is |h0-b0......||h1-b0......||h2-b0........
2168
+ local_block_ids 0 [1] 2
2169
+ """
2170
+ if block_ids.size == 0:
2171
+ return np.array([], dtype=np.int64)
2172
+
2173
+ start_ids = block_ids * block_size_ratio
2174
+ offsets = np.arange(block_size_ratio)
2175
+ mapped_2d = start_ids[:, None] + offsets[None, :]
2176
+
2177
+ return mapped_2d.flatten().astype(np.int64)
2178
+
2179
+ def _get_block_descs_ids(
2180
+ self,
2181
+ engine_id: str,
2182
+ block_ids: list[int],
2183
+ layer_idx: int | None = None,
2184
+ block_size_ratio: float | None = None,
2185
+ ) -> np.ndarray:
2186
+ """
2187
+ Get the descs ids for a set of block ids.
2188
+ If layer_idx is provided, we use the region_ids for the given layer.
2189
+ Otherwise, we use all regions.
2190
+ """
2191
+ if layer_idx is None:
2192
+ region_ids = np.arange(self.num_regions)
2193
+ else:
2194
+ assert layer_idx < self.num_layers
2195
+ if self.num_layers < self.num_regions:
2196
+ # If we have more regions than layers, we assume that
2197
+ # the regions are organized as [K0, V0, K1, V1, ...]
2198
+ # and we select K_i and V_i
2199
+ assert 2 * self.num_layers == self.num_regions
2200
+ region_ids = np.arange(2 * layer_idx, 2 * layer_idx + 2)
2201
+ else:
2202
+ # Otherwise, we assume we have MLA and select i-th layer
2203
+ assert self.num_layers == self.num_regions
2204
+ region_ids = np.arange(layer_idx, layer_idx + 1)
2205
+
2206
+ num_blocks = self.dst_num_blocks[engine_id]
2207
+ if block_size_ratio is not None:
2208
+ num_blocks = int(num_blocks * block_size_ratio)
2209
+
2210
+ # Compute the desc ids for each block.
2211
+ region_ids = region_ids[:, None]
2212
+ block_ids = np.array(block_ids)[None, :]
2213
+ descs_ids = region_ids * num_blocks + block_ids
2214
+ return descs_ids.flatten()
2215
+
2216
+ def _logical_to_kernel_block_ids(self, block_ids: list[int]) -> list[int]:
2217
+ """
2218
+ Convert logical block ids to kernel physical block ids.
2219
+ This is required when the logical block size (the one set by the user)
2220
+ does not match the one required by the attn backend.
2221
+ """
2222
+ if self._physical_blocks_per_logical_kv_block == 1:
2223
+ # Noop when physical and logical block sizes are the same
2224
+ return block_ids
2225
+ block_ids_np = np.array(block_ids)
2226
+ block_arange = np.arange(0, self._physical_blocks_per_logical_kv_block).reshape(
2227
+ 1, -1
2228
+ )
2229
+ return BlockTable.map_to_kernel_blocks(
2230
+ block_ids_np, self._physical_blocks_per_logical_kv_block, block_arange
2231
+ ).tolist()
2232
+
2233
+ def get_backend_aware_kv_block_len(self, layer_idx: int):
2234
+ """
2235
+ Get the block length for one K/V element (K and V have the same size).
2236
+
2237
+ For FA and other backends, this is equal to the length of the whole
2238
+ block, as K and V are in separate regions.
2239
+ For FlashInfer, this is half the length of the whole block, as K and V
2240
+ share the same region.
2241
+ """
2242
+ if self.kv_topo.is_kv_layout_blocks_first:
2243
+ # For indexing only half (either just the K or V part).
2244
+ block_len = self.block_len_per_layer[layer_idx] // 2
2245
+ else:
2246
+ block_len = self.block_len_per_layer[layer_idx]
2247
+ return block_len
2248
+
2249
+ def get_kv_connector_stats(self) -> KVConnectorStats | None:
2250
+ """
2251
+ Get the KV transfer stats for the connector.
2252
+ """
2253
+ # Clear stats for next iteration
2254
+ if not self.xfer_stats.is_empty():
2255
+ return self.xfer_stats.clone_and_reset()
2256
+ return None
2257
+
2258
+ def get_block_ids_with_load_errors(self) -> set[int]:
2259
+ """
2260
+ Return and clear the set of block IDs that failed to load.
2261
+
2262
+ This is called by the scheduler to identify blocks that need
2263
+ to be retried after a NIXL transfer failure.
2264
+ """
2265
+ result = self._invalid_block_ids
2266
+ self._invalid_block_ids = set()
2267
+ return result
2268
+
2269
+ def __del__(self):
2270
+ self.shutdown()
2271
+
2272
+ def shutdown(self):
2273
+ """Shutdown the connector worker."""
2274
+ self._handshake_initiation_executor.shutdown(wait=False)
2275
+ for handles in self._recving_transfers.values():
2276
+ for handle in handles:
2277
+ self.nixl_wrapper.release_xfer_handle(handle)
2278
+ self._recving_transfers.clear()
2279
+ if self.src_xfer_side_handle:
2280
+ self.nixl_wrapper.release_dlist_handle(self.src_xfer_side_handle)
2281
+ self.src_xfer_side_handle = 0
2282
+ for dst_xfer_side_handle in self.dst_xfer_side_handles.values():
2283
+ self.nixl_wrapper.release_dlist_handle(dst_xfer_side_handle)
2284
+ self.dst_xfer_side_handles.clear()
2285
+ for remote_agents in self._remote_agents.values():
2286
+ for agent_name in remote_agents.values():
2287
+ self.nixl_wrapper.remove_remote_agent(agent_name)
2288
+ self._remote_agents.clear()
2289
+ for desc in self._registered_descs:
2290
+ self.nixl_wrapper.deregister_memory(desc)
2291
+ self._registered_descs.clear()
2292
+
2293
+
2294
+ @contextlib.contextmanager
2295
+ def zmq_ctx(socket_type: Any, addr: str) -> Iterator[zmq.Socket]:
2296
+ """Context manager for a ZMQ socket"""
2297
+
2298
+ if socket_type not in (zmq.ROUTER, zmq.REQ):
2299
+ raise ValueError(f"Unexpected socket type: {socket_type}")
2300
+
2301
+ ctx: zmq.Context | None = None
2302
+ try:
2303
+ ctx = zmq.Context() # type: ignore[attr-defined]
2304
+ yield make_zmq_socket(
2305
+ ctx=ctx, path=addr, socket_type=socket_type, bind=socket_type == zmq.ROUTER
2306
+ )
2307
+ finally:
2308
+ if ctx is not None:
2309
+ ctx.destroy(linger=0)
2310
+
2311
+
2312
+ @dataclass
2313
+ class NixlKVConnectorStats(KVConnectorStats):
2314
+ """Container for transfer performance metrics"""
2315
+
2316
+ def __post_init__(self):
2317
+ if not self.data:
2318
+ # Empty container init, no data is passed in.
2319
+ self.reset()
2320
+
2321
+ def reset(self):
2322
+ # Must be serializable
2323
+ self.data: dict[str, list[float]] = {
2324
+ "transfer_duration": [],
2325
+ "post_duration": [],
2326
+ "bytes_transferred": [],
2327
+ "num_descriptors": [],
2328
+ "num_failed_transfers": [],
2329
+ "num_failed_notifications": [],
2330
+ }
2331
+
2332
+ def record_transfer(self, res: nixlXferTelemetry):
2333
+ # Keep metrics units consistent with rest of the code: time us->s
2334
+ self.data["transfer_duration"].append(res.xferDuration / 1e6)
2335
+ self.data["post_duration"].append(res.postDuration / 1e6)
2336
+ self.data["bytes_transferred"].append(res.totalBytes)
2337
+ self.data["num_descriptors"].append(res.descCount)
2338
+
2339
+ def record_failed_transfer(self):
2340
+ """Record a failed NIXL transfer operation."""
2341
+ self.data["num_failed_transfers"].append(1.0)
2342
+
2343
+ def record_failed_notification(self):
2344
+ """Record a failed NIXL notification (send_notif)."""
2345
+ self.data["num_failed_notifications"].append(1.0)
2346
+
2347
+ def clone_and_reset(self) -> "NixlKVConnectorStats":
2348
+ old = copy.copy(self)
2349
+ self.reset()
2350
+ return old
2351
+
2352
+ def is_empty(self) -> bool:
2353
+ return self.num_successful_transfers == 0
2354
+
2355
+ def aggregate(self, other: KVConnectorStats) -> KVConnectorStats:
2356
+ if not other.is_empty():
2357
+ for k, v in other.data.items():
2358
+ accumulator = self.data[k]
2359
+ assert isinstance(accumulator, list)
2360
+ accumulator.extend(v)
2361
+ return self
2362
+
2363
+ def reduce(self) -> dict[str, int | float]:
2364
+ # Compute compact representative stats suitable for CLI logging
2365
+ if self.is_empty():
2366
+ return {
2367
+ "Num successful transfers": 0,
2368
+ "Avg xfer time (ms)": 0,
2369
+ "P90 xfer time (ms)": 0,
2370
+ "Avg post time (ms)": 0,
2371
+ "P90 post time (ms)": 0,
2372
+ "Avg MB per transfer": 0,
2373
+ "Throughput (MB/s)": 0,
2374
+ "Avg number of descriptors": 0,
2375
+ }
2376
+
2377
+ xfer_time = np.asarray(self.data["transfer_duration"])
2378
+ post_time = np.asarray(self.data["post_duration"])
2379
+ # Convert to MB for CLI logging.
2380
+ mb = np.asarray(self.data["bytes_transferred"]) / 2**20
2381
+ descs = np.asarray(self.data["num_descriptors"], dtype=np.uint32)
2382
+ n = len(descs)
2383
+ assert n == self.num_successful_transfers
2384
+
2385
+ total_mb = mb.sum()
2386
+ avg_mb = total_mb / n
2387
+
2388
+ total_time_seconds = xfer_time.sum()
2389
+ throughput_mb_s = total_mb / total_time_seconds
2390
+
2391
+ return {
2392
+ "Num successful transfers": n,
2393
+ "Avg xfer time (ms)": round(xfer_time.mean() * 1e3, 3),
2394
+ "P90 xfer time (ms)": round(np.percentile(xfer_time, 90).item() * 1e3, 3),
2395
+ "Avg post time (ms)": round(post_time.mean() * 1e3, 3),
2396
+ "P90 post time (ms)": round(np.percentile(post_time, 90).item() * 1e3, 3),
2397
+ "Avg MB per transfer": round(avg_mb, 3),
2398
+ "Throughput (MB/s)": round(throughput_mb_s, 3),
2399
+ "Avg number of descriptors": round(descs.mean(), 1),
2400
+ }
2401
+
2402
+ @property
2403
+ def num_successful_transfers(self) -> int:
2404
+ return len(self.data["transfer_duration"])
2405
+
2406
+
2407
+ class NixlPromMetrics(KVConnectorPromMetrics):
2408
+ def __init__(
2409
+ self,
2410
+ vllm_config: VllmConfig,
2411
+ metric_types: dict[type[PromMetric], type[PromMetricT]],
2412
+ labelnames: list[str],
2413
+ per_engine_labelvalues: dict[int, list[object]],
2414
+ ):
2415
+ super().__init__(vllm_config, metric_types, labelnames, per_engine_labelvalues)
2416
+
2417
+ buckets = [
2418
+ 0.001,
2419
+ 0.005,
2420
+ 0.01,
2421
+ 0.025,
2422
+ 0.05,
2423
+ 0.075,
2424
+ 0.1,
2425
+ 0.2,
2426
+ 0.3,
2427
+ 0.5,
2428
+ 0.75,
2429
+ 1.0,
2430
+ 5.0,
2431
+ ]
2432
+ nixl_histogram_xfer_time = self._histogram_cls(
2433
+ name="vllm:nixl_xfer_time_seconds",
2434
+ documentation="Histogram of transfer duration for NIXL KV Cache transfers.",
2435
+ buckets=buckets[1:],
2436
+ labelnames=labelnames,
2437
+ )
2438
+ self.nixl_histogram_xfer_time = self.make_per_engine(nixl_histogram_xfer_time)
2439
+ nixl_histogram_post_time = self._histogram_cls(
2440
+ name="vllm:nixl_post_time_seconds",
2441
+ documentation="Histogram of transfer post time for NIXL KV"
2442
+ " Cache transfers.",
2443
+ buckets=buckets,
2444
+ labelnames=labelnames,
2445
+ )
2446
+ self.nixl_histogram_post_time = self.make_per_engine(nixl_histogram_post_time)
2447
+ # uniform 2kb to 16gb range
2448
+ buckets = [2 ** (10 + i) for i in range(1, 25, 2)]
2449
+ nixl_histogram_bytes_transferred = self._histogram_cls(
2450
+ name="vllm:nixl_bytes_transferred",
2451
+ documentation="Histogram of bytes transferred per NIXL KV Cache transfers.",
2452
+ buckets=buckets,
2453
+ labelnames=labelnames,
2454
+ )
2455
+ self.nixl_histogram_bytes_transferred = self.make_per_engine(
2456
+ nixl_histogram_bytes_transferred
2457
+ )
2458
+ buckets = [
2459
+ 10,
2460
+ 20,
2461
+ 30,
2462
+ 50,
2463
+ 75,
2464
+ 100,
2465
+ 200,
2466
+ 400,
2467
+ 1000,
2468
+ 2000,
2469
+ 4000,
2470
+ 10000,
2471
+ 20000,
2472
+ 50000,
2473
+ ]
2474
+ nixl_histogram_num_descriptors = self._histogram_cls(
2475
+ name="vllm:nixl_num_descriptors",
2476
+ documentation="Histogram of number of descriptors per NIXL"
2477
+ " KV Cache transfers.",
2478
+ buckets=buckets,
2479
+ labelnames=labelnames,
2480
+ )
2481
+ self.nixl_histogram_num_descriptors = self.make_per_engine(
2482
+ nixl_histogram_num_descriptors
2483
+ )
2484
+ counter_nixl_num_failed_transfers = self._counter_cls(
2485
+ name="vllm:nixl_num_failed_transfers",
2486
+ documentation="Number of failed NIXL KV Cache transfers.",
2487
+ labelnames=labelnames,
2488
+ )
2489
+ self.counter_nixl_num_failed_transfers = self.make_per_engine(
2490
+ counter_nixl_num_failed_transfers
2491
+ )
2492
+ counter_nixl_num_failed_notifications = self._counter_cls(
2493
+ name="vllm:nixl_num_failed_notifications",
2494
+ documentation="Number of failed NIXL KV Cache notifications.",
2495
+ labelnames=labelnames,
2496
+ )
2497
+ self.counter_nixl_num_failed_notifications = self.make_per_engine(
2498
+ counter_nixl_num_failed_notifications
2499
+ )
2500
+
2501
+ def observe(self, transfer_stats_data: dict[str, Any], engine_idx: int = 0):
2502
+ for prom_obj, list_item_key in zip(
2503
+ [
2504
+ self.nixl_histogram_xfer_time,
2505
+ self.nixl_histogram_post_time,
2506
+ self.nixl_histogram_bytes_transferred,
2507
+ self.nixl_histogram_num_descriptors,
2508
+ ],
2509
+ [
2510
+ "transfer_duration",
2511
+ "post_duration",
2512
+ "bytes_transferred",
2513
+ "num_descriptors",
2514
+ ],
2515
+ ):
2516
+ for list_item in transfer_stats_data[list_item_key]:
2517
+ prom_obj[engine_idx].observe(list_item)
2518
+ for counter_obj, counter_item_key in zip(
2519
+ [
2520
+ self.counter_nixl_num_failed_transfers,
2521
+ self.counter_nixl_num_failed_notifications,
2522
+ ],
2523
+ ["num_failed_transfers", "num_failed_notifications"],
2524
+ ):
2525
+ for list_item in transfer_stats_data[counter_item_key]:
2526
+ counter_obj[engine_idx].inc(list_item)