vllm-cpu-avx512vnni 0.13.0__cp313-cp313-manylinux_2_28_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of vllm-cpu-avx512vnni might be problematic. Click here for more details.

Files changed (1641) hide show
  1. vllm/_C.abi3.so +0 -0
  2. vllm/__init__.py +225 -0
  3. vllm/_aiter_ops.py +1260 -0
  4. vllm/_bc_linter.py +54 -0
  5. vllm/_custom_ops.py +3080 -0
  6. vllm/_ipex_ops.py +457 -0
  7. vllm/_version.py +34 -0
  8. vllm/assets/__init__.py +0 -0
  9. vllm/assets/audio.py +43 -0
  10. vllm/assets/base.py +40 -0
  11. vllm/assets/image.py +59 -0
  12. vllm/assets/video.py +149 -0
  13. vllm/attention/__init__.py +0 -0
  14. vllm/attention/backends/__init__.py +0 -0
  15. vllm/attention/backends/abstract.py +443 -0
  16. vllm/attention/backends/registry.py +254 -0
  17. vllm/attention/backends/utils.py +33 -0
  18. vllm/attention/layer.py +969 -0
  19. vllm/attention/layers/__init__.py +0 -0
  20. vllm/attention/layers/chunked_local_attention.py +120 -0
  21. vllm/attention/layers/cross_attention.py +178 -0
  22. vllm/attention/layers/encoder_only_attention.py +103 -0
  23. vllm/attention/layers/mm_encoder_attention.py +284 -0
  24. vllm/attention/ops/__init__.py +0 -0
  25. vllm/attention/ops/chunked_prefill_paged_decode.py +401 -0
  26. vllm/attention/ops/common.py +469 -0
  27. vllm/attention/ops/flashmla.py +251 -0
  28. vllm/attention/ops/merge_attn_states.py +47 -0
  29. vllm/attention/ops/paged_attn.py +51 -0
  30. vllm/attention/ops/pallas_kv_cache_update.py +130 -0
  31. vllm/attention/ops/prefix_prefill.py +814 -0
  32. vllm/attention/ops/rocm_aiter_mla_sparse.py +210 -0
  33. vllm/attention/ops/triton_decode_attention.py +712 -0
  34. vllm/attention/ops/triton_merge_attn_states.py +116 -0
  35. vllm/attention/ops/triton_reshape_and_cache_flash.py +184 -0
  36. vllm/attention/ops/triton_unified_attention.py +1047 -0
  37. vllm/attention/ops/vit_attn_wrappers.py +139 -0
  38. vllm/attention/selector.py +145 -0
  39. vllm/attention/utils/__init__.py +0 -0
  40. vllm/attention/utils/fa_utils.py +118 -0
  41. vllm/attention/utils/kv_sharing_utils.py +33 -0
  42. vllm/attention/utils/kv_transfer_utils.py +60 -0
  43. vllm/beam_search.py +88 -0
  44. vllm/benchmarks/__init__.py +0 -0
  45. vllm/benchmarks/datasets.py +3228 -0
  46. vllm/benchmarks/latency.py +170 -0
  47. vllm/benchmarks/lib/__init__.py +3 -0
  48. vllm/benchmarks/lib/endpoint_request_func.py +777 -0
  49. vllm/benchmarks/lib/ready_checker.py +72 -0
  50. vllm/benchmarks/lib/utils.py +79 -0
  51. vllm/benchmarks/serve.py +1538 -0
  52. vllm/benchmarks/startup.py +326 -0
  53. vllm/benchmarks/sweep/__init__.py +0 -0
  54. vllm/benchmarks/sweep/cli.py +41 -0
  55. vllm/benchmarks/sweep/param_sweep.py +158 -0
  56. vllm/benchmarks/sweep/plot.py +675 -0
  57. vllm/benchmarks/sweep/plot_pareto.py +393 -0
  58. vllm/benchmarks/sweep/serve.py +450 -0
  59. vllm/benchmarks/sweep/serve_sla.py +492 -0
  60. vllm/benchmarks/sweep/server.py +114 -0
  61. vllm/benchmarks/sweep/sla_sweep.py +132 -0
  62. vllm/benchmarks/sweep/utils.py +4 -0
  63. vllm/benchmarks/throughput.py +808 -0
  64. vllm/collect_env.py +857 -0
  65. vllm/compilation/__init__.py +0 -0
  66. vllm/compilation/activation_quant_fusion.py +209 -0
  67. vllm/compilation/backends.py +839 -0
  68. vllm/compilation/base_static_graph.py +57 -0
  69. vllm/compilation/caching.py +180 -0
  70. vllm/compilation/collective_fusion.py +1215 -0
  71. vllm/compilation/compiler_interface.py +639 -0
  72. vllm/compilation/counter.py +48 -0
  73. vllm/compilation/cuda_graph.py +302 -0
  74. vllm/compilation/decorators.py +626 -0
  75. vllm/compilation/fix_functionalization.py +266 -0
  76. vllm/compilation/fusion.py +550 -0
  77. vllm/compilation/fusion_attn.py +359 -0
  78. vllm/compilation/fx_utils.py +91 -0
  79. vllm/compilation/inductor_pass.py +138 -0
  80. vllm/compilation/matcher_utils.py +361 -0
  81. vllm/compilation/monitor.py +62 -0
  82. vllm/compilation/noop_elimination.py +130 -0
  83. vllm/compilation/partition_rules.py +72 -0
  84. vllm/compilation/pass_manager.py +155 -0
  85. vllm/compilation/piecewise_backend.py +178 -0
  86. vllm/compilation/post_cleanup.py +21 -0
  87. vllm/compilation/qk_norm_rope_fusion.py +238 -0
  88. vllm/compilation/rocm_aiter_fusion.py +242 -0
  89. vllm/compilation/sequence_parallelism.py +364 -0
  90. vllm/compilation/torch25_custom_graph_pass.py +44 -0
  91. vllm/compilation/vllm_inductor_pass.py +173 -0
  92. vllm/compilation/wrapper.py +319 -0
  93. vllm/config/__init__.py +108 -0
  94. vllm/config/attention.py +114 -0
  95. vllm/config/cache.py +232 -0
  96. vllm/config/compilation.py +1140 -0
  97. vllm/config/device.py +75 -0
  98. vllm/config/ec_transfer.py +110 -0
  99. vllm/config/kv_events.py +56 -0
  100. vllm/config/kv_transfer.py +119 -0
  101. vllm/config/load.py +124 -0
  102. vllm/config/lora.py +96 -0
  103. vllm/config/model.py +2190 -0
  104. vllm/config/multimodal.py +247 -0
  105. vllm/config/observability.py +140 -0
  106. vllm/config/parallel.py +660 -0
  107. vllm/config/pooler.py +126 -0
  108. vllm/config/profiler.py +199 -0
  109. vllm/config/scheduler.py +299 -0
  110. vllm/config/speculative.py +644 -0
  111. vllm/config/speech_to_text.py +38 -0
  112. vllm/config/structured_outputs.py +78 -0
  113. vllm/config/utils.py +370 -0
  114. vllm/config/vllm.py +1434 -0
  115. vllm/connections.py +189 -0
  116. vllm/device_allocator/__init__.py +0 -0
  117. vllm/device_allocator/cumem.py +327 -0
  118. vllm/distributed/__init__.py +6 -0
  119. vllm/distributed/communication_op.py +43 -0
  120. vllm/distributed/device_communicators/__init__.py +0 -0
  121. vllm/distributed/device_communicators/all2all.py +490 -0
  122. vllm/distributed/device_communicators/all_reduce_utils.py +344 -0
  123. vllm/distributed/device_communicators/base_device_communicator.py +297 -0
  124. vllm/distributed/device_communicators/cpu_communicator.py +209 -0
  125. vllm/distributed/device_communicators/cuda_communicator.py +340 -0
  126. vllm/distributed/device_communicators/cuda_wrapper.py +216 -0
  127. vllm/distributed/device_communicators/custom_all_reduce.py +326 -0
  128. vllm/distributed/device_communicators/mnnvl_compat.py +27 -0
  129. vllm/distributed/device_communicators/pynccl.py +386 -0
  130. vllm/distributed/device_communicators/pynccl_allocator.py +191 -0
  131. vllm/distributed/device_communicators/pynccl_wrapper.py +564 -0
  132. vllm/distributed/device_communicators/quick_all_reduce.py +290 -0
  133. vllm/distributed/device_communicators/ray_communicator.py +259 -0
  134. vllm/distributed/device_communicators/shm_broadcast.py +778 -0
  135. vllm/distributed/device_communicators/shm_object_storage.py +697 -0
  136. vllm/distributed/device_communicators/symm_mem.py +156 -0
  137. vllm/distributed/device_communicators/tpu_communicator.py +99 -0
  138. vllm/distributed/device_communicators/xpu_communicator.py +95 -0
  139. vllm/distributed/ec_transfer/__init__.py +14 -0
  140. vllm/distributed/ec_transfer/ec_connector/__init__.py +0 -0
  141. vllm/distributed/ec_transfer/ec_connector/base.py +247 -0
  142. vllm/distributed/ec_transfer/ec_connector/example_connector.py +201 -0
  143. vllm/distributed/ec_transfer/ec_connector/factory.py +85 -0
  144. vllm/distributed/ec_transfer/ec_transfer_state.py +42 -0
  145. vllm/distributed/eplb/__init__.py +3 -0
  146. vllm/distributed/eplb/async_worker.py +115 -0
  147. vllm/distributed/eplb/eplb_state.py +1164 -0
  148. vllm/distributed/eplb/policy/__init__.py +19 -0
  149. vllm/distributed/eplb/policy/abstract.py +40 -0
  150. vllm/distributed/eplb/policy/default.py +267 -0
  151. vllm/distributed/eplb/rebalance_execute.py +529 -0
  152. vllm/distributed/kv_events.py +499 -0
  153. vllm/distributed/kv_transfer/README.md +29 -0
  154. vllm/distributed/kv_transfer/__init__.py +20 -0
  155. vllm/distributed/kv_transfer/disagg_prefill_workflow.jpg +0 -0
  156. vllm/distributed/kv_transfer/kv_connector/__init__.py +0 -0
  157. vllm/distributed/kv_transfer/kv_connector/base.py +10 -0
  158. vllm/distributed/kv_transfer/kv_connector/factory.py +197 -0
  159. vllm/distributed/kv_transfer/kv_connector/utils.py +322 -0
  160. vllm/distributed/kv_transfer/kv_connector/v1/__init__.py +19 -0
  161. vllm/distributed/kv_transfer/kv_connector/v1/base.py +597 -0
  162. vllm/distributed/kv_transfer/kv_connector/v1/decode_bench_connector.py +419 -0
  163. vllm/distributed/kv_transfer/kv_connector/v1/example_connector.py +450 -0
  164. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_connector.py +327 -0
  165. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/__init__.py +18 -0
  166. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/multi_process_adapter.py +378 -0
  167. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/utils.py +221 -0
  168. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_integration/vllm_v1_adapter.py +1418 -0
  169. vllm/distributed/kv_transfer/kv_connector/v1/lmcache_mp_connector.py +895 -0
  170. vllm/distributed/kv_transfer/kv_connector/v1/metrics.py +186 -0
  171. vllm/distributed/kv_transfer/kv_connector/v1/mooncake_connector.py +914 -0
  172. vllm/distributed/kv_transfer/kv_connector/v1/multi_connector.py +464 -0
  173. vllm/distributed/kv_transfer/kv_connector/v1/nixl_connector.py +2526 -0
  174. vllm/distributed/kv_transfer/kv_connector/v1/offloading_connector.py +538 -0
  175. vllm/distributed/kv_transfer/kv_connector/v1/p2p/__init__.py +0 -0
  176. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_connector.py +531 -0
  177. vllm/distributed/kv_transfer/kv_connector/v1/p2p/p2p_nccl_engine.py +632 -0
  178. vllm/distributed/kv_transfer/kv_connector/v1/p2p/tensor_memory_pool.py +273 -0
  179. vllm/distributed/kv_transfer/kv_transfer_state.py +78 -0
  180. vllm/distributed/parallel_state.py +1795 -0
  181. vllm/distributed/tpu_distributed_utils.py +188 -0
  182. vllm/distributed/utils.py +545 -0
  183. vllm/engine/__init__.py +0 -0
  184. vllm/engine/arg_utils.py +2068 -0
  185. vllm/engine/async_llm_engine.py +6 -0
  186. vllm/engine/llm_engine.py +6 -0
  187. vllm/engine/protocol.py +190 -0
  188. vllm/entrypoints/__init__.py +0 -0
  189. vllm/entrypoints/anthropic/__init__.py +0 -0
  190. vllm/entrypoints/anthropic/protocol.py +162 -0
  191. vllm/entrypoints/anthropic/serving_messages.py +468 -0
  192. vllm/entrypoints/api_server.py +185 -0
  193. vllm/entrypoints/chat_utils.py +1903 -0
  194. vllm/entrypoints/cli/__init__.py +15 -0
  195. vllm/entrypoints/cli/benchmark/__init__.py +0 -0
  196. vllm/entrypoints/cli/benchmark/base.py +25 -0
  197. vllm/entrypoints/cli/benchmark/latency.py +21 -0
  198. vllm/entrypoints/cli/benchmark/main.py +56 -0
  199. vllm/entrypoints/cli/benchmark/serve.py +21 -0
  200. vllm/entrypoints/cli/benchmark/startup.py +21 -0
  201. vllm/entrypoints/cli/benchmark/sweep.py +21 -0
  202. vllm/entrypoints/cli/benchmark/throughput.py +21 -0
  203. vllm/entrypoints/cli/collect_env.py +38 -0
  204. vllm/entrypoints/cli/main.py +79 -0
  205. vllm/entrypoints/cli/openai.py +260 -0
  206. vllm/entrypoints/cli/run_batch.py +68 -0
  207. vllm/entrypoints/cli/serve.py +249 -0
  208. vllm/entrypoints/cli/types.py +29 -0
  209. vllm/entrypoints/constants.py +12 -0
  210. vllm/entrypoints/context.py +835 -0
  211. vllm/entrypoints/launcher.py +175 -0
  212. vllm/entrypoints/llm.py +1790 -0
  213. vllm/entrypoints/logger.py +84 -0
  214. vllm/entrypoints/openai/__init__.py +0 -0
  215. vllm/entrypoints/openai/api_server.py +1469 -0
  216. vllm/entrypoints/openai/cli_args.py +302 -0
  217. vllm/entrypoints/openai/orca_metrics.py +120 -0
  218. vllm/entrypoints/openai/parser/__init__.py +0 -0
  219. vllm/entrypoints/openai/parser/harmony_utils.py +825 -0
  220. vllm/entrypoints/openai/parser/responses_parser.py +135 -0
  221. vllm/entrypoints/openai/protocol.py +2496 -0
  222. vllm/entrypoints/openai/run_batch.py +631 -0
  223. vllm/entrypoints/openai/serving_chat.py +1822 -0
  224. vllm/entrypoints/openai/serving_completion.py +729 -0
  225. vllm/entrypoints/openai/serving_engine.py +1542 -0
  226. vllm/entrypoints/openai/serving_models.py +304 -0
  227. vllm/entrypoints/openai/serving_responses.py +2080 -0
  228. vllm/entrypoints/openai/serving_transcription.py +168 -0
  229. vllm/entrypoints/openai/speech_to_text.py +559 -0
  230. vllm/entrypoints/openai/tool_parsers/__init__.py +33 -0
  231. vllm/entrypoints/openai/utils.py +49 -0
  232. vllm/entrypoints/pooling/__init__.py +16 -0
  233. vllm/entrypoints/pooling/classify/__init__.py +0 -0
  234. vllm/entrypoints/pooling/classify/api_router.py +50 -0
  235. vllm/entrypoints/pooling/classify/protocol.py +181 -0
  236. vllm/entrypoints/pooling/classify/serving.py +233 -0
  237. vllm/entrypoints/pooling/embed/__init__.py +0 -0
  238. vllm/entrypoints/pooling/embed/api_router.py +67 -0
  239. vllm/entrypoints/pooling/embed/protocol.py +208 -0
  240. vllm/entrypoints/pooling/embed/serving.py +684 -0
  241. vllm/entrypoints/pooling/pooling/__init__.py +0 -0
  242. vllm/entrypoints/pooling/pooling/api_router.py +63 -0
  243. vllm/entrypoints/pooling/pooling/protocol.py +148 -0
  244. vllm/entrypoints/pooling/pooling/serving.py +354 -0
  245. vllm/entrypoints/pooling/score/__init__.py +0 -0
  246. vllm/entrypoints/pooling/score/api_router.py +149 -0
  247. vllm/entrypoints/pooling/score/protocol.py +146 -0
  248. vllm/entrypoints/pooling/score/serving.py +508 -0
  249. vllm/entrypoints/renderer.py +410 -0
  250. vllm/entrypoints/responses_utils.py +249 -0
  251. vllm/entrypoints/sagemaker/__init__.py +4 -0
  252. vllm/entrypoints/sagemaker/routes.py +118 -0
  253. vllm/entrypoints/score_utils.py +237 -0
  254. vllm/entrypoints/serve/__init__.py +60 -0
  255. vllm/entrypoints/serve/disagg/__init__.py +0 -0
  256. vllm/entrypoints/serve/disagg/api_router.py +110 -0
  257. vllm/entrypoints/serve/disagg/protocol.py +90 -0
  258. vllm/entrypoints/serve/disagg/serving.py +285 -0
  259. vllm/entrypoints/serve/elastic_ep/__init__.py +0 -0
  260. vllm/entrypoints/serve/elastic_ep/api_router.py +96 -0
  261. vllm/entrypoints/serve/elastic_ep/middleware.py +49 -0
  262. vllm/entrypoints/serve/instrumentator/__init__.py +0 -0
  263. vllm/entrypoints/serve/instrumentator/health.py +33 -0
  264. vllm/entrypoints/serve/instrumentator/metrics.py +45 -0
  265. vllm/entrypoints/serve/lora/__init__.py +0 -0
  266. vllm/entrypoints/serve/lora/api_router.py +70 -0
  267. vllm/entrypoints/serve/profile/__init__.py +0 -0
  268. vllm/entrypoints/serve/profile/api_router.py +46 -0
  269. vllm/entrypoints/serve/rlhf/__init__.py +0 -0
  270. vllm/entrypoints/serve/rlhf/api_router.py +102 -0
  271. vllm/entrypoints/serve/sleep/__init__.py +0 -0
  272. vllm/entrypoints/serve/sleep/api_router.py +60 -0
  273. vllm/entrypoints/serve/tokenize/__init__.py +0 -0
  274. vllm/entrypoints/serve/tokenize/api_router.py +118 -0
  275. vllm/entrypoints/serve/tokenize/serving.py +204 -0
  276. vllm/entrypoints/ssl.py +78 -0
  277. vllm/entrypoints/tool.py +187 -0
  278. vllm/entrypoints/tool_server.py +234 -0
  279. vllm/entrypoints/utils.py +319 -0
  280. vllm/env_override.py +378 -0
  281. vllm/envs.py +1744 -0
  282. vllm/forward_context.py +358 -0
  283. vllm/inputs/__init__.py +44 -0
  284. vllm/inputs/data.py +359 -0
  285. vllm/inputs/parse.py +146 -0
  286. vllm/inputs/preprocess.py +717 -0
  287. vllm/logger.py +303 -0
  288. vllm/logging_utils/__init__.py +13 -0
  289. vllm/logging_utils/dump_input.py +83 -0
  290. vllm/logging_utils/formatter.py +127 -0
  291. vllm/logging_utils/lazy.py +20 -0
  292. vllm/logging_utils/log_time.py +34 -0
  293. vllm/logits_process.py +121 -0
  294. vllm/logprobs.py +206 -0
  295. vllm/lora/__init__.py +0 -0
  296. vllm/lora/layers/__init__.py +42 -0
  297. vllm/lora/layers/base.py +66 -0
  298. vllm/lora/layers/base_linear.py +165 -0
  299. vllm/lora/layers/column_parallel_linear.py +577 -0
  300. vllm/lora/layers/fused_moe.py +747 -0
  301. vllm/lora/layers/logits_processor.py +203 -0
  302. vllm/lora/layers/replicated_linear.py +70 -0
  303. vllm/lora/layers/row_parallel_linear.py +176 -0
  304. vllm/lora/layers/utils.py +74 -0
  305. vllm/lora/layers/vocal_parallel_embedding.py +140 -0
  306. vllm/lora/lora_model.py +246 -0
  307. vllm/lora/lora_weights.py +227 -0
  308. vllm/lora/model_manager.py +690 -0
  309. vllm/lora/ops/__init__.py +0 -0
  310. vllm/lora/ops/ipex_ops/__init__.py +6 -0
  311. vllm/lora/ops/ipex_ops/lora_ops.py +57 -0
  312. vllm/lora/ops/torch_ops/__init__.py +20 -0
  313. vllm/lora/ops/torch_ops/lora_ops.py +128 -0
  314. vllm/lora/ops/triton_ops/README_TUNING.md +60 -0
  315. vllm/lora/ops/triton_ops/__init__.py +21 -0
  316. vllm/lora/ops/triton_ops/fused_moe_lora_op.py +665 -0
  317. vllm/lora/ops/triton_ops/kernel_utils.py +340 -0
  318. vllm/lora/ops/triton_ops/lora_expand_op.py +310 -0
  319. vllm/lora/ops/triton_ops/lora_kernel_metadata.py +154 -0
  320. vllm/lora/ops/triton_ops/lora_shrink_op.py +287 -0
  321. vllm/lora/ops/triton_ops/utils.py +295 -0
  322. vllm/lora/ops/xla_ops/__init__.py +6 -0
  323. vllm/lora/ops/xla_ops/lora_ops.py +141 -0
  324. vllm/lora/peft_helper.py +128 -0
  325. vllm/lora/punica_wrapper/__init__.py +10 -0
  326. vllm/lora/punica_wrapper/punica_base.py +493 -0
  327. vllm/lora/punica_wrapper/punica_cpu.py +351 -0
  328. vllm/lora/punica_wrapper/punica_gpu.py +412 -0
  329. vllm/lora/punica_wrapper/punica_selector.py +21 -0
  330. vllm/lora/punica_wrapper/punica_tpu.py +358 -0
  331. vllm/lora/punica_wrapper/punica_xpu.py +276 -0
  332. vllm/lora/punica_wrapper/utils.py +150 -0
  333. vllm/lora/request.py +100 -0
  334. vllm/lora/resolver.py +88 -0
  335. vllm/lora/utils.py +315 -0
  336. vllm/lora/worker_manager.py +268 -0
  337. vllm/model_executor/__init__.py +11 -0
  338. vllm/model_executor/custom_op.py +199 -0
  339. vllm/model_executor/layers/__init__.py +0 -0
  340. vllm/model_executor/layers/activation.py +595 -0
  341. vllm/model_executor/layers/attention_layer_base.py +32 -0
  342. vllm/model_executor/layers/batch_invariant.py +1067 -0
  343. vllm/model_executor/layers/conv.py +256 -0
  344. vllm/model_executor/layers/fla/__init__.py +8 -0
  345. vllm/model_executor/layers/fla/ops/__init__.py +17 -0
  346. vllm/model_executor/layers/fla/ops/chunk.py +240 -0
  347. vllm/model_executor/layers/fla/ops/chunk_delta_h.py +344 -0
  348. vllm/model_executor/layers/fla/ops/chunk_o.py +183 -0
  349. vllm/model_executor/layers/fla/ops/chunk_scaled_dot_kkt.py +154 -0
  350. vllm/model_executor/layers/fla/ops/cumsum.py +280 -0
  351. vllm/model_executor/layers/fla/ops/fused_recurrent.py +390 -0
  352. vllm/model_executor/layers/fla/ops/index.py +41 -0
  353. vllm/model_executor/layers/fla/ops/kda.py +1351 -0
  354. vllm/model_executor/layers/fla/ops/l2norm.py +146 -0
  355. vllm/model_executor/layers/fla/ops/layernorm_guard.py +396 -0
  356. vllm/model_executor/layers/fla/ops/op.py +60 -0
  357. vllm/model_executor/layers/fla/ops/solve_tril.py +556 -0
  358. vllm/model_executor/layers/fla/ops/utils.py +194 -0
  359. vllm/model_executor/layers/fla/ops/wy_fast.py +158 -0
  360. vllm/model_executor/layers/fused_moe/__init__.py +114 -0
  361. vllm/model_executor/layers/fused_moe/all2all_utils.py +171 -0
  362. vllm/model_executor/layers/fused_moe/batched_deep_gemm_moe.py +409 -0
  363. vllm/model_executor/layers/fused_moe/config.py +1043 -0
  364. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  365. vllm/model_executor/layers/fused_moe/configs/E=1,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  366. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  367. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  368. vllm/model_executor/layers/fused_moe/configs/E=1,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  369. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  370. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  371. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H100_80GB_HBM3.json +218 -0
  372. vllm/model_executor/layers/fused_moe/configs/E=1,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  373. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  374. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  375. vllm/model_executor/layers/fused_moe/configs/E=1,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  376. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  377. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  378. vllm/model_executor/layers/fused_moe/configs/E=1,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  379. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  380. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  381. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  382. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H100,dtype=fp8_w8a8.json +123 -0
  383. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  384. vllm/model_executor/layers/fused_moe/configs/E=128,N=1024,device_name=NVIDIA_H200.json +146 -0
  385. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  386. vllm/model_executor/layers/fused_moe/configs/E=128,N=1856,device_name=NVIDIA_L40S.json +147 -0
  387. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  388. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  389. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  390. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H20.json +146 -0
  391. vllm/model_executor/layers/fused_moe/configs/E=128,N=192,device_name=NVIDIA_H200.json +146 -0
  392. vllm/model_executor/layers/fused_moe/configs/E=128,N=352,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +122 -0
  393. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  394. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  395. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  396. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  397. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  398. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20-3e.json +146 -0
  399. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H20.json +146 -0
  400. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  401. vllm/model_executor/layers/fused_moe/configs/E=128,N=384,device_name=NVIDIA_H200.json +146 -0
  402. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  403. vllm/model_executor/layers/fused_moe/configs/E=128,N=512,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  404. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +146 -0
  405. vllm/model_executor/layers/fused_moe/configs/E=128,N=704,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +114 -0
  406. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  407. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=AMD_Instinct_MI308X.json +213 -0
  408. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  409. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  410. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  411. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  412. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H20.json +146 -0
  413. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  414. vllm/model_executor/layers/fused_moe/configs/E=128,N=768,device_name=NVIDIA_H200.json +146 -0
  415. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  416. vllm/model_executor/layers/fused_moe/configs/E=128,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  417. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_H100_80GB_HBM3.json +147 -0
  418. vllm/model_executor/layers/fused_moe/configs/E=128,N=928,device_name=NVIDIA_L40S.json +147 -0
  419. vllm/model_executor/layers/fused_moe/configs/E=128,N=96,device_name=NVIDIA_H20.json +146 -0
  420. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=AMD_Instinct_MI300X.json +200 -0
  421. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  422. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_B200.json +146 -0
  423. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H100.json +146 -0
  424. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  425. vllm/model_executor/layers/fused_moe/configs/E=16,N=1024,device_name=NVIDIA_H200.json +146 -0
  426. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  427. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  428. vllm/model_executor/layers/fused_moe/configs/E=16,N=1344,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  429. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  430. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  431. vllm/model_executor/layers/fused_moe/configs/E=16,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  432. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +218 -0
  433. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  434. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  435. vllm/model_executor/layers/fused_moe/configs/E=16,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  436. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  437. vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H200.json +146 -0
  438. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  439. vllm/model_executor/layers/fused_moe/configs/E=16,N=2688,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  440. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  441. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  442. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  443. vllm/model_executor/layers/fused_moe/configs/E=16,N=3072,device_name=NVIDIA_H200,dtype=int8_w8a16.json +146 -0
  444. vllm/model_executor/layers/fused_moe/configs/E=16,N=3200,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  445. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  446. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +218 -0
  447. vllm/model_executor/layers/fused_moe/configs/E=16,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  448. vllm/model_executor/layers/fused_moe/configs/E=16,N=6400,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  449. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a16.json +146 -0
  450. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  451. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=float8.json +146 -0
  452. vllm/model_executor/layers/fused_moe/configs/E=16,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=int8_w8a16.json +146 -0
  453. vllm/model_executor/layers/fused_moe/configs/E=16,N=800,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +130 -0
  454. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI300X.json +201 -0
  455. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  456. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  457. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H20-3e.json +146 -0
  458. vllm/model_executor/layers/fused_moe/configs/E=160,N=192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +147 -0
  459. vllm/model_executor/layers/fused_moe/configs/E=160,N=320,device_name=NVIDIA_H20-3e.json +146 -0
  460. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  461. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI350_OAM,dtype=fp8_w8a8.json +164 -0
  462. vllm/model_executor/layers/fused_moe/configs/E=160,N=384,device_name=AMD_Instinct_MI355_OAM,dtype=fp8_w8a8.json +164 -0
  463. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  464. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  465. vllm/model_executor/layers/fused_moe/configs/E=160,N=640,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  466. vllm/model_executor/layers/fused_moe/configs/E=20,N=1536,device_name=NVIDIA_RTX_PRO_6000_Blackwell_Server_Edition,dtype=fp8_w8a8.json +147 -0
  467. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  468. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  469. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  470. vllm/model_executor/layers/fused_moe/configs/E=20,N=2560,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  471. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325X,block_shape=[128,128].json +200 -0
  472. vllm/model_executor/layers/fused_moe/configs/E=256,N=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  473. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  474. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  475. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  476. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8.json +146 -0
  477. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  478. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  479. vllm/model_executor/layers/fused_moe/configs/E=256,N=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  480. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  481. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  482. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  483. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  484. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  485. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  486. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H20-3e,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  487. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  488. vllm/model_executor/layers/fused_moe/configs/E=256,N=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  489. vllm/model_executor/layers/fused_moe/configs/E=256,N=384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  490. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +200 -0
  491. vllm/model_executor/layers/fused_moe/configs/E=256,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  492. vllm/model_executor/layers/fused_moe/configs/E=256,N=64,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  493. vllm/model_executor/layers/fused_moe/configs/E=32,N=1408,device_name=NVIDIA_B200.json +147 -0
  494. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  495. vllm/model_executor/layers/fused_moe/configs/E=32,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  496. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  497. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  498. vllm/model_executor/layers/fused_moe/configs/E=384,N=128,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  499. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  500. vllm/model_executor/layers/fused_moe/configs/E=384,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  501. vllm/model_executor/layers/fused_moe/configs/E=40,N=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8.json +147 -0
  502. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  503. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_GB200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  504. vllm/model_executor/layers/fused_moe/configs/E=40,N=2560,device_name=NVIDIA_H100,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  505. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  506. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_B200.json +146 -0
  507. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +147 -0
  508. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  509. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H20-3e.json +146 -0
  510. vllm/model_executor/layers/fused_moe/configs/E=512,N=128,device_name=NVIDIA_H200.json +146 -0
  511. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_B200.json +146 -0
  512. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  513. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  514. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  515. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H20-3e.json +146 -0
  516. vllm/model_executor/layers/fused_moe/configs/E=512,N=256,device_name=NVIDIA_H200.json +146 -0
  517. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_B200.json +146 -0
  518. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_GB200,dtype=fp8_w8a8.json +146 -0
  519. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  520. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H20-3e.json +146 -0
  521. vllm/model_executor/layers/fused_moe/configs/E=512,N=512,device_name=NVIDIA_H200.json +146 -0
  522. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_A100-SXM4-80GB.json +147 -0
  523. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_B200.json +146 -0
  524. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H20-3e.json +146 -0
  525. vllm/model_executor/layers/fused_moe/configs/E=512,N=64,device_name=NVIDIA_H200.json +146 -0
  526. vllm/model_executor/layers/fused_moe/configs/E=60,N=1408,device_name=AMD_Instinct_MI300X.json +200 -0
  527. vllm/model_executor/layers/fused_moe/configs/E=60,N=176,device_name=AMD_Instinct_MI300X.json +200 -0
  528. vllm/model_executor/layers/fused_moe/configs/E=60,N=352,device_name=AMD_Instinct_MI300X.json +200 -0
  529. vllm/model_executor/layers/fused_moe/configs/E=60,N=704,device_name=AMD_Instinct_MI300X.json +200 -0
  530. vllm/model_executor/layers/fused_moe/configs/E=62,N=128,device_name=AMD_Instinct_MI300X.json +200 -0
  531. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=AMD_Instinct_MI300X.json +200 -0
  532. vllm/model_executor/layers/fused_moe/configs/E=62,N=256,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  533. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=AMD_Instinct_MI300X.json +200 -0
  534. vllm/model_executor/layers/fused_moe/configs/E=62,N=512,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  535. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  536. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  537. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  538. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  539. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  540. vllm/model_executor/layers/fused_moe/configs/E=64,N=1280,device_name=NVIDIA_H200.json +146 -0
  541. vllm/model_executor/layers/fused_moe/configs/E=64,N=1408,device_name=NVIDIA_B200.json +147 -0
  542. vllm/model_executor/layers/fused_moe/configs/E=64,N=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  543. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  544. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  545. vllm/model_executor/layers/fused_moe/configs/E=64,N=2560,device_name=NVIDIA_H200.json +146 -0
  546. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  547. vllm/model_executor/layers/fused_moe/configs/E=64,N=3072,device_name=NVIDIA_H20.json +146 -0
  548. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  549. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  550. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  551. vllm/model_executor/layers/fused_moe/configs/E=64,N=320,device_name=NVIDIA_H200.json +146 -0
  552. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  553. vllm/model_executor/layers/fused_moe/configs/E=64,N=384,device_name=NVIDIA_H20.json +146 -0
  554. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  555. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_A800-SXM4-80GB.json +146 -0
  556. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  557. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  558. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  559. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  560. vllm/model_executor/layers/fused_moe/configs/E=64,N=640,device_name=NVIDIA_H200.json +146 -0
  561. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H100_PCIe,dtype=fp8_w8a8,block_shape=[128,128].json +147 -0
  562. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20,dtype=fp8_w8a8.json +146 -0
  563. vllm/model_executor/layers/fused_moe/configs/E=64,N=768,device_name=NVIDIA_H20.json +146 -0
  564. vllm/model_executor/layers/fused_moe/configs/E=64,N=896,device_name=NVIDIA_H20.json +146 -0
  565. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=bf16.json +82 -0
  566. vllm/model_executor/layers/fused_moe/configs/E=64,N=8960,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +82 -0
  567. vllm/model_executor/layers/fused_moe/configs/E=72,N=192,device_name=AMD_Instinct_MI300X.json +200 -0
  568. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=AMD_Instinct_MI300X.json +200 -0
  569. vllm/model_executor/layers/fused_moe/configs/E=72,N=384,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  570. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=AMD_Instinct_MI300X.json +200 -0
  571. vllm/model_executor/layers/fused_moe/configs/E=72,N=768,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  572. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  573. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI300X.json +200 -0
  574. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  575. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=AMD_Instinct_MI325X.json +200 -0
  576. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +138 -0
  577. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  578. vllm/model_executor/layers/fused_moe/configs/E=8,N=14336,device_name=NVIDIA_H200.json +146 -0
  579. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  580. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI300X.json +200 -0
  581. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  582. vllm/model_executor/layers/fused_moe/configs/E=8,N=16384,device_name=AMD_Instinct_MI325X.json +200 -0
  583. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  584. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI300X.json +200 -0
  585. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  586. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=AMD_Instinct_MI325X.json +200 -0
  587. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  588. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  589. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  590. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  591. vllm/model_executor/layers/fused_moe/configs/E=8,N=1792,device_name=NVIDIA_H200.json +146 -0
  592. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  593. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI300X.json +200 -0
  594. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  595. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=AMD_Instinct_MI325X.json +200 -0
  596. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  597. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  598. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  599. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +154 -0
  600. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  601. vllm/model_executor/layers/fused_moe/configs/E=8,N=2048,device_name=NVIDIA_H200.json +146 -0
  602. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  603. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI300X.json +200 -0
  604. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  605. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=AMD_Instinct_MI325X.json +200 -0
  606. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-40GB.json +146 -0
  607. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  608. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_GeForce_RTX_4090,dtype=fp8_w8a8.json +146 -0
  609. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  610. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  611. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  612. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_H200.json +146 -0
  613. vllm/model_executor/layers/fused_moe/configs/E=8,N=3584,device_name=NVIDIA_L40S.json +173 -0
  614. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  615. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI300X.json +200 -0
  616. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  617. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=AMD_Instinct_MI325X.json +200 -0
  618. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  619. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  620. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  621. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  622. vllm/model_executor/layers/fused_moe/configs/E=8,N=4096,device_name=NVIDIA_H200.json +146 -0
  623. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  624. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI300X.json +200 -0
  625. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  626. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=AMD_Instinct_MI325X.json +200 -0
  627. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_A100-SXM4-80GB.json +146 -0
  628. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  629. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H100_80GB_HBM3.json +146 -0
  630. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  631. vllm/model_executor/layers/fused_moe/configs/E=8,N=7168,device_name=NVIDIA_H200.json +146 -0
  632. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8.json +164 -0
  633. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI300X.json +200 -0
  634. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8.json +164 -0
  635. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=AMD_Instinct_MI325X.json +200 -0
  636. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8.json +146 -0
  637. vllm/model_executor/layers/fused_moe/configs/E=8,N=8192,device_name=NVIDIA_H200,dtype=fp8_w8a8.json +146 -0
  638. vllm/model_executor/layers/fused_moe/configs/README +12 -0
  639. vllm/model_executor/layers/fused_moe/cpu_fused_moe.py +292 -0
  640. vllm/model_executor/layers/fused_moe/cutlass_moe.py +1453 -0
  641. vllm/model_executor/layers/fused_moe/deep_gemm_moe.py +358 -0
  642. vllm/model_executor/layers/fused_moe/deep_gemm_utils.py +427 -0
  643. vllm/model_executor/layers/fused_moe/deepep_ht_prepare_finalize.py +420 -0
  644. vllm/model_executor/layers/fused_moe/deepep_ll_prepare_finalize.py +434 -0
  645. vllm/model_executor/layers/fused_moe/flashinfer_cutedsl_moe.py +376 -0
  646. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_moe.py +307 -0
  647. vllm/model_executor/layers/fused_moe/flashinfer_cutlass_prepare_finalize.py +362 -0
  648. vllm/model_executor/layers/fused_moe/flashinfer_trtllm_moe.py +192 -0
  649. vllm/model_executor/layers/fused_moe/fused_batched_moe.py +1012 -0
  650. vllm/model_executor/layers/fused_moe/fused_marlin_moe.py +825 -0
  651. vllm/model_executor/layers/fused_moe/fused_moe.py +2223 -0
  652. vllm/model_executor/layers/fused_moe/fused_moe_method_base.py +103 -0
  653. vllm/model_executor/layers/fused_moe/fused_moe_modular_method.py +119 -0
  654. vllm/model_executor/layers/fused_moe/gpt_oss_triton_kernels_moe.py +524 -0
  655. vllm/model_executor/layers/fused_moe/layer.py +2133 -0
  656. vllm/model_executor/layers/fused_moe/modular_kernel.py +1302 -0
  657. vllm/model_executor/layers/fused_moe/moe_align_block_size.py +192 -0
  658. vllm/model_executor/layers/fused_moe/moe_pallas.py +83 -0
  659. vllm/model_executor/layers/fused_moe/moe_permute_unpermute.py +229 -0
  660. vllm/model_executor/layers/fused_moe/moe_torch_iterative.py +60 -0
  661. vllm/model_executor/layers/fused_moe/pplx_prepare_finalize.py +362 -0
  662. vllm/model_executor/layers/fused_moe/prepare_finalize.py +78 -0
  663. vllm/model_executor/layers/fused_moe/rocm_aiter_fused_moe.py +265 -0
  664. vllm/model_executor/layers/fused_moe/routing_simulator.py +310 -0
  665. vllm/model_executor/layers/fused_moe/shared_fused_moe.py +96 -0
  666. vllm/model_executor/layers/fused_moe/topk_weight_and_reduce.py +171 -0
  667. vllm/model_executor/layers/fused_moe/triton_deep_gemm_moe.py +163 -0
  668. vllm/model_executor/layers/fused_moe/trtllm_moe.py +143 -0
  669. vllm/model_executor/layers/fused_moe/unquantized_fused_moe_method.py +455 -0
  670. vllm/model_executor/layers/fused_moe/utils.py +332 -0
  671. vllm/model_executor/layers/kda.py +442 -0
  672. vllm/model_executor/layers/layernorm.py +442 -0
  673. vllm/model_executor/layers/lightning_attn.py +735 -0
  674. vllm/model_executor/layers/linear.py +1424 -0
  675. vllm/model_executor/layers/logits_processor.py +106 -0
  676. vllm/model_executor/layers/mamba/__init__.py +0 -0
  677. vllm/model_executor/layers/mamba/abstract.py +68 -0
  678. vllm/model_executor/layers/mamba/linear_attn.py +388 -0
  679. vllm/model_executor/layers/mamba/mamba_mixer.py +526 -0
  680. vllm/model_executor/layers/mamba/mamba_mixer2.py +930 -0
  681. vllm/model_executor/layers/mamba/mamba_utils.py +225 -0
  682. vllm/model_executor/layers/mamba/ops/__init__.py +0 -0
  683. vllm/model_executor/layers/mamba/ops/causal_conv1d.py +1240 -0
  684. vllm/model_executor/layers/mamba/ops/layernorm_gated.py +172 -0
  685. vllm/model_executor/layers/mamba/ops/mamba_ssm.py +586 -0
  686. vllm/model_executor/layers/mamba/ops/ssd_bmm.py +211 -0
  687. vllm/model_executor/layers/mamba/ops/ssd_chunk_scan.py +456 -0
  688. vllm/model_executor/layers/mamba/ops/ssd_chunk_state.py +700 -0
  689. vllm/model_executor/layers/mamba/ops/ssd_combined.py +230 -0
  690. vllm/model_executor/layers/mamba/ops/ssd_state_passing.py +157 -0
  691. vllm/model_executor/layers/mamba/short_conv.py +255 -0
  692. vllm/model_executor/layers/mla.py +176 -0
  693. vllm/model_executor/layers/pooler.py +830 -0
  694. vllm/model_executor/layers/quantization/__init__.py +179 -0
  695. vllm/model_executor/layers/quantization/auto_round.py +454 -0
  696. vllm/model_executor/layers/quantization/awq.py +277 -0
  697. vllm/model_executor/layers/quantization/awq_marlin.py +793 -0
  698. vllm/model_executor/layers/quantization/awq_triton.py +337 -0
  699. vllm/model_executor/layers/quantization/base_config.py +170 -0
  700. vllm/model_executor/layers/quantization/bitblas.py +502 -0
  701. vllm/model_executor/layers/quantization/bitsandbytes.py +626 -0
  702. vllm/model_executor/layers/quantization/compressed_tensors/__init__.py +3 -0
  703. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +986 -0
  704. vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors_moe.py +2645 -0
  705. vllm/model_executor/layers/quantization/compressed_tensors/schemes/__init__.py +35 -0
  706. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py +392 -0
  707. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_scheme.py +55 -0
  708. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_24.py +176 -0
  709. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a16_nvfp4.py +124 -0
  710. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a4_nvfp4.py +218 -0
  711. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_fp8.py +176 -0
  712. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w4a8_int.py +153 -0
  713. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a16_fp8.py +138 -0
  714. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +200 -0
  715. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +125 -0
  716. vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_wNa16.py +230 -0
  717. vllm/model_executor/layers/quantization/compressed_tensors/transform/__init__.py +0 -0
  718. vllm/model_executor/layers/quantization/compressed_tensors/transform/linear.py +260 -0
  719. vllm/model_executor/layers/quantization/compressed_tensors/transform/module.py +173 -0
  720. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/__init__.py +0 -0
  721. vllm/model_executor/layers/quantization/compressed_tensors/transform/schemes/linear_qutlass_nvfp4.py +64 -0
  722. vllm/model_executor/layers/quantization/compressed_tensors/transform/utils.py +13 -0
  723. vllm/model_executor/layers/quantization/compressed_tensors/triton_scaled_mm.py +224 -0
  724. vllm/model_executor/layers/quantization/compressed_tensors/utils.py +216 -0
  725. vllm/model_executor/layers/quantization/cpu_wna16.py +625 -0
  726. vllm/model_executor/layers/quantization/deepspeedfp.py +218 -0
  727. vllm/model_executor/layers/quantization/experts_int8.py +207 -0
  728. vllm/model_executor/layers/quantization/fbgemm_fp8.py +195 -0
  729. vllm/model_executor/layers/quantization/fp8.py +1461 -0
  730. vllm/model_executor/layers/quantization/fp_quant.py +420 -0
  731. vllm/model_executor/layers/quantization/gguf.py +677 -0
  732. vllm/model_executor/layers/quantization/gptq.py +393 -0
  733. vllm/model_executor/layers/quantization/gptq_bitblas.py +482 -0
  734. vllm/model_executor/layers/quantization/gptq_marlin.py +932 -0
  735. vllm/model_executor/layers/quantization/gptq_marlin_24.py +320 -0
  736. vllm/model_executor/layers/quantization/hqq_marlin.py +372 -0
  737. vllm/model_executor/layers/quantization/inc.py +65 -0
  738. vllm/model_executor/layers/quantization/input_quant_fp8.py +202 -0
  739. vllm/model_executor/layers/quantization/ipex_quant.py +487 -0
  740. vllm/model_executor/layers/quantization/kernels/__init__.py +0 -0
  741. vllm/model_executor/layers/quantization/kernels/mixed_precision/MPLinearKernel.py +94 -0
  742. vllm/model_executor/layers/quantization/kernels/mixed_precision/__init__.py +109 -0
  743. vllm/model_executor/layers/quantization/kernels/mixed_precision/allspark.py +115 -0
  744. vllm/model_executor/layers/quantization/kernels/mixed_precision/bitblas.py +323 -0
  745. vllm/model_executor/layers/quantization/kernels/mixed_precision/conch.py +98 -0
  746. vllm/model_executor/layers/quantization/kernels/mixed_precision/cutlass.py +130 -0
  747. vllm/model_executor/layers/quantization/kernels/mixed_precision/dynamic_4bit.py +111 -0
  748. vllm/model_executor/layers/quantization/kernels/mixed_precision/exllama.py +161 -0
  749. vllm/model_executor/layers/quantization/kernels/mixed_precision/machete.py +159 -0
  750. vllm/model_executor/layers/quantization/kernels/mixed_precision/marlin.py +200 -0
  751. vllm/model_executor/layers/quantization/kernels/mixed_precision/xpu.py +97 -0
  752. vllm/model_executor/layers/quantization/kernels/scaled_mm/ScaledMMLinearKernel.py +76 -0
  753. vllm/model_executor/layers/quantization/kernels/scaled_mm/__init__.py +81 -0
  754. vllm/model_executor/layers/quantization/kernels/scaled_mm/aiter.py +128 -0
  755. vllm/model_executor/layers/quantization/kernels/scaled_mm/cpu.py +220 -0
  756. vllm/model_executor/layers/quantization/kernels/scaled_mm/cutlass.py +147 -0
  757. vllm/model_executor/layers/quantization/kernels/scaled_mm/triton.py +71 -0
  758. vllm/model_executor/layers/quantization/kernels/scaled_mm/xla.py +106 -0
  759. vllm/model_executor/layers/quantization/kv_cache.py +153 -0
  760. vllm/model_executor/layers/quantization/modelopt.py +1684 -0
  761. vllm/model_executor/layers/quantization/moe_wna16.py +516 -0
  762. vllm/model_executor/layers/quantization/mxfp4.py +1140 -0
  763. vllm/model_executor/layers/quantization/petit.py +319 -0
  764. vllm/model_executor/layers/quantization/ptpc_fp8.py +136 -0
  765. vllm/model_executor/layers/quantization/quark/__init__.py +0 -0
  766. vllm/model_executor/layers/quantization/quark/quark.py +527 -0
  767. vllm/model_executor/layers/quantization/quark/quark_moe.py +622 -0
  768. vllm/model_executor/layers/quantization/quark/schemes/__init__.py +9 -0
  769. vllm/model_executor/layers/quantization/quark/schemes/quark_ocp_mx.py +343 -0
  770. vllm/model_executor/layers/quantization/quark/schemes/quark_scheme.py +55 -0
  771. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_fp8.py +179 -0
  772. vllm/model_executor/layers/quantization/quark/schemes/quark_w8a8_int8.py +139 -0
  773. vllm/model_executor/layers/quantization/quark/utils.py +105 -0
  774. vllm/model_executor/layers/quantization/qutlass_utils.py +185 -0
  775. vllm/model_executor/layers/quantization/rtn.py +621 -0
  776. vllm/model_executor/layers/quantization/schema.py +90 -0
  777. vllm/model_executor/layers/quantization/torchao.py +380 -0
  778. vllm/model_executor/layers/quantization/tpu_int8.py +139 -0
  779. vllm/model_executor/layers/quantization/utils/__init__.py +6 -0
  780. vllm/model_executor/layers/quantization/utils/allspark_utils.py +67 -0
  781. vllm/model_executor/layers/quantization/utils/bitblas_utils.py +229 -0
  782. vllm/model_executor/layers/quantization/utils/configs/N=10240,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  783. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  784. vllm/model_executor/layers/quantization/utils/configs/N=12288,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  785. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  786. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  787. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  788. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  789. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  790. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  791. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  792. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=1536,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  793. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  794. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  795. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  796. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  797. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  798. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  799. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  800. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  801. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  802. vllm/model_executor/layers/quantization/utils/configs/N=1536,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  803. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  804. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  805. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  806. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  807. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  808. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  809. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  810. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  811. vllm/model_executor/layers/quantization/utils/configs/N=2048,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  812. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  813. vllm/model_executor/layers/quantization/utils/configs/N=2112,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  814. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  815. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  816. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  817. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  818. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  819. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  820. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  821. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  822. vllm/model_executor/layers/quantization/utils/configs/N=2304,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  823. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  824. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  825. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  826. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  827. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  828. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  829. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  830. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  831. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  832. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  833. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  834. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  835. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  836. vllm/model_executor/layers/quantization/utils/configs/N=24576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  837. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  838. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  839. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  840. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  841. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  842. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  843. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  844. vllm/model_executor/layers/quantization/utils/configs/N=256,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  845. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  846. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  847. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  848. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  849. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  850. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  851. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=1536,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  852. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  853. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  854. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  855. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  856. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  857. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  858. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  859. vllm/model_executor/layers/quantization/utils/configs/N=3072,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  860. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  861. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  862. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  863. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  864. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  865. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  866. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  867. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  868. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  869. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  870. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  871. vllm/model_executor/layers/quantization/utils/configs/N=32768,K=512,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  872. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  873. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  874. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  875. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  876. vllm/model_executor/layers/quantization/utils/configs/N=36864,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  877. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  878. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  879. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  880. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  881. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  882. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  883. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  884. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=512,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  885. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  886. vllm/model_executor/layers/quantization/utils/configs/N=4096,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  887. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  888. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  889. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  890. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  891. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  892. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  893. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  894. vllm/model_executor/layers/quantization/utils/configs/N=4608,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  895. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  896. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  897. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  898. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  899. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  900. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  901. vllm/model_executor/layers/quantization/utils/configs/N=512,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  902. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=25600,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  903. vllm/model_executor/layers/quantization/utils/configs/N=5120,K=8192,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  904. vllm/model_executor/layers/quantization/utils/configs/N=51200,K=5120,device_name=NVIDIA_L40S,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  905. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  906. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  907. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  908. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  909. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  910. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  911. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  912. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  913. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  914. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  915. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +18 -0
  916. vllm/model_executor/layers/quantization/utils/configs/N=576,K=7168,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  917. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  918. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  919. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  920. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  921. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  922. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  923. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  924. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  925. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1024,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  926. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  927. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  928. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  929. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  930. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  931. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  932. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  933. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  934. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=1152,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  935. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  936. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  937. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  938. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  939. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  940. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  941. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  942. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=128,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  943. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  944. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  945. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  946. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  947. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  948. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  949. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  950. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  951. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  952. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  953. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  954. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=16384,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  955. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  956. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  957. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  958. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A100-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  959. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_A800-SXM4-80GB,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  960. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  961. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  962. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  963. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  964. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  965. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  966. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=18432,device_name=NVIDIA_L20Y,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  967. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  968. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  969. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  970. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  971. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  972. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  973. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  974. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2048,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  975. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  976. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  977. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  978. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  979. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H100_80GB_HBM3,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  980. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  981. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  982. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=2304,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  983. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  984. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  985. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  986. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_B200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  987. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H20,dtype=int8_w8a8,block_shape=[128,128].json +146 -0
  988. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_H200,dtype=fp8_w8a8,block_shape=[128,128].json +146 -0
  989. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=256,device_name=NVIDIA_L20,dtype=fp8_w8a8,block_shape=[128,128].json +26 -0
  990. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  991. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  992. vllm/model_executor/layers/quantization/utils/configs/N=7168,K=8192,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  993. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI300X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  994. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325X,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  995. vllm/model_executor/layers/quantization/utils/configs/N=8192,K=1536,device_name=AMD_Instinct_MI325_OAM,dtype=fp8_w8a8,block_shape=[128,128].json +164 -0
  996. vllm/model_executor/layers/quantization/utils/configs/README.md +3 -0
  997. vllm/model_executor/layers/quantization/utils/flashinfer_fp4_moe.py +412 -0
  998. vllm/model_executor/layers/quantization/utils/flashinfer_utils.py +312 -0
  999. vllm/model_executor/layers/quantization/utils/fp8_utils.py +1453 -0
  1000. vllm/model_executor/layers/quantization/utils/gptq_utils.py +158 -0
  1001. vllm/model_executor/layers/quantization/utils/int8_utils.py +474 -0
  1002. vllm/model_executor/layers/quantization/utils/layer_utils.py +41 -0
  1003. vllm/model_executor/layers/quantization/utils/machete_utils.py +56 -0
  1004. vllm/model_executor/layers/quantization/utils/marlin_utils.py +678 -0
  1005. vllm/model_executor/layers/quantization/utils/marlin_utils_fp4.py +452 -0
  1006. vllm/model_executor/layers/quantization/utils/marlin_utils_fp8.py +381 -0
  1007. vllm/model_executor/layers/quantization/utils/marlin_utils_test.py +219 -0
  1008. vllm/model_executor/layers/quantization/utils/marlin_utils_test_24.py +467 -0
  1009. vllm/model_executor/layers/quantization/utils/mxfp4_utils.py +189 -0
  1010. vllm/model_executor/layers/quantization/utils/mxfp6_utils.py +142 -0
  1011. vllm/model_executor/layers/quantization/utils/mxfp8_utils.py +24 -0
  1012. vllm/model_executor/layers/quantization/utils/nvfp4_emulation_utils.py +142 -0
  1013. vllm/model_executor/layers/quantization/utils/nvfp4_moe_support.py +67 -0
  1014. vllm/model_executor/layers/quantization/utils/ocp_mx_utils.py +51 -0
  1015. vllm/model_executor/layers/quantization/utils/petit_utils.py +124 -0
  1016. vllm/model_executor/layers/quantization/utils/quant_utils.py +741 -0
  1017. vllm/model_executor/layers/quantization/utils/w8a8_utils.py +519 -0
  1018. vllm/model_executor/layers/resampler.py +283 -0
  1019. vllm/model_executor/layers/rotary_embedding/__init__.py +289 -0
  1020. vllm/model_executor/layers/rotary_embedding/base.py +254 -0
  1021. vllm/model_executor/layers/rotary_embedding/common.py +279 -0
  1022. vllm/model_executor/layers/rotary_embedding/deepseek_scaling_rope.py +165 -0
  1023. vllm/model_executor/layers/rotary_embedding/dual_chunk_rope.py +215 -0
  1024. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_alpha_rope.py +43 -0
  1025. vllm/model_executor/layers/rotary_embedding/dynamic_ntk_scaling_rope.py +68 -0
  1026. vllm/model_executor/layers/rotary_embedding/ernie45_vl_rope.py +82 -0
  1027. vllm/model_executor/layers/rotary_embedding/linear_scaling_rope.py +115 -0
  1028. vllm/model_executor/layers/rotary_embedding/llama3_rope.py +54 -0
  1029. vllm/model_executor/layers/rotary_embedding/llama4_vision_rope.py +80 -0
  1030. vllm/model_executor/layers/rotary_embedding/mrope.py +412 -0
  1031. vllm/model_executor/layers/rotary_embedding/ntk_scaling_rope.py +47 -0
  1032. vllm/model_executor/layers/rotary_embedding/phi3_long_rope_scaled_rope.py +159 -0
  1033. vllm/model_executor/layers/rotary_embedding/xdrope.py +160 -0
  1034. vllm/model_executor/layers/rotary_embedding/yarn_scaling_rope.py +84 -0
  1035. vllm/model_executor/layers/utils.py +251 -0
  1036. vllm/model_executor/layers/vocab_parallel_embedding.py +558 -0
  1037. vllm/model_executor/model_loader/__init__.py +150 -0
  1038. vllm/model_executor/model_loader/base_loader.py +57 -0
  1039. vllm/model_executor/model_loader/bitsandbytes_loader.py +822 -0
  1040. vllm/model_executor/model_loader/default_loader.py +321 -0
  1041. vllm/model_executor/model_loader/dummy_loader.py +28 -0
  1042. vllm/model_executor/model_loader/gguf_loader.py +371 -0
  1043. vllm/model_executor/model_loader/online_quantization.py +275 -0
  1044. vllm/model_executor/model_loader/runai_streamer_loader.py +116 -0
  1045. vllm/model_executor/model_loader/sharded_state_loader.py +214 -0
  1046. vllm/model_executor/model_loader/tensorizer.py +790 -0
  1047. vllm/model_executor/model_loader/tensorizer_loader.py +151 -0
  1048. vllm/model_executor/model_loader/tpu.py +118 -0
  1049. vllm/model_executor/model_loader/utils.py +292 -0
  1050. vllm/model_executor/model_loader/weight_utils.py +1157 -0
  1051. vllm/model_executor/models/__init__.py +44 -0
  1052. vllm/model_executor/models/adapters.py +522 -0
  1053. vllm/model_executor/models/afmoe.py +696 -0
  1054. vllm/model_executor/models/aimv2.py +248 -0
  1055. vllm/model_executor/models/apertus.py +565 -0
  1056. vllm/model_executor/models/arcee.py +428 -0
  1057. vllm/model_executor/models/arctic.py +633 -0
  1058. vllm/model_executor/models/aria.py +653 -0
  1059. vllm/model_executor/models/audioflamingo3.py +639 -0
  1060. vllm/model_executor/models/aya_vision.py +448 -0
  1061. vllm/model_executor/models/bagel.py +584 -0
  1062. vllm/model_executor/models/baichuan.py +493 -0
  1063. vllm/model_executor/models/bailing_moe.py +642 -0
  1064. vllm/model_executor/models/bamba.py +511 -0
  1065. vllm/model_executor/models/bee.py +157 -0
  1066. vllm/model_executor/models/bert.py +925 -0
  1067. vllm/model_executor/models/bert_with_rope.py +732 -0
  1068. vllm/model_executor/models/blip.py +350 -0
  1069. vllm/model_executor/models/blip2.py +693 -0
  1070. vllm/model_executor/models/bloom.py +390 -0
  1071. vllm/model_executor/models/chameleon.py +1095 -0
  1072. vllm/model_executor/models/chatglm.py +502 -0
  1073. vllm/model_executor/models/clip.py +1004 -0
  1074. vllm/model_executor/models/cohere2_vision.py +470 -0
  1075. vllm/model_executor/models/commandr.py +469 -0
  1076. vllm/model_executor/models/config.py +531 -0
  1077. vllm/model_executor/models/dbrx.py +484 -0
  1078. vllm/model_executor/models/deepencoder.py +676 -0
  1079. vllm/model_executor/models/deepseek_eagle.py +252 -0
  1080. vllm/model_executor/models/deepseek_mtp.py +446 -0
  1081. vllm/model_executor/models/deepseek_ocr.py +591 -0
  1082. vllm/model_executor/models/deepseek_v2.py +1710 -0
  1083. vllm/model_executor/models/deepseek_vl2.py +642 -0
  1084. vllm/model_executor/models/dots1.py +565 -0
  1085. vllm/model_executor/models/dots_ocr.py +821 -0
  1086. vllm/model_executor/models/ernie45.py +53 -0
  1087. vllm/model_executor/models/ernie45_moe.py +754 -0
  1088. vllm/model_executor/models/ernie45_vl.py +1621 -0
  1089. vllm/model_executor/models/ernie45_vl_moe.py +800 -0
  1090. vllm/model_executor/models/ernie_mtp.py +279 -0
  1091. vllm/model_executor/models/exaone.py +524 -0
  1092. vllm/model_executor/models/exaone4.py +516 -0
  1093. vllm/model_executor/models/fairseq2_llama.py +154 -0
  1094. vllm/model_executor/models/falcon.py +543 -0
  1095. vllm/model_executor/models/falcon_h1.py +675 -0
  1096. vllm/model_executor/models/flex_olmo.py +155 -0
  1097. vllm/model_executor/models/fuyu.py +371 -0
  1098. vllm/model_executor/models/gemma.py +425 -0
  1099. vllm/model_executor/models/gemma2.py +435 -0
  1100. vllm/model_executor/models/gemma3.py +507 -0
  1101. vllm/model_executor/models/gemma3_mm.py +664 -0
  1102. vllm/model_executor/models/gemma3n.py +1166 -0
  1103. vllm/model_executor/models/gemma3n_mm.py +810 -0
  1104. vllm/model_executor/models/glm.py +24 -0
  1105. vllm/model_executor/models/glm4.py +295 -0
  1106. vllm/model_executor/models/glm4_1v.py +1808 -0
  1107. vllm/model_executor/models/glm4_moe.py +736 -0
  1108. vllm/model_executor/models/glm4_moe_mtp.py +359 -0
  1109. vllm/model_executor/models/glm4v.py +783 -0
  1110. vllm/model_executor/models/gpt2.py +397 -0
  1111. vllm/model_executor/models/gpt_bigcode.py +339 -0
  1112. vllm/model_executor/models/gpt_j.py +346 -0
  1113. vllm/model_executor/models/gpt_neox.py +340 -0
  1114. vllm/model_executor/models/gpt_oss.py +744 -0
  1115. vllm/model_executor/models/granite.py +475 -0
  1116. vllm/model_executor/models/granite_speech.py +912 -0
  1117. vllm/model_executor/models/granitemoe.py +560 -0
  1118. vllm/model_executor/models/granitemoehybrid.py +703 -0
  1119. vllm/model_executor/models/granitemoeshared.py +328 -0
  1120. vllm/model_executor/models/gritlm.py +243 -0
  1121. vllm/model_executor/models/grok1.py +554 -0
  1122. vllm/model_executor/models/h2ovl.py +554 -0
  1123. vllm/model_executor/models/hunyuan_v1.py +1040 -0
  1124. vllm/model_executor/models/hunyuan_vision.py +1034 -0
  1125. vllm/model_executor/models/hyperclovax_vision.py +1164 -0
  1126. vllm/model_executor/models/idefics2_vision_model.py +427 -0
  1127. vllm/model_executor/models/idefics3.py +716 -0
  1128. vllm/model_executor/models/interfaces.py +1179 -0
  1129. vllm/model_executor/models/interfaces_base.py +228 -0
  1130. vllm/model_executor/models/intern_vit.py +454 -0
  1131. vllm/model_executor/models/internlm2.py +453 -0
  1132. vllm/model_executor/models/internlm2_ve.py +139 -0
  1133. vllm/model_executor/models/interns1.py +828 -0
  1134. vllm/model_executor/models/interns1_vit.py +433 -0
  1135. vllm/model_executor/models/internvl.py +1450 -0
  1136. vllm/model_executor/models/jais.py +397 -0
  1137. vllm/model_executor/models/jais2.py +529 -0
  1138. vllm/model_executor/models/jamba.py +609 -0
  1139. vllm/model_executor/models/jina_vl.py +147 -0
  1140. vllm/model_executor/models/keye.py +1706 -0
  1141. vllm/model_executor/models/keye_vl1_5.py +726 -0
  1142. vllm/model_executor/models/kimi_linear.py +658 -0
  1143. vllm/model_executor/models/kimi_vl.py +576 -0
  1144. vllm/model_executor/models/lfm2.py +515 -0
  1145. vllm/model_executor/models/lfm2_moe.py +745 -0
  1146. vllm/model_executor/models/lightonocr.py +195 -0
  1147. vllm/model_executor/models/llama.py +700 -0
  1148. vllm/model_executor/models/llama4.py +856 -0
  1149. vllm/model_executor/models/llama4_eagle.py +225 -0
  1150. vllm/model_executor/models/llama_eagle.py +213 -0
  1151. vllm/model_executor/models/llama_eagle3.py +375 -0
  1152. vllm/model_executor/models/llava.py +840 -0
  1153. vllm/model_executor/models/llava_next.py +581 -0
  1154. vllm/model_executor/models/llava_next_video.py +465 -0
  1155. vllm/model_executor/models/llava_onevision.py +921 -0
  1156. vllm/model_executor/models/longcat_flash.py +743 -0
  1157. vllm/model_executor/models/longcat_flash_mtp.py +349 -0
  1158. vllm/model_executor/models/mamba.py +276 -0
  1159. vllm/model_executor/models/mamba2.py +288 -0
  1160. vllm/model_executor/models/medusa.py +179 -0
  1161. vllm/model_executor/models/midashenglm.py +826 -0
  1162. vllm/model_executor/models/mimo.py +188 -0
  1163. vllm/model_executor/models/mimo_mtp.py +294 -0
  1164. vllm/model_executor/models/minicpm.py +656 -0
  1165. vllm/model_executor/models/minicpm3.py +233 -0
  1166. vllm/model_executor/models/minicpm_eagle.py +385 -0
  1167. vllm/model_executor/models/minicpmo.py +768 -0
  1168. vllm/model_executor/models/minicpmv.py +1742 -0
  1169. vllm/model_executor/models/minimax_m2.py +550 -0
  1170. vllm/model_executor/models/minimax_text_01.py +1007 -0
  1171. vllm/model_executor/models/minimax_vl_01.py +394 -0
  1172. vllm/model_executor/models/mistral3.py +635 -0
  1173. vllm/model_executor/models/mistral_large_3.py +63 -0
  1174. vllm/model_executor/models/mistral_large_3_eagle.py +136 -0
  1175. vllm/model_executor/models/mixtral.py +598 -0
  1176. vllm/model_executor/models/mllama4.py +1149 -0
  1177. vllm/model_executor/models/mlp_speculator.py +235 -0
  1178. vllm/model_executor/models/modernbert.py +451 -0
  1179. vllm/model_executor/models/module_mapping.py +74 -0
  1180. vllm/model_executor/models/molmo.py +1550 -0
  1181. vllm/model_executor/models/moonvit.py +686 -0
  1182. vllm/model_executor/models/mpt.py +335 -0
  1183. vllm/model_executor/models/nano_nemotron_vl.py +1730 -0
  1184. vllm/model_executor/models/nemotron.py +499 -0
  1185. vllm/model_executor/models/nemotron_h.py +900 -0
  1186. vllm/model_executor/models/nemotron_nas.py +471 -0
  1187. vllm/model_executor/models/nemotron_vl.py +651 -0
  1188. vllm/model_executor/models/nvlm_d.py +216 -0
  1189. vllm/model_executor/models/olmo.py +412 -0
  1190. vllm/model_executor/models/olmo2.py +454 -0
  1191. vllm/model_executor/models/olmoe.py +493 -0
  1192. vllm/model_executor/models/opencua.py +262 -0
  1193. vllm/model_executor/models/openpangu.py +1049 -0
  1194. vllm/model_executor/models/openpangu_mtp.py +265 -0
  1195. vllm/model_executor/models/opt.py +426 -0
  1196. vllm/model_executor/models/orion.py +365 -0
  1197. vllm/model_executor/models/ouro.py +507 -0
  1198. vllm/model_executor/models/ovis.py +557 -0
  1199. vllm/model_executor/models/ovis2_5.py +661 -0
  1200. vllm/model_executor/models/paddleocr_vl.py +1300 -0
  1201. vllm/model_executor/models/paligemma.py +408 -0
  1202. vllm/model_executor/models/persimmon.py +373 -0
  1203. vllm/model_executor/models/phi.py +363 -0
  1204. vllm/model_executor/models/phi3.py +18 -0
  1205. vllm/model_executor/models/phi3v.py +729 -0
  1206. vllm/model_executor/models/phi4mm.py +1251 -0
  1207. vllm/model_executor/models/phi4mm_audio.py +1296 -0
  1208. vllm/model_executor/models/phi4mm_utils.py +1907 -0
  1209. vllm/model_executor/models/phimoe.py +669 -0
  1210. vllm/model_executor/models/pixtral.py +1379 -0
  1211. vllm/model_executor/models/plamo2.py +965 -0
  1212. vllm/model_executor/models/plamo3.py +440 -0
  1213. vllm/model_executor/models/qwen.py +365 -0
  1214. vllm/model_executor/models/qwen2.py +600 -0
  1215. vllm/model_executor/models/qwen2_5_omni_thinker.py +1219 -0
  1216. vllm/model_executor/models/qwen2_5_vl.py +1569 -0
  1217. vllm/model_executor/models/qwen2_audio.py +471 -0
  1218. vllm/model_executor/models/qwen2_moe.py +597 -0
  1219. vllm/model_executor/models/qwen2_rm.py +123 -0
  1220. vllm/model_executor/models/qwen2_vl.py +1568 -0
  1221. vllm/model_executor/models/qwen3.py +331 -0
  1222. vllm/model_executor/models/qwen3_moe.py +751 -0
  1223. vllm/model_executor/models/qwen3_next.py +1395 -0
  1224. vllm/model_executor/models/qwen3_next_mtp.py +296 -0
  1225. vllm/model_executor/models/qwen3_omni_moe_thinker.py +1793 -0
  1226. vllm/model_executor/models/qwen3_vl.py +2092 -0
  1227. vllm/model_executor/models/qwen3_vl_moe.py +474 -0
  1228. vllm/model_executor/models/qwen_vl.py +801 -0
  1229. vllm/model_executor/models/radio.py +555 -0
  1230. vllm/model_executor/models/registry.py +1189 -0
  1231. vllm/model_executor/models/roberta.py +259 -0
  1232. vllm/model_executor/models/rvl.py +107 -0
  1233. vllm/model_executor/models/seed_oss.py +492 -0
  1234. vllm/model_executor/models/siglip.py +1244 -0
  1235. vllm/model_executor/models/siglip2navit.py +658 -0
  1236. vllm/model_executor/models/skyworkr1v.py +951 -0
  1237. vllm/model_executor/models/smolvlm.py +38 -0
  1238. vllm/model_executor/models/solar.py +484 -0
  1239. vllm/model_executor/models/stablelm.py +354 -0
  1240. vllm/model_executor/models/starcoder2.py +365 -0
  1241. vllm/model_executor/models/step3_text.py +554 -0
  1242. vllm/model_executor/models/step3_vl.py +1147 -0
  1243. vllm/model_executor/models/swin.py +514 -0
  1244. vllm/model_executor/models/tarsier.py +617 -0
  1245. vllm/model_executor/models/telechat2.py +153 -0
  1246. vllm/model_executor/models/teleflm.py +78 -0
  1247. vllm/model_executor/models/terratorch.py +318 -0
  1248. vllm/model_executor/models/transformers/__init__.py +127 -0
  1249. vllm/model_executor/models/transformers/base.py +518 -0
  1250. vllm/model_executor/models/transformers/causal.py +65 -0
  1251. vllm/model_executor/models/transformers/legacy.py +90 -0
  1252. vllm/model_executor/models/transformers/moe.py +325 -0
  1253. vllm/model_executor/models/transformers/multimodal.py +411 -0
  1254. vllm/model_executor/models/transformers/pooling.py +119 -0
  1255. vllm/model_executor/models/transformers/utils.py +213 -0
  1256. vllm/model_executor/models/ultravox.py +766 -0
  1257. vllm/model_executor/models/utils.py +832 -0
  1258. vllm/model_executor/models/vision.py +546 -0
  1259. vllm/model_executor/models/voxtral.py +841 -0
  1260. vllm/model_executor/models/whisper.py +971 -0
  1261. vllm/model_executor/models/zamba2.py +979 -0
  1262. vllm/model_executor/parameter.py +642 -0
  1263. vllm/model_executor/utils.py +119 -0
  1264. vllm/model_executor/warmup/__init__.py +0 -0
  1265. vllm/model_executor/warmup/deep_gemm_warmup.py +314 -0
  1266. vllm/model_executor/warmup/kernel_warmup.py +98 -0
  1267. vllm/multimodal/__init__.py +40 -0
  1268. vllm/multimodal/audio.py +147 -0
  1269. vllm/multimodal/base.py +56 -0
  1270. vllm/multimodal/cache.py +823 -0
  1271. vllm/multimodal/evs.py +294 -0
  1272. vllm/multimodal/hasher.py +120 -0
  1273. vllm/multimodal/image.py +142 -0
  1274. vllm/multimodal/inputs.py +1089 -0
  1275. vllm/multimodal/parse.py +565 -0
  1276. vllm/multimodal/processing.py +2240 -0
  1277. vllm/multimodal/profiling.py +351 -0
  1278. vllm/multimodal/registry.py +357 -0
  1279. vllm/multimodal/utils.py +513 -0
  1280. vllm/multimodal/video.py +340 -0
  1281. vllm/outputs.py +345 -0
  1282. vllm/platforms/__init__.py +277 -0
  1283. vllm/platforms/cpu.py +421 -0
  1284. vllm/platforms/cuda.py +618 -0
  1285. vllm/platforms/interface.py +695 -0
  1286. vllm/platforms/rocm.py +564 -0
  1287. vllm/platforms/tpu.py +295 -0
  1288. vllm/platforms/xpu.py +277 -0
  1289. vllm/plugins/__init__.py +81 -0
  1290. vllm/plugins/io_processors/__init__.py +68 -0
  1291. vllm/plugins/io_processors/interface.py +77 -0
  1292. vllm/plugins/lora_resolvers/__init__.py +0 -0
  1293. vllm/plugins/lora_resolvers/filesystem_resolver.py +52 -0
  1294. vllm/pooling_params.py +230 -0
  1295. vllm/profiler/__init__.py +0 -0
  1296. vllm/profiler/layerwise_profile.py +392 -0
  1297. vllm/profiler/utils.py +151 -0
  1298. vllm/profiler/wrapper.py +241 -0
  1299. vllm/py.typed +2 -0
  1300. vllm/ray/__init__.py +0 -0
  1301. vllm/ray/lazy_utils.py +30 -0
  1302. vllm/ray/ray_env.py +79 -0
  1303. vllm/reasoning/__init__.py +96 -0
  1304. vllm/reasoning/abs_reasoning_parsers.py +318 -0
  1305. vllm/reasoning/basic_parsers.py +175 -0
  1306. vllm/reasoning/deepseek_r1_reasoning_parser.py +67 -0
  1307. vllm/reasoning/deepseek_v3_reasoning_parser.py +67 -0
  1308. vllm/reasoning/ernie45_reasoning_parser.py +165 -0
  1309. vllm/reasoning/glm4_moe_reasoning_parser.py +171 -0
  1310. vllm/reasoning/gptoss_reasoning_parser.py +173 -0
  1311. vllm/reasoning/granite_reasoning_parser.py +363 -0
  1312. vllm/reasoning/holo2_reasoning_parser.py +88 -0
  1313. vllm/reasoning/hunyuan_a13b_reasoning_parser.py +237 -0
  1314. vllm/reasoning/identity_reasoning_parser.py +63 -0
  1315. vllm/reasoning/minimax_m2_reasoning_parser.py +110 -0
  1316. vllm/reasoning/mistral_reasoning_parser.py +154 -0
  1317. vllm/reasoning/olmo3_reasoning_parser.py +302 -0
  1318. vllm/reasoning/qwen3_reasoning_parser.py +67 -0
  1319. vllm/reasoning/seedoss_reasoning_parser.py +27 -0
  1320. vllm/reasoning/step3_reasoning_parser.py +107 -0
  1321. vllm/sampling_params.py +597 -0
  1322. vllm/scalar_type.py +355 -0
  1323. vllm/scripts.py +17 -0
  1324. vllm/sequence.py +98 -0
  1325. vllm/tasks.py +13 -0
  1326. vllm/third_party/__init__.py +0 -0
  1327. vllm/third_party/pynvml.py +6140 -0
  1328. vllm/tokenizers/__init__.py +20 -0
  1329. vllm/tokenizers/deepseek_v32.py +175 -0
  1330. vllm/tokenizers/deepseek_v32_encoding.py +459 -0
  1331. vllm/tokenizers/detokenizer_utils.py +198 -0
  1332. vllm/tokenizers/hf.py +119 -0
  1333. vllm/tokenizers/mistral.py +567 -0
  1334. vllm/tokenizers/protocol.py +114 -0
  1335. vllm/tokenizers/registry.py +233 -0
  1336. vllm/tool_parsers/__init__.py +150 -0
  1337. vllm/tool_parsers/abstract_tool_parser.py +273 -0
  1338. vllm/tool_parsers/deepseekv31_tool_parser.py +388 -0
  1339. vllm/tool_parsers/deepseekv32_tool_parser.py +591 -0
  1340. vllm/tool_parsers/deepseekv3_tool_parser.py +390 -0
  1341. vllm/tool_parsers/ernie45_tool_parser.py +210 -0
  1342. vllm/tool_parsers/gigachat3_tool_parser.py +190 -0
  1343. vllm/tool_parsers/glm4_moe_tool_parser.py +200 -0
  1344. vllm/tool_parsers/granite_20b_fc_tool_parser.py +273 -0
  1345. vllm/tool_parsers/granite_tool_parser.py +253 -0
  1346. vllm/tool_parsers/hermes_tool_parser.py +495 -0
  1347. vllm/tool_parsers/hunyuan_a13b_tool_parser.py +420 -0
  1348. vllm/tool_parsers/internlm2_tool_parser.py +227 -0
  1349. vllm/tool_parsers/jamba_tool_parser.py +323 -0
  1350. vllm/tool_parsers/kimi_k2_tool_parser.py +590 -0
  1351. vllm/tool_parsers/llama4_pythonic_tool_parser.py +341 -0
  1352. vllm/tool_parsers/llama_tool_parser.py +324 -0
  1353. vllm/tool_parsers/longcat_tool_parser.py +37 -0
  1354. vllm/tool_parsers/minimax_m2_tool_parser.py +643 -0
  1355. vllm/tool_parsers/minimax_tool_parser.py +849 -0
  1356. vllm/tool_parsers/mistral_tool_parser.py +585 -0
  1357. vllm/tool_parsers/olmo3_tool_parser.py +366 -0
  1358. vllm/tool_parsers/openai_tool_parser.py +102 -0
  1359. vllm/tool_parsers/phi4mini_tool_parser.py +120 -0
  1360. vllm/tool_parsers/pythonic_tool_parser.py +332 -0
  1361. vllm/tool_parsers/qwen3coder_tool_parser.py +781 -0
  1362. vllm/tool_parsers/qwen3xml_tool_parser.py +1316 -0
  1363. vllm/tool_parsers/seed_oss_tool_parser.py +744 -0
  1364. vllm/tool_parsers/step3_tool_parser.py +303 -0
  1365. vllm/tool_parsers/utils.py +229 -0
  1366. vllm/tool_parsers/xlam_tool_parser.py +556 -0
  1367. vllm/tracing.py +135 -0
  1368. vllm/transformers_utils/__init__.py +26 -0
  1369. vllm/transformers_utils/chat_templates/__init__.py +5 -0
  1370. vllm/transformers_utils/chat_templates/registry.py +73 -0
  1371. vllm/transformers_utils/chat_templates/template_basic.jinja +3 -0
  1372. vllm/transformers_utils/chat_templates/template_blip2.jinja +11 -0
  1373. vllm/transformers_utils/chat_templates/template_chatml.jinja +10 -0
  1374. vllm/transformers_utils/chat_templates/template_deepseek_ocr.jinja +14 -0
  1375. vllm/transformers_utils/chat_templates/template_deepseek_vl2.jinja +23 -0
  1376. vllm/transformers_utils/chat_templates/template_fuyu.jinja +3 -0
  1377. vllm/transformers_utils/chat_templates/template_minicpmv45.jinja +93 -0
  1378. vllm/transformers_utils/config.py +1144 -0
  1379. vllm/transformers_utils/config_parser_base.py +20 -0
  1380. vllm/transformers_utils/configs/__init__.py +102 -0
  1381. vllm/transformers_utils/configs/afmoe.py +87 -0
  1382. vllm/transformers_utils/configs/arctic.py +216 -0
  1383. vllm/transformers_utils/configs/bagel.py +53 -0
  1384. vllm/transformers_utils/configs/chatglm.py +75 -0
  1385. vllm/transformers_utils/configs/deepseek_vl2.py +126 -0
  1386. vllm/transformers_utils/configs/dotsocr.py +71 -0
  1387. vllm/transformers_utils/configs/eagle.py +90 -0
  1388. vllm/transformers_utils/configs/falcon.py +89 -0
  1389. vllm/transformers_utils/configs/flex_olmo.py +82 -0
  1390. vllm/transformers_utils/configs/hunyuan_vl.py +322 -0
  1391. vllm/transformers_utils/configs/jais.py +243 -0
  1392. vllm/transformers_utils/configs/kimi_linear.py +148 -0
  1393. vllm/transformers_utils/configs/kimi_vl.py +38 -0
  1394. vllm/transformers_utils/configs/lfm2_moe.py +163 -0
  1395. vllm/transformers_utils/configs/medusa.py +65 -0
  1396. vllm/transformers_utils/configs/midashenglm.py +103 -0
  1397. vllm/transformers_utils/configs/mistral.py +235 -0
  1398. vllm/transformers_utils/configs/mlp_speculator.py +69 -0
  1399. vllm/transformers_utils/configs/moonvit.py +33 -0
  1400. vllm/transformers_utils/configs/nemotron.py +220 -0
  1401. vllm/transformers_utils/configs/nemotron_h.py +284 -0
  1402. vllm/transformers_utils/configs/olmo3.py +83 -0
  1403. vllm/transformers_utils/configs/ovis.py +182 -0
  1404. vllm/transformers_utils/configs/qwen3_next.py +277 -0
  1405. vllm/transformers_utils/configs/radio.py +89 -0
  1406. vllm/transformers_utils/configs/speculators/__init__.py +2 -0
  1407. vllm/transformers_utils/configs/speculators/algos.py +38 -0
  1408. vllm/transformers_utils/configs/speculators/base.py +114 -0
  1409. vllm/transformers_utils/configs/step3_vl.py +178 -0
  1410. vllm/transformers_utils/configs/tarsier2.py +24 -0
  1411. vllm/transformers_utils/configs/ultravox.py +120 -0
  1412. vllm/transformers_utils/dynamic_module.py +59 -0
  1413. vllm/transformers_utils/gguf_utils.py +280 -0
  1414. vllm/transformers_utils/processor.py +424 -0
  1415. vllm/transformers_utils/processors/__init__.py +25 -0
  1416. vllm/transformers_utils/processors/bagel.py +73 -0
  1417. vllm/transformers_utils/processors/deepseek_ocr.py +438 -0
  1418. vllm/transformers_utils/processors/deepseek_vl2.py +406 -0
  1419. vllm/transformers_utils/processors/hunyuan_vl.py +233 -0
  1420. vllm/transformers_utils/processors/hunyuan_vl_image.py +477 -0
  1421. vllm/transformers_utils/processors/ovis.py +453 -0
  1422. vllm/transformers_utils/processors/ovis2_5.py +468 -0
  1423. vllm/transformers_utils/repo_utils.py +287 -0
  1424. vllm/transformers_utils/runai_utils.py +102 -0
  1425. vllm/transformers_utils/s3_utils.py +95 -0
  1426. vllm/transformers_utils/tokenizer.py +127 -0
  1427. vllm/transformers_utils/tokenizer_base.py +33 -0
  1428. vllm/transformers_utils/utils.py +112 -0
  1429. vllm/triton_utils/__init__.py +20 -0
  1430. vllm/triton_utils/importing.py +103 -0
  1431. vllm/usage/__init__.py +0 -0
  1432. vllm/usage/usage_lib.py +294 -0
  1433. vllm/utils/__init__.py +66 -0
  1434. vllm/utils/argparse_utils.py +492 -0
  1435. vllm/utils/async_utils.py +310 -0
  1436. vllm/utils/cache.py +214 -0
  1437. vllm/utils/collection_utils.py +112 -0
  1438. vllm/utils/counter.py +45 -0
  1439. vllm/utils/deep_gemm.py +400 -0
  1440. vllm/utils/flashinfer.py +528 -0
  1441. vllm/utils/func_utils.py +236 -0
  1442. vllm/utils/gc_utils.py +151 -0
  1443. vllm/utils/hashing.py +117 -0
  1444. vllm/utils/import_utils.py +449 -0
  1445. vllm/utils/jsontree.py +158 -0
  1446. vllm/utils/math_utils.py +32 -0
  1447. vllm/utils/mem_constants.py +13 -0
  1448. vllm/utils/mem_utils.py +232 -0
  1449. vllm/utils/nccl.py +64 -0
  1450. vllm/utils/network_utils.py +331 -0
  1451. vllm/utils/nvtx_pytorch_hooks.py +286 -0
  1452. vllm/utils/platform_utils.py +59 -0
  1453. vllm/utils/profiling.py +56 -0
  1454. vllm/utils/registry.py +51 -0
  1455. vllm/utils/serial_utils.py +214 -0
  1456. vllm/utils/system_utils.py +269 -0
  1457. vllm/utils/tensor_schema.py +255 -0
  1458. vllm/utils/torch_utils.py +648 -0
  1459. vllm/v1/__init__.py +0 -0
  1460. vllm/v1/attention/__init__.py +0 -0
  1461. vllm/v1/attention/backends/__init__.py +0 -0
  1462. vllm/v1/attention/backends/cpu_attn.py +497 -0
  1463. vllm/v1/attention/backends/flash_attn.py +1051 -0
  1464. vllm/v1/attention/backends/flashinfer.py +1575 -0
  1465. vllm/v1/attention/backends/flex_attention.py +1028 -0
  1466. vllm/v1/attention/backends/gdn_attn.py +375 -0
  1467. vllm/v1/attention/backends/linear_attn.py +77 -0
  1468. vllm/v1/attention/backends/mamba1_attn.py +159 -0
  1469. vllm/v1/attention/backends/mamba2_attn.py +348 -0
  1470. vllm/v1/attention/backends/mamba_attn.py +117 -0
  1471. vllm/v1/attention/backends/mla/__init__.py +0 -0
  1472. vllm/v1/attention/backends/mla/aiter_triton_mla.py +74 -0
  1473. vllm/v1/attention/backends/mla/common.py +2114 -0
  1474. vllm/v1/attention/backends/mla/cutlass_mla.py +278 -0
  1475. vllm/v1/attention/backends/mla/flashattn_mla.py +342 -0
  1476. vllm/v1/attention/backends/mla/flashinfer_mla.py +174 -0
  1477. vllm/v1/attention/backends/mla/flashmla.py +317 -0
  1478. vllm/v1/attention/backends/mla/flashmla_sparse.py +1020 -0
  1479. vllm/v1/attention/backends/mla/indexer.py +345 -0
  1480. vllm/v1/attention/backends/mla/rocm_aiter_mla.py +275 -0
  1481. vllm/v1/attention/backends/mla/rocm_aiter_mla_sparse.py +325 -0
  1482. vllm/v1/attention/backends/mla/triton_mla.py +171 -0
  1483. vllm/v1/attention/backends/pallas.py +436 -0
  1484. vllm/v1/attention/backends/rocm_aiter_fa.py +1000 -0
  1485. vllm/v1/attention/backends/rocm_aiter_unified_attn.py +206 -0
  1486. vllm/v1/attention/backends/rocm_attn.py +359 -0
  1487. vllm/v1/attention/backends/short_conv_attn.py +104 -0
  1488. vllm/v1/attention/backends/tree_attn.py +428 -0
  1489. vllm/v1/attention/backends/triton_attn.py +497 -0
  1490. vllm/v1/attention/backends/utils.py +1212 -0
  1491. vllm/v1/core/__init__.py +0 -0
  1492. vllm/v1/core/block_pool.py +485 -0
  1493. vllm/v1/core/encoder_cache_manager.py +402 -0
  1494. vllm/v1/core/kv_cache_coordinator.py +570 -0
  1495. vllm/v1/core/kv_cache_manager.py +419 -0
  1496. vllm/v1/core/kv_cache_metrics.py +96 -0
  1497. vllm/v1/core/kv_cache_utils.py +1476 -0
  1498. vllm/v1/core/sched/__init__.py +0 -0
  1499. vllm/v1/core/sched/async_scheduler.py +68 -0
  1500. vllm/v1/core/sched/interface.py +189 -0
  1501. vllm/v1/core/sched/output.py +230 -0
  1502. vllm/v1/core/sched/request_queue.py +217 -0
  1503. vllm/v1/core/sched/scheduler.py +1826 -0
  1504. vllm/v1/core/sched/utils.py +64 -0
  1505. vllm/v1/core/single_type_kv_cache_manager.py +801 -0
  1506. vllm/v1/cudagraph_dispatcher.py +183 -0
  1507. vllm/v1/engine/__init__.py +217 -0
  1508. vllm/v1/engine/async_llm.py +866 -0
  1509. vllm/v1/engine/coordinator.py +377 -0
  1510. vllm/v1/engine/core.py +1455 -0
  1511. vllm/v1/engine/core_client.py +1416 -0
  1512. vllm/v1/engine/detokenizer.py +351 -0
  1513. vllm/v1/engine/exceptions.py +18 -0
  1514. vllm/v1/engine/input_processor.py +643 -0
  1515. vllm/v1/engine/llm_engine.py +414 -0
  1516. vllm/v1/engine/logprobs.py +189 -0
  1517. vllm/v1/engine/output_processor.py +659 -0
  1518. vllm/v1/engine/parallel_sampling.py +145 -0
  1519. vllm/v1/engine/processor.py +20 -0
  1520. vllm/v1/engine/utils.py +1068 -0
  1521. vllm/v1/executor/__init__.py +6 -0
  1522. vllm/v1/executor/abstract.py +352 -0
  1523. vllm/v1/executor/multiproc_executor.py +890 -0
  1524. vllm/v1/executor/ray_distributed_executor.py +8 -0
  1525. vllm/v1/executor/ray_executor.py +626 -0
  1526. vllm/v1/executor/ray_utils.py +465 -0
  1527. vllm/v1/executor/uniproc_executor.py +186 -0
  1528. vllm/v1/kv_cache_interface.py +404 -0
  1529. vllm/v1/kv_offload/__init__.py +0 -0
  1530. vllm/v1/kv_offload/abstract.py +161 -0
  1531. vllm/v1/kv_offload/arc_manager.py +237 -0
  1532. vllm/v1/kv_offload/backend.py +97 -0
  1533. vllm/v1/kv_offload/backends/__init__.py +0 -0
  1534. vllm/v1/kv_offload/backends/cpu.py +62 -0
  1535. vllm/v1/kv_offload/cpu.py +86 -0
  1536. vllm/v1/kv_offload/factory.py +56 -0
  1537. vllm/v1/kv_offload/lru_manager.py +139 -0
  1538. vllm/v1/kv_offload/mediums.py +39 -0
  1539. vllm/v1/kv_offload/spec.py +66 -0
  1540. vllm/v1/kv_offload/worker/__init__.py +0 -0
  1541. vllm/v1/kv_offload/worker/cpu_gpu.py +280 -0
  1542. vllm/v1/kv_offload/worker/worker.py +144 -0
  1543. vllm/v1/metrics/__init__.py +0 -0
  1544. vllm/v1/metrics/loggers.py +1305 -0
  1545. vllm/v1/metrics/prometheus.py +82 -0
  1546. vllm/v1/metrics/ray_wrappers.py +194 -0
  1547. vllm/v1/metrics/reader.py +257 -0
  1548. vllm/v1/metrics/stats.py +437 -0
  1549. vllm/v1/outputs.py +245 -0
  1550. vllm/v1/pool/__init__.py +0 -0
  1551. vllm/v1/pool/metadata.py +126 -0
  1552. vllm/v1/request.py +282 -0
  1553. vllm/v1/sample/__init__.py +0 -0
  1554. vllm/v1/sample/logits_processor/__init__.py +352 -0
  1555. vllm/v1/sample/logits_processor/builtin.py +278 -0
  1556. vllm/v1/sample/logits_processor/interface.py +106 -0
  1557. vllm/v1/sample/logits_processor/state.py +165 -0
  1558. vllm/v1/sample/metadata.py +44 -0
  1559. vllm/v1/sample/ops/__init__.py +0 -0
  1560. vllm/v1/sample/ops/bad_words.py +52 -0
  1561. vllm/v1/sample/ops/logprobs.py +25 -0
  1562. vllm/v1/sample/ops/penalties.py +57 -0
  1563. vllm/v1/sample/ops/topk_topp_sampler.py +384 -0
  1564. vllm/v1/sample/rejection_sampler.py +805 -0
  1565. vllm/v1/sample/sampler.py +319 -0
  1566. vllm/v1/sample/tpu/__init__.py +0 -0
  1567. vllm/v1/sample/tpu/metadata.py +120 -0
  1568. vllm/v1/sample/tpu/sampler.py +215 -0
  1569. vllm/v1/serial_utils.py +514 -0
  1570. vllm/v1/spec_decode/__init__.py +0 -0
  1571. vllm/v1/spec_decode/eagle.py +1331 -0
  1572. vllm/v1/spec_decode/medusa.py +73 -0
  1573. vllm/v1/spec_decode/metadata.py +66 -0
  1574. vllm/v1/spec_decode/metrics.py +225 -0
  1575. vllm/v1/spec_decode/ngram_proposer.py +291 -0
  1576. vllm/v1/spec_decode/suffix_decoding.py +101 -0
  1577. vllm/v1/spec_decode/utils.py +121 -0
  1578. vllm/v1/structured_output/__init__.py +353 -0
  1579. vllm/v1/structured_output/backend_guidance.py +265 -0
  1580. vllm/v1/structured_output/backend_lm_format_enforcer.py +177 -0
  1581. vllm/v1/structured_output/backend_outlines.py +324 -0
  1582. vllm/v1/structured_output/backend_types.py +136 -0
  1583. vllm/v1/structured_output/backend_xgrammar.py +378 -0
  1584. vllm/v1/structured_output/request.py +94 -0
  1585. vllm/v1/structured_output/utils.py +469 -0
  1586. vllm/v1/utils.py +414 -0
  1587. vllm/v1/worker/__init__.py +0 -0
  1588. vllm/v1/worker/block_table.py +343 -0
  1589. vllm/v1/worker/cp_utils.py +42 -0
  1590. vllm/v1/worker/cpu_model_runner.py +122 -0
  1591. vllm/v1/worker/cpu_worker.py +192 -0
  1592. vllm/v1/worker/dp_utils.py +240 -0
  1593. vllm/v1/worker/ec_connector_model_runner_mixin.py +87 -0
  1594. vllm/v1/worker/gpu/README.md +4 -0
  1595. vllm/v1/worker/gpu/__init__.py +0 -0
  1596. vllm/v1/worker/gpu/async_utils.py +98 -0
  1597. vllm/v1/worker/gpu/attn_utils.py +189 -0
  1598. vllm/v1/worker/gpu/block_table.py +314 -0
  1599. vllm/v1/worker/gpu/cudagraph_utils.py +259 -0
  1600. vllm/v1/worker/gpu/dp_utils.py +31 -0
  1601. vllm/v1/worker/gpu/input_batch.py +479 -0
  1602. vllm/v1/worker/gpu/metrics/__init__.py +0 -0
  1603. vllm/v1/worker/gpu/metrics/logits.py +42 -0
  1604. vllm/v1/worker/gpu/model_runner.py +1006 -0
  1605. vllm/v1/worker/gpu/sample/__init__.py +0 -0
  1606. vllm/v1/worker/gpu/sample/gumbel.py +101 -0
  1607. vllm/v1/worker/gpu/sample/logprob.py +167 -0
  1608. vllm/v1/worker/gpu/sample/metadata.py +192 -0
  1609. vllm/v1/worker/gpu/sample/min_p.py +51 -0
  1610. vllm/v1/worker/gpu/sample/output.py +14 -0
  1611. vllm/v1/worker/gpu/sample/penalties.py +155 -0
  1612. vllm/v1/worker/gpu/sample/sampler.py +87 -0
  1613. vllm/v1/worker/gpu/spec_decode/__init__.py +18 -0
  1614. vllm/v1/worker/gpu/spec_decode/eagle.py +565 -0
  1615. vllm/v1/worker/gpu/spec_decode/eagle_cudagraph.py +115 -0
  1616. vllm/v1/worker/gpu/spec_decode/rejection_sample.py +71 -0
  1617. vllm/v1/worker/gpu/states.py +316 -0
  1618. vllm/v1/worker/gpu/structured_outputs.py +76 -0
  1619. vllm/v1/worker/gpu_input_batch.py +990 -0
  1620. vllm/v1/worker/gpu_model_runner.py +5470 -0
  1621. vllm/v1/worker/gpu_ubatch_wrapper.py +472 -0
  1622. vllm/v1/worker/gpu_worker.py +955 -0
  1623. vllm/v1/worker/kv_connector_model_runner_mixin.py +302 -0
  1624. vllm/v1/worker/lora_model_runner_mixin.py +212 -0
  1625. vllm/v1/worker/tpu_input_batch.py +583 -0
  1626. vllm/v1/worker/tpu_model_runner.py +2191 -0
  1627. vllm/v1/worker/tpu_worker.py +352 -0
  1628. vllm/v1/worker/ubatch_utils.py +109 -0
  1629. vllm/v1/worker/ubatching.py +231 -0
  1630. vllm/v1/worker/utils.py +375 -0
  1631. vllm/v1/worker/worker_base.py +377 -0
  1632. vllm/v1/worker/workspace.py +253 -0
  1633. vllm/v1/worker/xpu_model_runner.py +48 -0
  1634. vllm/v1/worker/xpu_worker.py +174 -0
  1635. vllm/version.py +39 -0
  1636. vllm/vllm_flash_attn/.gitkeep +0 -0
  1637. vllm_cpu_avx512vnni-0.13.0.dist-info/METADATA +339 -0
  1638. vllm_cpu_avx512vnni-0.13.0.dist-info/RECORD +1641 -0
  1639. vllm_cpu_avx512vnni-0.13.0.dist-info/WHEEL +5 -0
  1640. vllm_cpu_avx512vnni-0.13.0.dist-info/entry_points.txt +5 -0
  1641. vllm_cpu_avx512vnni-0.13.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2645 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import enum
5
+ from enum import Enum
6
+
7
+ import torch
8
+ from compressed_tensors import CompressionFormat
9
+ from compressed_tensors.quantization import (
10
+ ActivationOrdering,
11
+ QuantizationArgs,
12
+ QuantizationStrategy,
13
+ )
14
+ from torch.nn.parameter import Parameter
15
+
16
+ import vllm.envs as envs
17
+ import vllm.model_executor.layers.fused_moe.modular_kernel as mk
18
+ from vllm import _custom_ops as ops
19
+ from vllm._aiter_ops import rocm_aiter_ops
20
+ from vllm.distributed import get_tensor_model_parallel_world_size
21
+ from vllm.logger import init_logger
22
+ from vllm.model_executor.layers.fused_moe import (
23
+ FusedMoE,
24
+ FusedMoEActivationFormat,
25
+ FusedMoEConfig,
26
+ FusedMoEMethodBase,
27
+ FusedMoEPermuteExpertsUnpermute,
28
+ FusedMoeWeightScaleSupported,
29
+ UnquantizedFusedMoEMethod,
30
+ )
31
+ from vllm.model_executor.layers.fused_moe.config import (
32
+ FusedMoEQuantConfig,
33
+ fp8_w8a8_moe_quant_config,
34
+ int4_w4a16_moe_quant_config,
35
+ int4_w4afp8_moe_quant_config,
36
+ int8_w8a8_moe_quant_config,
37
+ int8_w8a16_moe_quant_config,
38
+ nvfp4_moe_quant_config,
39
+ )
40
+ from vllm.model_executor.layers.fused_moe.cpu_fused_moe import select_experts
41
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import (
42
+ is_valid_flashinfer_cutlass_fused_moe,
43
+ )
44
+ from vllm.model_executor.layers.fused_moe.fused_marlin_moe import (
45
+ BatchedMarlinExperts,
46
+ MarlinExperts,
47
+ fused_marlin_moe,
48
+ )
49
+ from vllm.model_executor.layers.quantization.compressed_tensors.schemes.compressed_tensors_wNa16 import ( # noqa
50
+ WNA16_SUPPORTED_BITS,
51
+ WNA16_SUPPORTED_TYPES_MAP,
52
+ )
53
+ from vllm.model_executor.layers.quantization.utils import replace_parameter
54
+ from vllm.model_executor.layers.quantization.utils.flashinfer_fp4_moe import (
55
+ build_flashinfer_fp4_cutlass_moe_prepare_finalize,
56
+ flashinfer_trtllm_fp4_moe,
57
+ prepare_static_weights_for_trtllm_fp4_moe,
58
+ reorder_w1w3_to_w3w1,
59
+ select_nvfp4_gemm_impl,
60
+ )
61
+ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
62
+ FlashinferMoeBackend,
63
+ get_flashinfer_moe_backend,
64
+ )
65
+ from vllm.model_executor.layers.quantization.utils.fp8_utils import (
66
+ expert_weight_is_col_major,
67
+ requant_weight_ue8m0_inplace,
68
+ )
69
+ from vllm.model_executor.layers.quantization.utils.marlin_utils import (
70
+ check_moe_marlin_supports_layer,
71
+ get_marlin_input_dtype,
72
+ marlin_act_int8_process_scales,
73
+ marlin_make_workspace_new,
74
+ marlin_moe_permute_scales,
75
+ )
76
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp4 import (
77
+ prepare_moe_fp4_layer_for_marlin,
78
+ )
79
+ from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
80
+ prepare_moe_fp8_layer_for_marlin,
81
+ )
82
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
83
+ convert_bf16_scales_to_fp8,
84
+ convert_packed_uint4b8_to_signed_int4_inplace,
85
+ swizzle_blockscale,
86
+ )
87
+ from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
88
+ all_close_1d,
89
+ normalize_e4m3fn_to_e4m3fnuz,
90
+ per_tensor_dequantize,
91
+ )
92
+ from vllm.model_executor.utils import set_weight_attrs
93
+ from vllm.platforms import CpuArchEnum, current_platform
94
+ from vllm.scalar_type import scalar_types
95
+ from vllm.utils.deep_gemm import (
96
+ get_col_major_tma_aligned_tensor,
97
+ get_mk_alignment_for_contiguous_layout,
98
+ is_deep_gemm_e8m0_used,
99
+ )
100
+ from vllm.utils.import_utils import has_deep_gemm
101
+
102
+ logger = init_logger(__name__)
103
+
104
+
105
+ class GPTQMarlinState(Enum):
106
+ REPACK = enum.auto()
107
+ READY = enum.auto()
108
+
109
+
110
+ __all__ = [
111
+ "CompressedTensorsMoEMethod",
112
+ "CompressedTensorsW8A8Fp8MoEMethod",
113
+ "CompressedTensorsW8A8Int8MoEMethod",
114
+ "CompressedTensorsWNA16MarlinMoEMethod",
115
+ "CompressedTensorsWNA16MoEMethod",
116
+ "CompressedTensorsW4A4Nvfp4MoEMethod",
117
+ "CompressedTensorsW4A8Int8MoEMethod",
118
+ ]
119
+
120
+
121
+ class CompressedTensorsMoEMethod(FusedMoEMethodBase):
122
+ @staticmethod
123
+ def get_moe_method(
124
+ quant_config: "CompressedTensorsConfig", # type: ignore # noqa E501
125
+ layer: torch.nn.Module,
126
+ layer_name: str,
127
+ ) -> "CompressedTensorsMoEMethod":
128
+ # FusedMoE was made by combining multiple Linears so need to
129
+ # make sure quantization config for Linear can target it
130
+ quant_config._add_fused_moe_to_target_scheme_map()
131
+ unfused_names = [
132
+ layer_name + proj_name
133
+ for proj_name in [".0.gate_proj", ".0.up_proj", ".0.down_proj"]
134
+ ]
135
+ # TODO: refactor this to use expert_mapping and check all layer numbers
136
+ all_scheme_dicts = [
137
+ quant_config.get_scheme_dict(layer, name) for name in unfused_names
138
+ ]
139
+ scheme_dict = all_scheme_dicts.pop()
140
+
141
+ # multiple schemes found
142
+ if not all([cur_dict == scheme_dict for cur_dict in all_scheme_dicts]):
143
+ raise ValueError(
144
+ "All MoE projections need to have same "
145
+ "quantization scheme but found multiple"
146
+ )
147
+
148
+ if scheme_dict is None: # ignored layer
149
+ return UnquantizedFusedMoEMethod(layer.moe_config)
150
+
151
+ # TODO: @dsikka: refactor this to use schemes as other kernels
152
+ # are supported + check if the layer is being ignored.
153
+ weight_quant = scheme_dict.get("weights")
154
+ input_quant = scheme_dict.get("input_activations")
155
+ format = scheme_dict.get("format")
156
+
157
+ if quant_config._is_wNa16_group_channel(weight_quant, input_quant):
158
+ # group_size=None means channelwise
159
+ group_size = weight_quant.group_size or -1
160
+
161
+ valid_format_and_bits = (
162
+ weight_quant.num_bits in WNA16_SUPPORTED_BITS
163
+ and format == CompressionFormat.pack_quantized.value
164
+ )
165
+
166
+ if not valid_format_and_bits:
167
+ raise ValueError(
168
+ "For Fused MoE layers, only format: ",
169
+ f"{CompressionFormat.pack_quantized.value} ",
170
+ f" and bits: {WNA16_SUPPORTED_BITS} is supported ",
171
+ f"but got format: {CompressionFormat.pack_quantized.value} "
172
+ f" and bits: {weight_quant.num_bits}",
173
+ )
174
+
175
+ # Prefer to use the MarlinMoE kernel when it is supported.
176
+ if (
177
+ not check_moe_marlin_supports_layer(layer, group_size)
178
+ or current_platform.is_rocm()
179
+ ):
180
+ if (
181
+ weight_quant.strategy == QuantizationStrategy.GROUP
182
+ and weight_quant.actorder
183
+ in (ActivationOrdering.GROUP, ActivationOrdering.DYNAMIC)
184
+ ):
185
+ raise ValueError(
186
+ "WNA16MoE is not supported with actorder=group/dynamic."
187
+ )
188
+ logger.info_once("Using CompressedTensorsWNA16MoEMethod")
189
+ return CompressedTensorsWNA16MoEMethod(
190
+ weight_quant, input_quant, layer.moe_config
191
+ )
192
+ else:
193
+ logger.info_once("Using CompressedTensorsWNA16MarlinMoEMethod")
194
+ return CompressedTensorsWNA16MarlinMoEMethod(
195
+ weight_quant, input_quant, layer.moe_config
196
+ )
197
+ elif quant_config._is_fp4a4_nvfp4(weight_quant, input_quant):
198
+ return CompressedTensorsW4A4Nvfp4MoEMethod(layer.moe_config, layer_name)
199
+ elif (
200
+ quant_config._is_fp8_w8a8_sm90(weight_quant, input_quant)
201
+ or quant_config._is_fp8_w8a8_sm100(weight_quant, input_quant)
202
+ or quant_config._is_fp8_w8a8(weight_quant, input_quant)
203
+ ):
204
+ return CompressedTensorsW8A8Fp8MoEMethod(
205
+ weight_quant, input_quant, layer.moe_config
206
+ )
207
+ elif quant_config._is_dynamic_token_w8a8(weight_quant, input_quant):
208
+ return CompressedTensorsW8A8Int8MoEMethod(
209
+ weight_quant, input_quant, layer.moe_config
210
+ )
211
+ elif quant_config._is_fp8_w4a8_sm90(weight_quant, input_quant):
212
+ logger.info_once("Using CompressedTensorsW4A8Fp8MoEMethod")
213
+ return CompressedTensorsW4A8Fp8MoEMethod(
214
+ weight_quant, input_quant, layer.moe_config
215
+ )
216
+ elif quant_config._is_dynamic_token_w4a8_int(weight_quant, input_quant):
217
+ return CompressedTensorsW4A8Int8MoEMethod(
218
+ weight_quant, input_quant, layer.moe_config
219
+ )
220
+ else:
221
+ raise RuntimeError(
222
+ f"Unsupported FusedMoe scheme: {weight_quant}, {input_quant}"
223
+ )
224
+
225
+
226
+ class CompressedTensorsW4A4Nvfp4MoEMethod(CompressedTensorsMoEMethod):
227
+ def __init__(self, moe: FusedMoEConfig, layer_name: str | None = None):
228
+ from vllm.model_executor.layers.quantization.utils.nvfp4_moe_support import ( # noqa: E501
229
+ detect_nvfp4_moe_support,
230
+ )
231
+
232
+ super().__init__(moe)
233
+ _nvfp4 = detect_nvfp4_moe_support(self.__class__.__name__)
234
+ self.cutlass_nvfp4_supported = _nvfp4.cutlass_supported
235
+ self.allow_flashinfer = _nvfp4.allow_flashinfer
236
+ self.use_marlin = _nvfp4.use_marlin
237
+ self.group_size = 16
238
+ self.layer_name = layer_name
239
+ self.marlin_input_dtype = (
240
+ get_marlin_input_dtype(layer_name) if self.use_marlin else None
241
+ )
242
+ self.flashinfer_moe_backend = None
243
+ if self.allow_flashinfer:
244
+ self.flashinfer_moe_backend = get_flashinfer_moe_backend()
245
+ logger.info_once(
246
+ f"Using FlashInfer {self.flashinfer_moe_backend.value} kernels"
247
+ " for CompressedTensorsW4A4Nvfp4MoEMethod."
248
+ )
249
+ elif self.use_marlin:
250
+ logger.info_once("Using Marlin for CompressedTensorsW4A4Nvfp4MoEMethod.")
251
+ else:
252
+ logger.info_once("Using Cutlass for CompressedTensorsW4A4Nvfp4MoEMethod.")
253
+
254
+ def create_weights(
255
+ self,
256
+ layer: torch.nn.Module,
257
+ num_experts: int,
258
+ hidden_size: int,
259
+ intermediate_size_per_partition: int,
260
+ params_dtype: torch.dtype,
261
+ **extra_weight_attrs,
262
+ ):
263
+ layer.num_experts = num_experts
264
+ layer.params_dtype = params_dtype
265
+
266
+ w13_weight = torch.nn.Parameter(
267
+ torch.empty(
268
+ num_experts,
269
+ 2 * intermediate_size_per_partition,
270
+ # 2 fp4 items are packed in the input dimension
271
+ hidden_size // 2,
272
+ requires_grad=False,
273
+ dtype=torch.uint8,
274
+ ),
275
+ requires_grad=False,
276
+ )
277
+ layer.register_parameter("w13_weight_packed", w13_weight)
278
+ set_weight_attrs(w13_weight, extra_weight_attrs)
279
+
280
+ w2_weight = torch.nn.Parameter(
281
+ torch.empty(
282
+ num_experts,
283
+ hidden_size,
284
+ # 2 fp4 items are packed in the input dimension
285
+ intermediate_size_per_partition // 2,
286
+ dtype=torch.uint8,
287
+ ),
288
+ requires_grad=False,
289
+ )
290
+ layer.register_parameter("w2_weight_packed", w2_weight)
291
+ set_weight_attrs(w2_weight, extra_weight_attrs)
292
+
293
+ # Weight Scales
294
+ w13_weight_scale = torch.nn.Parameter(
295
+ torch.empty(
296
+ num_experts,
297
+ 2 * intermediate_size_per_partition,
298
+ # 2 fp4 items are packed in the input dimension
299
+ hidden_size // self.group_size,
300
+ dtype=torch.float8_e4m3fn,
301
+ ),
302
+ requires_grad=False,
303
+ )
304
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
305
+ extra_weight_attrs.update(
306
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
307
+ )
308
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
309
+
310
+ w2_weight_scale = torch.nn.Parameter(
311
+ torch.empty(
312
+ num_experts,
313
+ hidden_size,
314
+ # 2 fp4 items are packed in the input dimension
315
+ intermediate_size_per_partition // self.group_size,
316
+ dtype=torch.float8_e4m3fn,
317
+ ),
318
+ requires_grad=False,
319
+ )
320
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
321
+ extra_weight_attrs.update(
322
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
323
+ )
324
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
325
+
326
+ # Weight Global Scales
327
+ w13_weight_scale_2 = torch.nn.Parameter(
328
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
329
+ )
330
+ layer.register_parameter("w13_weight_global_scale", w13_weight_scale_2)
331
+ extra_weight_attrs.update(
332
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
333
+ )
334
+ set_weight_attrs(w13_weight_scale_2, extra_weight_attrs)
335
+
336
+ w2_weight_scale_2 = torch.nn.Parameter(
337
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
338
+ )
339
+ layer.register_parameter("w2_weight_global_scale", w2_weight_scale_2)
340
+ extra_weight_attrs.update(
341
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
342
+ )
343
+ set_weight_attrs(w2_weight_scale_2, extra_weight_attrs)
344
+
345
+ # Input Global Scales
346
+ w13_input_scale = torch.nn.Parameter(
347
+ torch.empty(num_experts, 2, dtype=torch.float32), requires_grad=False
348
+ )
349
+ layer.register_parameter("w13_input_global_scale", w13_input_scale)
350
+ extra_weight_attrs.update(
351
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
352
+ )
353
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
354
+
355
+ w2_input_scale = torch.nn.Parameter(
356
+ torch.empty(num_experts, dtype=torch.float32), requires_grad=False
357
+ )
358
+ layer.register_parameter("w2_input_global_scale", w2_input_scale)
359
+ extra_weight_attrs.update(
360
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
361
+ )
362
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
363
+
364
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
365
+ # From packed to weight
366
+ layer.w13_weight = torch.nn.Parameter(
367
+ layer.w13_weight_packed.data, requires_grad=False
368
+ )
369
+ delattr(layer, "w13_weight_packed")
370
+
371
+ layer.w2_weight = torch.nn.Parameter(
372
+ layer.w2_weight_packed.data, requires_grad=False
373
+ )
374
+ delattr(layer, "w2_weight_packed")
375
+
376
+ # reorder GEMM1 weights and block scales for FlashInfer CUTLASS kernel.
377
+ if self.allow_flashinfer:
378
+ w, s = reorder_w1w3_to_w3w1(
379
+ layer.w13_weight.data, layer.w13_weight_scale.data, dim=-2
380
+ )
381
+ layer.w13_weight = torch.nn.Parameter(w, requires_grad=False)
382
+ layer.w13_weight_scale = torch.nn.Parameter(s, requires_grad=False)
383
+
384
+ if not torch.allclose(
385
+ layer.w13_weight_global_scale[:, 0], layer.w13_weight_global_scale[:, 1]
386
+ ):
387
+ logger.warning_once(
388
+ "w1_weight_global_scale must match w3_weight_global_scale. "
389
+ "Accuracy may be affected."
390
+ )
391
+
392
+ # Take inverse of global scale saved to disk
393
+ layer.w13_weight_scale_2 = torch.nn.Parameter(
394
+ 1 / layer.w13_weight_global_scale[:, 0], requires_grad=False
395
+ )
396
+
397
+ layer.w2_weight_scale_2 = torch.nn.Parameter(
398
+ 1 / layer.w2_weight_global_scale.data, requires_grad=False
399
+ )
400
+
401
+ if self.use_marlin:
402
+ prepare_moe_fp4_layer_for_marlin(layer, input_dtype=self.marlin_input_dtype)
403
+ return
404
+ # w13
405
+ if (
406
+ self.allow_flashinfer
407
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
408
+ ):
409
+ w13_input_global_scale = (
410
+ layer.w13_input_global_scale.min()
411
+ .to(torch.float32)
412
+ .expand(layer.num_experts)
413
+ )
414
+ else:
415
+ w13_input_global_scale = layer.w13_input_global_scale.min(dim=1).values.to(
416
+ torch.float32
417
+ )
418
+ layer.g1_alphas = torch.nn.Parameter(
419
+ ((1 / w13_input_global_scale) * layer.w13_weight_scale_2),
420
+ requires_grad=False,
421
+ )
422
+
423
+ layer.w13_input_scale_quant = torch.nn.Parameter(
424
+ (w13_input_global_scale), requires_grad=False
425
+ )
426
+
427
+ # w2
428
+ if (
429
+ self.allow_flashinfer
430
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
431
+ ):
432
+ w2_input_global_scale = (
433
+ layer.w2_input_global_scale.min()
434
+ .to(torch.float32)
435
+ .expand(layer.num_experts)
436
+ )
437
+ else:
438
+ w2_input_global_scale = layer.w2_input_global_scale
439
+
440
+ layer.g2_alphas = torch.nn.Parameter(
441
+ ((1 / w2_input_global_scale) * layer.w2_weight_scale_2).to(torch.float32),
442
+ requires_grad=False,
443
+ )
444
+
445
+ layer.w2_input_scale_quant = torch.nn.Parameter(
446
+ (w2_input_global_scale), requires_grad=False
447
+ )
448
+
449
+ # TensorRT-LLM specific processing
450
+ if (
451
+ self.allow_flashinfer
452
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
453
+ ):
454
+ # Prepare static weights for TRT-LLM kernel
455
+ # alternate: prepare_static_weight_layouts_for_trtllm_moe
456
+ (
457
+ gemm1_weights_fp4_shuffled,
458
+ gemm1_scales_fp4_shuffled,
459
+ gemm2_weights_fp4_shuffled,
460
+ gemm2_scales_fp4_shuffled,
461
+ ) = prepare_static_weights_for_trtllm_fp4_moe(
462
+ layer.w13_weight,
463
+ layer.w2_weight,
464
+ layer.w13_weight_scale,
465
+ layer.w2_weight_scale,
466
+ layer.w2_weight.size(-2), # hidden_size
467
+ layer.w13_weight.size(-2) // 2, # intermediate_size
468
+ layer.w13_weight.size(0), # num_experts
469
+ )
470
+ logger.debug_once("Finished shuffling weights for TRT-LLM MOE")
471
+
472
+ layer.gemm1_weights_fp4_shuffled = Parameter(
473
+ gemm1_weights_fp4_shuffled, requires_grad=False
474
+ )
475
+ layer.gemm2_weights_fp4_shuffled = Parameter(
476
+ gemm2_weights_fp4_shuffled, requires_grad=False
477
+ )
478
+ layer.gemm1_scales_fp4_shuffled = Parameter(
479
+ gemm1_scales_fp4_shuffled, requires_grad=False
480
+ )
481
+ layer.gemm2_scales_fp4_shuffled = Parameter(
482
+ gemm2_scales_fp4_shuffled, requires_grad=False
483
+ )
484
+
485
+ # Additional parameter needed for TRT-LLM
486
+ layer.g1_scale_c = Parameter(
487
+ (layer.w2_input_scale_quant * layer.g1_alphas).to(torch.float32),
488
+ requires_grad=False,
489
+ )
490
+
491
+ # Clean up weights that won't be used by TRT-LLM
492
+ del layer.w2_weight
493
+ del layer.w2_weight_scale
494
+ del layer.w13_weight
495
+ del layer.w13_weight_scale
496
+ else:
497
+ # swizzle weight scales
498
+ layer.w13_weight_scale = torch.nn.Parameter(
499
+ swizzle_blockscale(layer.w13_weight_scale), requires_grad=False
500
+ )
501
+
502
+ layer.w2_weight_scale = torch.nn.Parameter(
503
+ swizzle_blockscale(layer.w2_weight_scale), requires_grad=False
504
+ )
505
+
506
+ def maybe_make_prepare_finalize(
507
+ self,
508
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
509
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
510
+ if self.use_marlin or (
511
+ self.allow_flashinfer
512
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
513
+ ):
514
+ return None
515
+ elif not self.allow_flashinfer:
516
+ return super().maybe_make_prepare_finalize(routing_tables)
517
+
518
+ prepare_finalize = build_flashinfer_fp4_cutlass_moe_prepare_finalize(self.moe)
519
+ logger.debug_once("%s", prepare_finalize.__class__.__name__)
520
+ return prepare_finalize
521
+
522
+ def select_gemm_impl(
523
+ self,
524
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
525
+ layer: torch.nn.Module,
526
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
527
+ assert self.moe_quant_config is not None
528
+ """Return the appropriate GEMM experts implementation."""
529
+ experts = select_nvfp4_gemm_impl(
530
+ self.moe,
531
+ self.moe_quant_config,
532
+ allow_flashinfer=self.allow_flashinfer,
533
+ )
534
+ logger.debug_once("Using %s", experts.__class__.__name__)
535
+ return experts
536
+
537
+ def get_fused_moe_quant_config(
538
+ self, layer: torch.nn.Module
539
+ ) -> FusedMoEQuantConfig | None:
540
+ if (
541
+ self.use_marlin
542
+ or self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
543
+ ):
544
+ return None
545
+
546
+ return nvfp4_moe_quant_config(
547
+ g1_alphas=layer.g1_alphas,
548
+ g2_alphas=layer.g2_alphas,
549
+ a1_gscale=layer.w13_input_scale_quant,
550
+ a2_gscale=layer.w2_input_scale_quant,
551
+ w1_scale=layer.w13_weight_scale,
552
+ w2_scale=layer.w2_weight_scale,
553
+ )
554
+
555
+ def apply(
556
+ self,
557
+ layer: FusedMoE,
558
+ x: torch.Tensor,
559
+ router_logits: torch.Tensor,
560
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
561
+ assert layer.activation == "silu", "Only SiLU activation is supported."
562
+
563
+ if (
564
+ self.allow_flashinfer
565
+ and self.flashinfer_moe_backend == FlashinferMoeBackend.TENSORRT_LLM
566
+ ):
567
+ if layer.enable_eplb:
568
+ raise NotImplementedError(
569
+ "EPLB not supported for `CompressedTensorsW4A4MoEMethod` yet."
570
+ )
571
+
572
+ return flashinfer_trtllm_fp4_moe(
573
+ layer=layer,
574
+ x=x,
575
+ router_logits=router_logits,
576
+ top_k=layer.top_k,
577
+ global_num_experts=layer.global_num_experts,
578
+ num_expert_group=layer.num_expert_group,
579
+ topk_group=layer.topk_group,
580
+ custom_routing_function=layer.custom_routing_function,
581
+ e_score_correction_bias=layer.e_score_correction_bias,
582
+ )
583
+
584
+ topk_weights, topk_ids, _ = layer.select_experts(
585
+ hidden_states=x,
586
+ router_logits=router_logits,
587
+ )
588
+
589
+ if self.use_marlin:
590
+ return fused_marlin_moe(
591
+ x,
592
+ layer.w13_weight,
593
+ layer.w2_weight,
594
+ None,
595
+ None,
596
+ layer.w13_weight_scale,
597
+ layer.w2_weight_scale,
598
+ router_logits,
599
+ topk_weights,
600
+ topk_ids,
601
+ global_scale1=layer.w13_weight_scale_2,
602
+ global_scale2=layer.w2_weight_scale_2,
603
+ quant_type_id=scalar_types.float4_e2m1f.id,
604
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
605
+ global_num_experts=layer.global_num_experts,
606
+ expert_map=layer.expert_map,
607
+ input_dtype=self.marlin_input_dtype,
608
+ workspace=layer.workspace,
609
+ )
610
+
611
+ # FlashInfer fused experts path
612
+ elif self.allow_flashinfer:
613
+ from vllm.model_executor.layers.fused_moe.flashinfer_cutlass_moe import ( # noqa: E501
614
+ flashinfer_cutlass_moe_fp4,
615
+ )
616
+
617
+ assert is_valid_flashinfer_cutlass_fused_moe(
618
+ x, layer.w13_weight, layer.w2_weight
619
+ ), "Flashinfer CUTLASS Fused MoE not applicable!"
620
+
621
+ assert self.moe_quant_config is not None
622
+
623
+ return flashinfer_cutlass_moe_fp4(
624
+ hidden_states=x,
625
+ w1=layer.w13_weight,
626
+ w2=layer.w2_weight,
627
+ topk_weights=topk_weights,
628
+ topk_ids=topk_ids,
629
+ quant_config=self.moe_quant_config,
630
+ inplace=False, # TODO(shuw): fix later, now output is high prec
631
+ activation=layer.activation,
632
+ global_num_experts=layer.global_num_experts,
633
+ expert_map=layer.expert_map,
634
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
635
+ )
636
+ else:
637
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import cutlass_moe_fp4
638
+
639
+ assert layer.expert_map is None, (
640
+ "Expert Parallelism / expert_map "
641
+ "is currently not supported for "
642
+ "CompressedTensorsW4A4Nvfp4MoEMethod."
643
+ )
644
+ assert self.moe_quant_config is not None
645
+
646
+ # Cutlass moe takes in activations in BF16/Half precision
647
+ # and fp4 quantized weights loaded from the checkpoint
648
+ return cutlass_moe_fp4(
649
+ a=x,
650
+ w1_fp4=layer.w13_weight,
651
+ w2_fp4=layer.w2_weight,
652
+ topk_weights=topk_weights,
653
+ topk_ids=topk_ids,
654
+ quant_config=self.moe_quant_config,
655
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
656
+ # TODO(bnell): derive these from arguments
657
+ m=x.shape[0],
658
+ n=layer.w2_weight.shape[2] * 2,
659
+ k=x.shape[1],
660
+ e=layer.w13_weight.shape[0],
661
+ ).to(x.dtype)
662
+
663
+
664
+ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
665
+ def __init__(
666
+ self,
667
+ weight_quant: QuantizationArgs,
668
+ input_quant: QuantizationArgs,
669
+ moe: FusedMoEConfig,
670
+ layer_name: str | None = None,
671
+ ):
672
+ from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
673
+ CompressedTensorsConfig,
674
+ )
675
+
676
+ super().__init__(moe)
677
+ self.weight_quant = weight_quant
678
+ self.input_quant = input_quant
679
+
680
+ per_tensor = (
681
+ self.weight_quant.strategy == QuantizationStrategy.TENSOR
682
+ and self.input_quant.strategy == QuantizationStrategy.TENSOR
683
+ )
684
+ per_channel = (
685
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
686
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
687
+ )
688
+ if not (per_tensor or per_channel):
689
+ assert self.weight_quant.strategy == QuantizationStrategy.BLOCK
690
+ self.weight_block_size = self.weight_quant.block_structure
691
+ assert self.weight_quant.dynamic is not None
692
+ else:
693
+ self.weight_block_size = None
694
+ self.block_quant = self.weight_block_size is not None
695
+
696
+ self.static_input_scales = not self.input_quant.dynamic
697
+ if self.static_input_scales and per_channel:
698
+ raise ValueError(
699
+ "For FP8 Fused MoE layer, we require either per tensor or "
700
+ "channelwise, dynamic per token quantization."
701
+ )
702
+
703
+ # For GPUs that lack FP8 hardware support, we can leverage the Marlin
704
+ # kernel for fast weight-only FP8 quantization
705
+ self.use_marlin = (
706
+ not current_platform.has_device_capability(89)
707
+ or envs.VLLM_TEST_FORCE_FP8_MARLIN
708
+ and not self.block_quant
709
+ )
710
+ # Disable marlin for rocm
711
+ if current_platform.is_rocm():
712
+ self.use_marlin = False
713
+
714
+ self.rocm_aiter_moe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
715
+
716
+ # cutlass path
717
+ self.is_fp8_w8a8_sm100 = CompressedTensorsConfig._is_fp8_w8a8_sm100(
718
+ self.weight_quant, self.input_quant
719
+ )
720
+ self.use_cutlass = not self.block_quant and (
721
+ CompressedTensorsConfig._is_fp8_w8a8_sm90(
722
+ self.weight_quant, self.input_quant
723
+ )
724
+ or self.is_fp8_w8a8_sm100
725
+ )
726
+ self.disable_expert_map = False
727
+ self.layer_name = layer_name
728
+ self.marlin_input_dtype = (
729
+ get_marlin_input_dtype(layer_name) if self.use_marlin else None
730
+ )
731
+
732
+ def create_weights(
733
+ self,
734
+ layer: torch.nn.Module,
735
+ num_experts: int,
736
+ hidden_size: int,
737
+ intermediate_size_per_partition: int,
738
+ params_dtype: torch.dtype,
739
+ **extra_weight_attrs,
740
+ ):
741
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
742
+ layer.hidden_size = hidden_size
743
+ layer.num_experts = num_experts
744
+ layer.orig_dtype = params_dtype
745
+ layer.weight_block_size = None
746
+
747
+ params_dtype = torch.float8_e4m3fn
748
+
749
+ if self.block_quant:
750
+ assert self.weight_block_size is not None
751
+ layer.weight_block_size = self.weight_block_size
752
+ tp_size = get_tensor_model_parallel_world_size()
753
+ block_n, block_k = (
754
+ self.weight_block_size[0],
755
+ self.weight_block_size[1],
756
+ )
757
+ # NOTE: To ensure proper alignment of the block-wise quantization
758
+ # scales, the output_size of the weights for both the gate and up
759
+ # layers must be divisible by block_n.
760
+ # Required by column parallel or enabling merged weights
761
+ if intermediate_size_per_partition % block_n != 0:
762
+ raise ValueError(
763
+ f"The output_size of gate's and up's weight = "
764
+ f"{intermediate_size_per_partition} is not divisible by "
765
+ f"weight quantization block_n = {block_n}."
766
+ )
767
+ if tp_size > 1 and intermediate_size_per_partition % block_k != 0:
768
+ # Required by row parallel
769
+ raise ValueError(
770
+ f"The input_size of down's weight = "
771
+ f"{intermediate_size_per_partition} is not divisible by "
772
+ f"weight quantization block_k = {block_k}."
773
+ )
774
+
775
+ # WEIGHTS
776
+ w13_weight = torch.nn.Parameter(
777
+ torch.empty(
778
+ num_experts,
779
+ 2 * intermediate_size_per_partition,
780
+ hidden_size,
781
+ dtype=params_dtype,
782
+ ),
783
+ requires_grad=False,
784
+ )
785
+ layer.register_parameter("w13_weight", w13_weight)
786
+ set_weight_attrs(w13_weight, extra_weight_attrs)
787
+
788
+ w2_weight = torch.nn.Parameter(
789
+ torch.empty(
790
+ num_experts,
791
+ hidden_size,
792
+ intermediate_size_per_partition,
793
+ dtype=params_dtype,
794
+ ),
795
+ requires_grad=False,
796
+ )
797
+ layer.register_parameter("w2_weight", w2_weight)
798
+ set_weight_attrs(w2_weight, extra_weight_attrs)
799
+
800
+ # WEIGHT_SCALES
801
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
802
+ # Allocate 2 scales for w1 and w3 respectively.
803
+ # They are combined to a single scale after weight loading.
804
+ w13_weight_scale = torch.nn.Parameter(
805
+ torch.ones(num_experts, 2, dtype=torch.float32), requires_grad=False
806
+ )
807
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
808
+ w2_weight_scale = torch.nn.Parameter(
809
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
810
+ )
811
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
812
+ # Add PER-TENSOR quantization for FusedMoE.weight_loader.
813
+ extra_weight_attrs.update(
814
+ {"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
815
+ )
816
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
817
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
818
+
819
+ elif self.weight_quant.strategy == QuantizationStrategy.CHANNEL:
820
+ w13_weight_scale = torch.nn.Parameter(
821
+ torch.ones(
822
+ num_experts,
823
+ 2 * intermediate_size_per_partition,
824
+ 1,
825
+ dtype=torch.float32,
826
+ ),
827
+ requires_grad=False,
828
+ )
829
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
830
+ w2_weight_scale = torch.nn.Parameter(
831
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
832
+ requires_grad=False,
833
+ )
834
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
835
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
836
+ extra_weight_attrs.update(
837
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
838
+ )
839
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
840
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
841
+
842
+ elif self.weight_quant.strategy == QuantizationStrategy.BLOCK:
843
+ w13_weight_scale = torch.nn.Parameter(
844
+ torch.ones(
845
+ num_experts,
846
+ 2 * ((intermediate_size_per_partition + block_n - 1) // block_n),
847
+ (hidden_size + block_k - 1) // block_k,
848
+ dtype=torch.float32,
849
+ ),
850
+ requires_grad=False,
851
+ )
852
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
853
+ w2_weight_scale = torch.nn.Parameter(
854
+ torch.ones(
855
+ num_experts,
856
+ (hidden_size + block_n - 1) // block_n,
857
+ (intermediate_size_per_partition + block_k - 1) // block_k,
858
+ dtype=torch.float32,
859
+ ),
860
+ requires_grad=False,
861
+ )
862
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
863
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
864
+ extra_weight_attrs.update(
865
+ {"quant_method": FusedMoeWeightScaleSupported.BLOCK.value}
866
+ )
867
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
868
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
869
+
870
+ # INPUT_SCALES
871
+ if self.static_input_scales:
872
+ w13_input_scale = torch.nn.Parameter(
873
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
874
+ )
875
+ layer.register_parameter("w13_input_scale", w13_input_scale)
876
+ set_weight_attrs(w13_input_scale, extra_weight_attrs)
877
+
878
+ w2_input_scale = torch.nn.Parameter(
879
+ torch.ones(num_experts, dtype=torch.float32), requires_grad=False
880
+ )
881
+ layer.register_parameter("w2_input_scale", w2_input_scale)
882
+ set_weight_attrs(w2_input_scale, extra_weight_attrs)
883
+ else:
884
+ layer.w13_input_scale = None
885
+ layer.w2_input_scale = None
886
+
887
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
888
+ # Fp8 moe kernels require a single activation scale.
889
+ # We take the max of all the scales in case they differ.
890
+ if self.static_input_scales:
891
+ assert self.input_quant.strategy == QuantizationStrategy.TENSOR
892
+ if layer.w13_input_scale is None or layer.w2_input_scale is None:
893
+ raise ValueError(
894
+ "QuantConfig has static quantization, but found "
895
+ "activation scales are None."
896
+ )
897
+ if not all_close_1d(layer.w13_input_scale) or not all_close_1d(
898
+ layer.w2_input_scale
899
+ ):
900
+ logger.warning_once(
901
+ "Found input_scales that are not equal for "
902
+ "fp8 MoE layer. Using the maximum across experts "
903
+ "for each layer."
904
+ )
905
+ layer.w13_input_scale = torch.nn.Parameter(
906
+ layer.w13_input_scale.max(), requires_grad=False
907
+ )
908
+ layer.w2_input_scale = torch.nn.Parameter(
909
+ layer.w2_input_scale.max(), requires_grad=False
910
+ )
911
+
912
+ if current_platform.is_fp8_fnuz():
913
+ # Normalize the weights and scales
914
+ w13_weight, w13_weight_scale, w13_input_scale = (
915
+ normalize_e4m3fn_to_e4m3fnuz(
916
+ layer.w13_weight, layer.w13_weight_scale, layer.w13_input_scale
917
+ )
918
+ )
919
+ w2_weight, w2_weight_scale, w2_input_scale = normalize_e4m3fn_to_e4m3fnuz(
920
+ layer.w2_weight, layer.w2_weight_scale, layer.w2_input_scale
921
+ )
922
+ # Reset the parameter
923
+ layer.w13_weight = torch.nn.Parameter(w13_weight, requires_grad=False)
924
+ layer.w13_weight_scale = torch.nn.Parameter(
925
+ w13_weight_scale, requires_grad=False
926
+ )
927
+ if w13_input_scale is not None:
928
+ layer.w13_input_scale = torch.nn.Parameter(
929
+ w13_input_scale, requires_grad=False
930
+ )
931
+ layer.w2_weight = torch.nn.Parameter(w2_weight, requires_grad=False)
932
+ layer.w2_weight_scale = torch.nn.Parameter(
933
+ w2_weight_scale, requires_grad=False
934
+ )
935
+ if w2_input_scale is not None:
936
+ layer.w2_input_scale = torch.nn.Parameter(
937
+ w2_input_scale, requires_grad=False
938
+ )
939
+
940
+ # For Per-TENSOR case, Fp8 moe kernel needs single weight scale
941
+ # for w13 per expert. Use max then dequant and requant each expert.
942
+ if self.weight_quant.strategy == QuantizationStrategy.TENSOR:
943
+ assert layer.w13_weight_scale is not None
944
+ shard_size = layer.intermediate_size_per_partition
945
+ max_w13_scales = layer.w13_weight_scale.max(dim=1).values
946
+ for expert_id in range(layer.local_num_experts):
947
+ start = 0
948
+ for shard_id in range(2):
949
+ dq_weight = per_tensor_dequantize(
950
+ layer.w13_weight[expert_id][start : start + shard_size, :],
951
+ layer.w13_weight_scale[expert_id][shard_id],
952
+ )
953
+ layer.w13_weight[expert_id][start : start + shard_size, :], _ = (
954
+ ops.scaled_fp8_quant(dq_weight, max_w13_scales[expert_id])
955
+ )
956
+ start += shard_size
957
+ layer.w13_weight_scale = torch.nn.Parameter(
958
+ max_w13_scales, requires_grad=False
959
+ )
960
+
961
+ # Property to determine if AITER is used
962
+ if self.rocm_aiter_moe_enabled:
963
+ # reshaping weights is required for aiter moe kernel.
964
+ shuffled_w13, shuffled_w2 = rocm_aiter_ops.shuffle_weights(
965
+ layer.w13_weight.data, layer.w2_weight.data
966
+ )
967
+
968
+ layer.w13_weight = torch.nn.Parameter(shuffled_w13, requires_grad=False)
969
+ layer.w2_weight = torch.nn.Parameter(shuffled_w2, requires_grad=False)
970
+
971
+ elif self.use_marlin:
972
+ prepare_moe_fp8_layer_for_marlin(
973
+ layer, False, input_dtype=self.marlin_input_dtype
974
+ )
975
+ # Activations not quantized for marlin.
976
+ del layer.w13_input_scale
977
+ del layer.w2_input_scale
978
+
979
+ if self.use_cutlass:
980
+ assert self.weight_quant.strategy != QuantizationStrategy.BLOCK
981
+ device = layer.w13_weight.device
982
+ # ab_strides1 and c_strides2 are the same
983
+ self.ab_strides1_c_strides2 = torch.full(
984
+ (layer.local_num_experts,),
985
+ layer.hidden_size,
986
+ device=device,
987
+ dtype=torch.int64,
988
+ )
989
+ self.ab_strides2 = torch.full(
990
+ (layer.local_num_experts,),
991
+ layer.intermediate_size_per_partition,
992
+ device=device,
993
+ dtype=torch.int64,
994
+ )
995
+ self.c_strides1 = torch.full(
996
+ (layer.local_num_experts,),
997
+ 2 * layer.intermediate_size_per_partition,
998
+ device=device,
999
+ dtype=torch.int64,
1000
+ )
1001
+
1002
+ if is_deep_gemm_e8m0_used() and self.block_quant:
1003
+ assert layer.weight_block_size is not None
1004
+ # Re-quantise the expert weights so their scales are UE8M0.
1005
+ block_sz = tuple(layer.weight_block_size)
1006
+ requant_weight_ue8m0_inplace(
1007
+ layer.w13_weight.data,
1008
+ layer.w13_weight_scale.data,
1009
+ block_sz,
1010
+ )
1011
+ requant_weight_ue8m0_inplace(
1012
+ layer.w2_weight.data,
1013
+ layer.w2_weight_scale.data,
1014
+ block_sz,
1015
+ )
1016
+
1017
+ # Ensure column-major TMA alignment expected by DeepGEMM.
1018
+ if expert_weight_is_col_major(layer.w13_weight_scale):
1019
+ layer.w13_weight_scale = get_col_major_tma_aligned_tensor(
1020
+ layer.w13_weight_scale
1021
+ )
1022
+ if expert_weight_is_col_major(layer.w2_weight_scale):
1023
+ layer.w2_weight_scale = get_col_major_tma_aligned_tensor(
1024
+ layer.w2_weight_scale
1025
+ )
1026
+
1027
+ def maybe_make_prepare_finalize(
1028
+ self,
1029
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
1030
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
1031
+ if self.use_marlin or self.rocm_aiter_moe_enabled:
1032
+ return None
1033
+ else:
1034
+ return super().maybe_make_prepare_finalize(routing_tables)
1035
+
1036
+ def select_gemm_impl(
1037
+ self,
1038
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1039
+ layer: torch.nn.Module,
1040
+ ) -> FusedMoEPermuteExpertsUnpermute:
1041
+ # cutlass path
1042
+ assert self.moe_quant_config is not None
1043
+ if self.use_cutlass:
1044
+ from vllm.model_executor.layers.fused_moe import (
1045
+ CutlassBatchedExpertsFp8,
1046
+ CutlassExpertsFp8,
1047
+ )
1048
+
1049
+ experts: FusedMoEPermuteExpertsUnpermute
1050
+
1051
+ num_dispatchers = prepare_finalize.num_dispatchers()
1052
+
1053
+ if (
1054
+ prepare_finalize.activation_format
1055
+ == FusedMoEActivationFormat.BatchedExperts
1056
+ ):
1057
+ logger.debug("CutlassBatchedExpertsFp8(%s)", self.__class__.__name__)
1058
+ experts = CutlassBatchedExpertsFp8(
1059
+ self.moe.num_local_experts,
1060
+ num_dispatchers,
1061
+ self.moe.in_dtype,
1062
+ ab_strides1=self.ab_strides1_c_strides2,
1063
+ ab_strides2=self.ab_strides2,
1064
+ c_strides1=self.c_strides1,
1065
+ c_strides2=self.ab_strides1_c_strides2,
1066
+ quant_config=self.moe_quant_config,
1067
+ )
1068
+ else:
1069
+ logger.debug("CutlassExpertsFp8(%s)", self.__class__.__name__)
1070
+ experts = CutlassExpertsFp8(
1071
+ self.moe.in_dtype,
1072
+ ab_strides1=self.ab_strides1_c_strides2,
1073
+ ab_strides2=self.ab_strides2,
1074
+ c_strides1=self.c_strides1,
1075
+ c_strides2=self.ab_strides1_c_strides2,
1076
+ quant_config=self.moe_quant_config,
1077
+ )
1078
+
1079
+ self.disable_expert_map = (
1080
+ num_dispatchers > 1 or not experts.supports_expert_map()
1081
+ )
1082
+
1083
+ return experts
1084
+
1085
+ from vllm.model_executor.layers.fused_moe.batched_deep_gemm_moe import (
1086
+ BatchedDeepGemmExperts,
1087
+ )
1088
+ from vllm.model_executor.layers.fused_moe.fused_batched_moe import (
1089
+ BatchedTritonExperts,
1090
+ )
1091
+ from vllm.model_executor.layers.fused_moe.triton_deep_gemm_moe import (
1092
+ TritonOrDeepGemmExperts,
1093
+ )
1094
+
1095
+ assert not self.rocm_aiter_moe_enabled and not self.use_marlin
1096
+
1097
+ use_deep_gemm = envs.VLLM_USE_DEEP_GEMM and envs.VLLM_MOE_USE_DEEP_GEMM
1098
+
1099
+ if (
1100
+ prepare_finalize.activation_format
1101
+ == FusedMoEActivationFormat.BatchedExperts
1102
+ ):
1103
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1104
+ assert max_num_tokens_per_rank is not None
1105
+
1106
+ if use_deep_gemm and not has_deep_gemm():
1107
+ raise RuntimeError(
1108
+ "DeepGEMM requested for MoE layer but not installed."
1109
+ )
1110
+
1111
+ compatible_with_deep_gemm = (
1112
+ self.moe_quant_config.use_fp8_w8a8
1113
+ and self.moe_quant_config.block_shape
1114
+ == get_mk_alignment_for_contiguous_layout()
1115
+ )
1116
+
1117
+ # If this MoE layer is compatible with DeepGEMM, the proper env
1118
+ # vars are set and DeepGEMM is not installed, throw an error.
1119
+ if use_deep_gemm and compatible_with_deep_gemm and not has_deep_gemm():
1120
+ raise RuntimeError(
1121
+ f"MoE layer incompatible with DeepGEMM, expected "
1122
+ f"fp8==True, got {self.moe_quant_config.use_fp8_w8a8}"
1123
+ f"or block_shape {self.moe_quant_config.block_shape}"
1124
+ f"=={get_mk_alignment_for_contiguous_layout()}."
1125
+ )
1126
+
1127
+ if use_deep_gemm and compatible_with_deep_gemm and has_deep_gemm():
1128
+ logger.debug("BatchedDeepGemmExperts(%s)", self.__class__.__name__)
1129
+ return BatchedDeepGemmExperts(
1130
+ max_num_tokens=max_num_tokens_per_rank,
1131
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1132
+ quant_config=self.moe_quant_config,
1133
+ )
1134
+ else:
1135
+ logger.debug("BatchedTritonExperts(%s)", self.__class__.__name__)
1136
+ return BatchedTritonExperts(
1137
+ max_num_tokens=max_num_tokens_per_rank,
1138
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1139
+ quant_config=self.moe_quant_config,
1140
+ )
1141
+
1142
+ else:
1143
+ logger.debug("TritonOrDeepGemmExperts(%s)", self.__class__.__name__)
1144
+ return TritonOrDeepGemmExperts(
1145
+ self.moe_quant_config,
1146
+ allow_deep_gemm=use_deep_gemm,
1147
+ )
1148
+
1149
+ def get_fused_moe_quant_config(
1150
+ self, layer: torch.nn.Module
1151
+ ) -> FusedMoEQuantConfig | None:
1152
+ if self.use_marlin:
1153
+ return None
1154
+
1155
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
1156
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1157
+
1158
+ return fp8_w8a8_moe_quant_config(
1159
+ w1_scale=layer.w13_weight_scale,
1160
+ w2_scale=layer.w2_weight_scale,
1161
+ a1_scale=layer.w13_input_scale,
1162
+ a2_scale=layer.w2_input_scale,
1163
+ per_act_token_quant=per_act_token,
1164
+ per_out_ch_quant=per_channel_quant,
1165
+ block_shape=layer.weight_block_size,
1166
+ )
1167
+
1168
+ def apply(
1169
+ self,
1170
+ layer: FusedMoE,
1171
+ x: torch.Tensor,
1172
+ router_logits: torch.Tensor,
1173
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1174
+ topk_weights, topk_ids, _ = layer.select_experts(
1175
+ hidden_states=x,
1176
+ router_logits=router_logits,
1177
+ )
1178
+
1179
+ per_act_token = self.input_quant.strategy == QuantizationStrategy.TOKEN
1180
+ per_channel_quant = self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1181
+
1182
+ if self.use_marlin:
1183
+ assert layer.activation == "silu", (
1184
+ f"{layer.activation} not supported for Marlin MoE."
1185
+ )
1186
+ return fused_marlin_moe(
1187
+ x,
1188
+ layer.w13_weight,
1189
+ layer.w2_weight,
1190
+ None,
1191
+ None,
1192
+ layer.w13_weight_scale,
1193
+ layer.w2_weight_scale,
1194
+ router_logits,
1195
+ topk_weights,
1196
+ topk_ids,
1197
+ quant_type_id=scalar_types.float8_e4m3fn.id,
1198
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1199
+ global_num_experts=layer.global_num_experts,
1200
+ expert_map=layer.expert_map,
1201
+ input_dtype=self.marlin_input_dtype,
1202
+ workspace=layer.workspace,
1203
+ )
1204
+
1205
+ elif self.rocm_aiter_moe_enabled:
1206
+ from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import ( # noqa E501
1207
+ rocm_aiter_fused_experts,
1208
+ )
1209
+
1210
+ assert per_act_token == per_channel_quant
1211
+ assert self.moe_quant_config is not None
1212
+ return rocm_aiter_fused_experts(
1213
+ hidden_states=x,
1214
+ w1=layer.w13_weight,
1215
+ w2=layer.w2_weight,
1216
+ topk_weights=topk_weights,
1217
+ topk_ids=topk_ids,
1218
+ activation=layer.activation,
1219
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1220
+ expert_map=layer.expert_map,
1221
+ quant_config=self.moe_quant_config,
1222
+ )
1223
+
1224
+ # cutlass path
1225
+ elif self.use_cutlass:
1226
+ assert self.moe_quant_config is not None
1227
+
1228
+ # small-batch fallback on SM100
1229
+ if self.is_fp8_w8a8_sm100 and topk_ids.shape[0] <= 8:
1230
+ from vllm.model_executor.layers.fused_moe import fused_experts
1231
+
1232
+ assert per_act_token == per_channel_quant
1233
+ return fused_experts(
1234
+ hidden_states=x,
1235
+ w1=layer.w13_weight,
1236
+ w2=layer.w2_weight,
1237
+ topk_weights=topk_weights,
1238
+ topk_ids=topk_ids,
1239
+ inplace=True,
1240
+ activation=layer.activation,
1241
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1242
+ global_num_experts=layer.global_num_experts,
1243
+ expert_map=None
1244
+ if self.disable_expert_map
1245
+ else layer.expert_map, # ???
1246
+ quant_config=self.moe_quant_config,
1247
+ )
1248
+ else:
1249
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
1250
+ cutlass_moe_fp8,
1251
+ )
1252
+
1253
+ assert per_act_token == per_channel_quant
1254
+ assert self.moe_quant_config is not None
1255
+ return cutlass_moe_fp8(
1256
+ x,
1257
+ layer.w13_weight,
1258
+ layer.w2_weight,
1259
+ topk_weights,
1260
+ topk_ids,
1261
+ quant_config=self.moe_quant_config,
1262
+ activation=layer.activation,
1263
+ global_num_experts=layer.global_num_experts,
1264
+ expert_map=None if self.disable_expert_map else layer.expert_map,
1265
+ ab_strides1=self.ab_strides1_c_strides2,
1266
+ ab_strides2=self.ab_strides2,
1267
+ c_strides1=self.c_strides1,
1268
+ c_strides2=self.ab_strides1_c_strides2,
1269
+ )
1270
+
1271
+ else:
1272
+ from vllm.model_executor.layers.fused_moe import fused_experts
1273
+
1274
+ assert per_act_token == per_channel_quant
1275
+ assert self.moe_quant_config is not None
1276
+ return fused_experts(
1277
+ hidden_states=x,
1278
+ w1=layer.w13_weight,
1279
+ w2=layer.w2_weight,
1280
+ topk_weights=topk_weights,
1281
+ topk_ids=topk_ids,
1282
+ inplace=True,
1283
+ activation=layer.activation,
1284
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1285
+ global_num_experts=layer.global_num_experts,
1286
+ expert_map=layer.expert_map,
1287
+ quant_config=self.moe_quant_config,
1288
+ )
1289
+
1290
+ @property
1291
+ def supports_eplb(self) -> bool:
1292
+ return True
1293
+
1294
+
1295
+ class CompressedTensorsW8A8Int8MoEMethod(CompressedTensorsMoEMethod):
1296
+ def __init__(
1297
+ self,
1298
+ weight_quant: QuantizationArgs,
1299
+ input_quant: QuantizationArgs,
1300
+ moe: FusedMoEConfig,
1301
+ layer_name: str | None = None,
1302
+ ):
1303
+ super().__init__(moe)
1304
+ self.weight_quant = weight_quant
1305
+ self.input_quant = input_quant
1306
+
1307
+ per_channel = (
1308
+ self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1309
+ and self.input_quant.strategy == QuantizationStrategy.TOKEN
1310
+ )
1311
+ if not per_channel:
1312
+ raise ValueError(
1313
+ "For INT8 Fused MoE layers, we require channelwise, "
1314
+ "dynamic per token quantization. Found "
1315
+ f"{self.weight_quant}, {self.input_quant}"
1316
+ )
1317
+
1318
+ self.static_input_scales = not self.input_quant.dynamic
1319
+ if self.static_input_scales:
1320
+ raise ValueError(
1321
+ "For INT8 Fused MoE layers, we require channelwise, "
1322
+ "dynamic per token quantization. Found static input scales."
1323
+ )
1324
+
1325
+ def create_weights(
1326
+ self,
1327
+ layer: torch.nn.Module,
1328
+ num_experts: int,
1329
+ hidden_size: int,
1330
+ intermediate_size_per_partition: int,
1331
+ params_dtype: torch.dtype,
1332
+ **extra_weight_attrs,
1333
+ ):
1334
+ params_dtype = torch.int8
1335
+
1336
+ # WEIGHTS
1337
+ w13_weight = torch.nn.Parameter(
1338
+ torch.empty(
1339
+ num_experts,
1340
+ 2 * intermediate_size_per_partition,
1341
+ hidden_size,
1342
+ dtype=params_dtype,
1343
+ ),
1344
+ requires_grad=False,
1345
+ )
1346
+ layer.register_parameter("w13_weight", w13_weight)
1347
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1348
+
1349
+ w2_weight = torch.nn.Parameter(
1350
+ torch.empty(
1351
+ num_experts,
1352
+ hidden_size,
1353
+ intermediate_size_per_partition,
1354
+ dtype=params_dtype,
1355
+ ),
1356
+ requires_grad=False,
1357
+ )
1358
+ layer.register_parameter("w2_weight", w2_weight)
1359
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1360
+
1361
+ # WEIGHT_SCALES
1362
+ assert self.weight_quant.strategy == QuantizationStrategy.CHANNEL
1363
+ w13_weight_scale = torch.nn.Parameter(
1364
+ torch.ones(
1365
+ num_experts, 2 * intermediate_size_per_partition, 1, dtype=torch.float32
1366
+ ),
1367
+ requires_grad=False,
1368
+ )
1369
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
1370
+ w2_weight_scale = torch.nn.Parameter(
1371
+ torch.ones(num_experts, hidden_size, 1, dtype=torch.float32),
1372
+ requires_grad=False,
1373
+ )
1374
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
1375
+ # Add PER-CHANNEL quantization for FusedMoE.weight_loader.
1376
+ extra_weight_attrs.update(
1377
+ {"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value}
1378
+ )
1379
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
1380
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
1381
+
1382
+ # INPUT_SCALES
1383
+ assert not self.static_input_scales
1384
+ layer.w13_input_scale = None
1385
+ layer.w2_input_scale = None
1386
+
1387
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1388
+ pass
1389
+
1390
+ def get_fused_moe_quant_config(
1391
+ self, layer: torch.nn.Module
1392
+ ) -> FusedMoEQuantConfig | None:
1393
+ return int8_w8a8_moe_quant_config(
1394
+ w1_scale=layer.w13_weight_scale,
1395
+ w2_scale=layer.w2_weight_scale,
1396
+ a1_scale=layer.w13_input_scale,
1397
+ a2_scale=layer.w2_input_scale,
1398
+ per_act_token_quant=True,
1399
+ )
1400
+
1401
+ def apply(
1402
+ self,
1403
+ layer: FusedMoE,
1404
+ x: torch.Tensor,
1405
+ router_logits: torch.Tensor,
1406
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1407
+ from vllm.model_executor.layers.fused_moe import fused_experts
1408
+
1409
+ topk_weights, topk_ids, _ = layer.select_experts(
1410
+ hidden_states=x,
1411
+ router_logits=router_logits,
1412
+ )
1413
+
1414
+ return fused_experts(
1415
+ hidden_states=x,
1416
+ w1=layer.w13_weight,
1417
+ w2=layer.w2_weight,
1418
+ topk_weights=topk_weights,
1419
+ topk_ids=topk_ids,
1420
+ inplace=True,
1421
+ activation=layer.activation,
1422
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1423
+ global_num_experts=layer.global_num_experts,
1424
+ expert_map=layer.expert_map,
1425
+ quant_config=self.moe_quant_config,
1426
+ )
1427
+
1428
+
1429
+ class CompressedTensorsWNA16MarlinMoEMethod(CompressedTensorsMoEMethod):
1430
+ def __init__(
1431
+ self,
1432
+ weight_quant: QuantizationArgs,
1433
+ input_quant: QuantizationArgs | None,
1434
+ moe: FusedMoEConfig,
1435
+ layer_name: str | None = None,
1436
+ ):
1437
+ super().__init__(moe)
1438
+ self.weight_quant = weight_quant
1439
+ self.input_quant = input_quant
1440
+ assert weight_quant.symmetric, (
1441
+ "Only symmetric quantization is supported for MoE"
1442
+ )
1443
+ # Extract properties from weight_quant
1444
+ self.num_bits = weight_quant.num_bits
1445
+ self.packed_factor = 32 // weight_quant.num_bits
1446
+ self.strategy = weight_quant.strategy
1447
+ self.group_size = weight_quant.group_size
1448
+ self.actorder = weight_quant.actorder
1449
+
1450
+ self.quant_type = WNA16_SUPPORTED_TYPES_MAP[self.num_bits]
1451
+ self.use_marlin = True
1452
+ self.marlin_input_dtype = get_marlin_input_dtype(layer_name)
1453
+
1454
+ def create_weights(
1455
+ self,
1456
+ layer: torch.nn.Module,
1457
+ num_experts: int,
1458
+ hidden_size: int,
1459
+ intermediate_size_per_partition: int,
1460
+ params_dtype: torch.dtype,
1461
+ **extra_weight_attrs,
1462
+ ):
1463
+ intermediate_size_full = extra_weight_attrs.pop("intermediate_size_full")
1464
+
1465
+ # Will transpose the loaded weight along the
1466
+ # intermediate and hidden dim sizes. Will
1467
+ # shard for TP along the transposed dims
1468
+ extra_weight_attrs.update(
1469
+ {"is_transposed": True, "quant_method": self.strategy}
1470
+ )
1471
+ w13_weight = torch.nn.Parameter(
1472
+ torch.empty(
1473
+ num_experts,
1474
+ hidden_size // self.packed_factor,
1475
+ 2 * intermediate_size_per_partition,
1476
+ dtype=torch.int32,
1477
+ ),
1478
+ requires_grad=False,
1479
+ )
1480
+ layer.register_parameter("w13_weight_packed", w13_weight)
1481
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1482
+
1483
+ w2_weight = torch.nn.Parameter(
1484
+ torch.empty(
1485
+ num_experts,
1486
+ intermediate_size_per_partition // self.packed_factor,
1487
+ hidden_size,
1488
+ dtype=torch.int32,
1489
+ ),
1490
+ requires_grad=False,
1491
+ )
1492
+ layer.register_parameter("w2_weight_packed", w2_weight)
1493
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1494
+
1495
+ # In the case where we have actorder/g_idx,
1496
+ # we do not partition the w2 scales
1497
+ load_full_w2 = self.actorder and self.group_size != -1
1498
+ w2_scales_size = (
1499
+ intermediate_size_full if load_full_w2 else intermediate_size_per_partition
1500
+ )
1501
+
1502
+ self.is_k_full = (not self.actorder) or (
1503
+ intermediate_size_per_partition == intermediate_size_full
1504
+ )
1505
+
1506
+ if self.strategy == "channel":
1507
+ num_groups_w2 = num_groups_w13 = 1
1508
+ self.group_size = -1
1509
+ else:
1510
+ num_groups_w2 = w2_scales_size // self.group_size
1511
+ num_groups_w13 = hidden_size // self.group_size
1512
+
1513
+ layer.num_groups_w13 = num_groups_w13
1514
+ layer.num_groups_w2 = num_groups_w2
1515
+
1516
+ w13_scale = torch.nn.Parameter(
1517
+ torch.ones(
1518
+ num_experts,
1519
+ num_groups_w13,
1520
+ 2 * intermediate_size_per_partition,
1521
+ dtype=params_dtype,
1522
+ ),
1523
+ requires_grad=False,
1524
+ )
1525
+ layer.register_parameter("w13_weight_scale", w13_scale)
1526
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1527
+
1528
+ w2_scale = torch.nn.Parameter(
1529
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1530
+ requires_grad=False,
1531
+ )
1532
+ layer.register_parameter("w2_weight_scale", w2_scale)
1533
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1534
+ set_weight_attrs(w2_scale, {"load_full_w2": load_full_w2})
1535
+
1536
+ w2_weight_shape = torch.nn.Parameter(
1537
+ torch.empty(num_experts, 2), requires_grad=False
1538
+ )
1539
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1540
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1541
+ w13_weight_shape = torch.nn.Parameter(
1542
+ torch.empty(num_experts, 2), requires_grad=False
1543
+ )
1544
+
1545
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1546
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1547
+
1548
+ w13_g_idx = torch.nn.Parameter(
1549
+ torch.empty(
1550
+ num_experts,
1551
+ hidden_size,
1552
+ dtype=torch.int32,
1553
+ ),
1554
+ requires_grad=False,
1555
+ )
1556
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1557
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1558
+
1559
+ w2_g_idx = torch.nn.Parameter(
1560
+ torch.empty(
1561
+ num_experts,
1562
+ intermediate_size_per_partition,
1563
+ dtype=torch.int32,
1564
+ ),
1565
+ requires_grad=False,
1566
+ )
1567
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1568
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1569
+
1570
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1571
+ torch.empty(
1572
+ num_experts,
1573
+ hidden_size,
1574
+ dtype=torch.int32,
1575
+ ),
1576
+ requires_grad=False,
1577
+ )
1578
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1579
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1580
+
1581
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1582
+ torch.empty(
1583
+ num_experts,
1584
+ intermediate_size_per_partition,
1585
+ dtype=torch.int32,
1586
+ ),
1587
+ requires_grad=False,
1588
+ )
1589
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1590
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1591
+
1592
+ layer.a13_scale = None
1593
+ layer.a2_scale = None
1594
+ layer.marlin_state = GPTQMarlinState.REPACK
1595
+
1596
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1597
+ num_experts = layer.w13_weight_g_idx.shape[0]
1598
+ device = layer.w13_weight_g_idx.device
1599
+ is_a_8bit = (
1600
+ self.marlin_input_dtype is not None
1601
+ and self.marlin_input_dtype.itemsize == 1
1602
+ )
1603
+
1604
+ if self.marlin_input_dtype == torch.float8_e4m3fn:
1605
+ # NOTE: for non-zp quantization format only
1606
+ ops.marlin_int4_fp8_preprocess(layer.w13_weight_packed, inplace=True)
1607
+ ops.marlin_int4_fp8_preprocess(layer.w2_weight_packed, inplace=True)
1608
+ layer.w13_weight_scale.data = layer.w13_weight_scale.data * 512
1609
+ layer.w2_weight_scale.data = layer.w2_weight_scale.data * 512
1610
+
1611
+ # when running models with grouped act order,
1612
+ # resort to g_idx values provided in checkpoint
1613
+ if self.actorder == "group":
1614
+ w13_g_idx_sort_indices = torch.empty_like(layer.w13_weight_g_idx)
1615
+ w2_g_idx_sort_indices = torch.empty_like(layer.w2_weight_g_idx)
1616
+ w13_sorted_g_idx = torch.empty_like(layer.w13_weight_g_idx)
1617
+ w2_sorted_g_idx = torch.empty_like(layer.w2_weight_g_idx)
1618
+
1619
+ for e in range(num_experts):
1620
+ w13_g_idx_sort_indices[e] = torch.argsort(layer.w13_weight_g_idx[e]).to(
1621
+ torch.int32
1622
+ )
1623
+ w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_weight_g_idx[e]).to(
1624
+ torch.int32
1625
+ )
1626
+ w13_sorted_g_idx[e] = layer.w13_weight_g_idx[e][
1627
+ w13_g_idx_sort_indices[e]
1628
+ ]
1629
+ w2_sorted_g_idx[e] = layer.w2_weight_g_idx[e][w2_g_idx_sort_indices[e]]
1630
+
1631
+ replace_parameter(layer, "w13_weight_g_idx", w13_sorted_g_idx)
1632
+ replace_parameter(layer, "w2_weight_g_idx", w2_sorted_g_idx)
1633
+ replace_parameter(layer, "w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1634
+ replace_parameter(layer, "w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1635
+
1636
+ else:
1637
+ layer.w13_weight_g_idx = torch.nn.Parameter(
1638
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1639
+ requires_grad=False,
1640
+ )
1641
+ layer.w2_weight_g_idx = torch.nn.Parameter(
1642
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1643
+ requires_grad=False,
1644
+ )
1645
+ layer.w13_g_idx_sort_indices = torch.nn.Parameter(
1646
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1647
+ requires_grad=False,
1648
+ )
1649
+ layer.w2_g_idx_sort_indices = torch.nn.Parameter(
1650
+ torch.empty((num_experts, 0), dtype=torch.int32, device=device),
1651
+ requires_grad=False,
1652
+ )
1653
+
1654
+ marlin_w13_qweight = ops.gptq_marlin_moe_repack(
1655
+ layer.w13_weight_packed,
1656
+ layer.w13_g_idx_sort_indices,
1657
+ layer.w13_weight_packed.shape[1] * self.packed_factor,
1658
+ layer.w13_weight_packed.shape[2],
1659
+ self.num_bits,
1660
+ is_a_8bit=is_a_8bit,
1661
+ )
1662
+ replace_parameter(layer, "w13_weight_packed", marlin_w13_qweight)
1663
+
1664
+ marlin_w2_qweight = ops.gptq_marlin_moe_repack(
1665
+ layer.w2_weight_packed,
1666
+ layer.w2_g_idx_sort_indices,
1667
+ layer.w2_weight_packed.shape[1] * self.packed_factor,
1668
+ layer.w2_weight_packed.shape[2],
1669
+ self.num_bits,
1670
+ is_a_8bit=is_a_8bit,
1671
+ )
1672
+ replace_parameter(layer, "w2_weight_packed", marlin_w2_qweight)
1673
+
1674
+ # Repack scales
1675
+ marlin_w13_scales = marlin_moe_permute_scales(
1676
+ s=layer.w13_weight_scale,
1677
+ size_k=layer.w13_weight_packed.shape[2],
1678
+ size_n=layer.w13_weight_scale.shape[2],
1679
+ group_size=self.group_size,
1680
+ is_a_8bit=is_a_8bit,
1681
+ )
1682
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w13 > 1:
1683
+ marlin_w13_scales, w13_input_global_scale = marlin_act_int8_process_scales(
1684
+ marlin_w13_scales
1685
+ )
1686
+ layer.register_parameter(
1687
+ "w13_input_global_scale",
1688
+ torch.nn.Parameter(w13_input_global_scale, requires_grad=False),
1689
+ )
1690
+ replace_parameter(layer, "w13_weight_scale", marlin_w13_scales)
1691
+
1692
+ marlin_w2_scales = marlin_moe_permute_scales(
1693
+ s=layer.w2_weight_scale,
1694
+ size_k=layer.w2_weight_scale.shape[1]
1695
+ * (self.group_size if self.group_size != -1 else self.packed_factor),
1696
+ size_n=layer.w2_weight_scale.shape[2],
1697
+ group_size=self.group_size,
1698
+ is_a_8bit=is_a_8bit,
1699
+ )
1700
+ if self.marlin_input_dtype == torch.int8 and layer.num_groups_w2 > 1:
1701
+ marlin_w2_scales, w2_input_global_scale = marlin_act_int8_process_scales(
1702
+ marlin_w2_scales
1703
+ )
1704
+ layer.register_parameter(
1705
+ "w2_input_global_scale",
1706
+ torch.nn.Parameter(w2_input_global_scale, requires_grad=False),
1707
+ )
1708
+ replace_parameter(layer, "w2_weight_scale", marlin_w2_scales)
1709
+
1710
+ layer.workspace = marlin_make_workspace_new(device, 4)
1711
+
1712
+ def get_fused_moe_quant_config(
1713
+ self, layer: torch.nn.Module
1714
+ ) -> FusedMoEQuantConfig | None:
1715
+ if self.num_bits != 4:
1716
+ return None
1717
+ return int4_w4a16_moe_quant_config(
1718
+ w1_scale=layer.w13_weight_scale,
1719
+ w2_scale=layer.w2_weight_scale,
1720
+ w1_zp=None,
1721
+ w2_zp=None,
1722
+ block_shape=[0, self.group_size],
1723
+ )
1724
+
1725
+ def select_gemm_impl(
1726
+ self,
1727
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
1728
+ layer: torch.nn.Module,
1729
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
1730
+ assert self.num_bits == 4, "only supporting w4"
1731
+ layer.w13_weight = layer.w13_weight_packed
1732
+ layer.w2_weight = layer.w2_weight_packed
1733
+ assert all([w is not None for w in [layer.w13_weight, layer.w2_weight]])
1734
+ assert self.moe_quant_config is not None
1735
+ if (
1736
+ prepare_finalize.activation_format
1737
+ == mk.FusedMoEActivationFormat.BatchedExperts
1738
+ ):
1739
+ max_num_tokens_per_rank = prepare_finalize.max_num_tokens_per_rank()
1740
+ assert max_num_tokens_per_rank is not None
1741
+ return BatchedMarlinExperts(
1742
+ max_num_tokens=max_num_tokens_per_rank,
1743
+ num_dispatchers=prepare_finalize.num_dispatchers(),
1744
+ quant_config=self.moe_quant_config,
1745
+ w13_g_idx=layer.w13_weight_g_idx,
1746
+ w2_g_idx=layer.w2_weight_g_idx,
1747
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1748
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1749
+ is_k_full=self.is_k_full,
1750
+ )
1751
+ else:
1752
+ return MarlinExperts(
1753
+ quant_config=self.moe_quant_config,
1754
+ w13_g_idx=layer.w13_weight_g_idx,
1755
+ w2_g_idx=layer.w2_weight_g_idx,
1756
+ w13_g_idx_sort_indices=layer.w13_g_idx_sort_indices,
1757
+ w2_g_idx_sort_indices=layer.w2_g_idx_sort_indices,
1758
+ is_k_full=self.is_k_full,
1759
+ )
1760
+
1761
+ def apply(
1762
+ self,
1763
+ layer: FusedMoE,
1764
+ x: torch.Tensor,
1765
+ router_logits: torch.Tensor,
1766
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1767
+ assert layer.activation == "silu", (
1768
+ f"{layer.activation} not supported for Marlin MoE."
1769
+ )
1770
+
1771
+ topk_weights, topk_ids, _ = layer.select_experts(
1772
+ hidden_states=x,
1773
+ router_logits=router_logits,
1774
+ )
1775
+
1776
+ return fused_marlin_moe(
1777
+ x,
1778
+ layer.w13_weight_packed,
1779
+ layer.w2_weight_packed,
1780
+ None,
1781
+ None,
1782
+ layer.w13_weight_scale,
1783
+ layer.w2_weight_scale,
1784
+ router_logits,
1785
+ topk_weights,
1786
+ topk_ids,
1787
+ input_global_scale1=getattr(layer, "w13_input_global_scale", None),
1788
+ input_global_scale2=getattr(layer, "w2_input_global_scale", None),
1789
+ quant_type_id=self.quant_type.id,
1790
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
1791
+ global_num_experts=layer.global_num_experts,
1792
+ expert_map=layer.expert_map,
1793
+ g_idx1=layer.w13_weight_g_idx,
1794
+ g_idx2=layer.w2_weight_g_idx,
1795
+ sort_indices1=layer.w13_g_idx_sort_indices,
1796
+ sort_indices2=layer.w2_g_idx_sort_indices,
1797
+ workspace=layer.workspace,
1798
+ input_dtype=self.marlin_input_dtype,
1799
+ is_k_full=self.is_k_full,
1800
+ )
1801
+
1802
+
1803
+ class CompressedTensorsWNA16MoEMethod(CompressedTensorsMoEMethod):
1804
+ def __init__(
1805
+ self,
1806
+ weight_quant: QuantizationArgs,
1807
+ input_quant: QuantizationArgs | None,
1808
+ moe: FusedMoEConfig,
1809
+ layer_name: str | None = None,
1810
+ ):
1811
+ super().__init__(moe)
1812
+ self.weight_quant = weight_quant
1813
+ self.input_quant = input_quant
1814
+ # Extract properties from weight_quant
1815
+ self.num_bits = weight_quant.num_bits
1816
+ self.packed_factor = 32 // weight_quant.num_bits
1817
+ self.strategy = weight_quant.strategy
1818
+ # channelwise is not supported by this kernel
1819
+ assert weight_quant.strategy == "group"
1820
+ self.group_size = weight_quant.group_size
1821
+ # grouped actorder isn't supported by this kernel
1822
+ assert weight_quant.actorder != "group"
1823
+ assert weight_quant.symmetric, (
1824
+ "Only symmetric quantization is supported for MoE"
1825
+ )
1826
+
1827
+ def create_weights(
1828
+ self,
1829
+ layer: torch.nn.Module,
1830
+ num_experts: int,
1831
+ hidden_size: int,
1832
+ intermediate_size_per_partition: int,
1833
+ params_dtype: torch.dtype,
1834
+ **extra_weight_attrs,
1835
+ ):
1836
+ # Will transpose the loaded weight along the
1837
+ # intermediate and hidden dim sizes. Will
1838
+ # shard for TP along the transposed dims
1839
+ extra_weight_attrs.update(
1840
+ {"is_transposed": True, "quant_method": self.strategy}
1841
+ )
1842
+ w13_weight = torch.nn.Parameter(
1843
+ torch.empty(
1844
+ num_experts,
1845
+ hidden_size // self.packed_factor,
1846
+ 2 * intermediate_size_per_partition,
1847
+ dtype=torch.int32,
1848
+ ),
1849
+ requires_grad=False,
1850
+ )
1851
+ layer.register_parameter("w13_weight_packed", w13_weight)
1852
+ set_weight_attrs(w13_weight, extra_weight_attrs)
1853
+
1854
+ w2_weight = torch.nn.Parameter(
1855
+ torch.empty(
1856
+ num_experts,
1857
+ intermediate_size_per_partition // self.packed_factor,
1858
+ hidden_size,
1859
+ dtype=torch.int32,
1860
+ ),
1861
+ requires_grad=False,
1862
+ )
1863
+ layer.register_parameter("w2_weight_packed", w2_weight)
1864
+ set_weight_attrs(w2_weight, extra_weight_attrs)
1865
+
1866
+ w2_scales_size = intermediate_size_per_partition
1867
+
1868
+ if self.strategy == "channel":
1869
+ num_groups_w2 = num_groups_w13 = 1
1870
+ self.group_size = -1
1871
+ else:
1872
+ num_groups_w2 = w2_scales_size // self.group_size
1873
+ num_groups_w13 = hidden_size // self.group_size
1874
+
1875
+ w13_scale = torch.nn.Parameter(
1876
+ torch.ones(
1877
+ num_experts,
1878
+ num_groups_w13,
1879
+ 2 * intermediate_size_per_partition,
1880
+ dtype=params_dtype,
1881
+ ),
1882
+ requires_grad=False,
1883
+ )
1884
+ layer.register_parameter("w13_weight_scale", w13_scale)
1885
+ set_weight_attrs(w13_scale, extra_weight_attrs)
1886
+
1887
+ w2_scale = torch.nn.Parameter(
1888
+ torch.ones(num_experts, num_groups_w2, hidden_size, dtype=params_dtype),
1889
+ requires_grad=False,
1890
+ )
1891
+ layer.register_parameter("w2_weight_scale", w2_scale)
1892
+ set_weight_attrs(w2_scale, extra_weight_attrs)
1893
+ set_weight_attrs(w2_scale, {"load_full_w2": False})
1894
+
1895
+ w2_weight_shape = torch.nn.Parameter(
1896
+ torch.empty(num_experts, 2), requires_grad=False
1897
+ )
1898
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
1899
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
1900
+ w13_weight_shape = torch.nn.Parameter(
1901
+ torch.empty(num_experts, 2), requires_grad=False
1902
+ )
1903
+
1904
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
1905
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
1906
+
1907
+ w13_g_idx = torch.nn.Parameter(
1908
+ torch.empty(
1909
+ num_experts,
1910
+ hidden_size,
1911
+ dtype=torch.int32,
1912
+ ),
1913
+ requires_grad=False,
1914
+ )
1915
+ layer.register_parameter("w13_weight_g_idx", w13_g_idx)
1916
+ set_weight_attrs(w13_g_idx, extra_weight_attrs)
1917
+
1918
+ w2_g_idx = torch.nn.Parameter(
1919
+ torch.empty(
1920
+ num_experts,
1921
+ intermediate_size_per_partition,
1922
+ dtype=torch.int32,
1923
+ ),
1924
+ requires_grad=False,
1925
+ )
1926
+ layer.register_parameter("w2_weight_g_idx", w2_g_idx)
1927
+ set_weight_attrs(w2_g_idx, extra_weight_attrs)
1928
+
1929
+ w13_g_idx_sort_indices = torch.nn.Parameter(
1930
+ torch.empty(
1931
+ num_experts,
1932
+ hidden_size,
1933
+ dtype=torch.int32,
1934
+ ),
1935
+ requires_grad=False,
1936
+ )
1937
+ layer.register_parameter("w13_g_idx_sort_indices", w13_g_idx_sort_indices)
1938
+ set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
1939
+
1940
+ w2_g_idx_sort_indices = torch.nn.Parameter(
1941
+ torch.empty(
1942
+ num_experts,
1943
+ intermediate_size_per_partition,
1944
+ dtype=torch.int32,
1945
+ ),
1946
+ requires_grad=False,
1947
+ )
1948
+ layer.register_parameter("w2_g_idx_sort_indices", w2_g_idx_sort_indices)
1949
+ set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
1950
+
1951
+ layer.a13_scale = None
1952
+ layer.a2_scale = None
1953
+
1954
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
1955
+ # Reconfigure packed weights and scales to match moe_wna16 format
1956
+ layer.w13_weight_packed = torch.nn.Parameter(
1957
+ layer.w13_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1958
+ requires_grad=False,
1959
+ )
1960
+ layer.w2_weight_packed = torch.nn.Parameter(
1961
+ layer.w2_weight_packed.transpose(1, 2).contiguous().view(torch.uint8),
1962
+ requires_grad=False,
1963
+ )
1964
+ layer.w13_weight_scale = torch.nn.Parameter(
1965
+ layer.w13_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1966
+ )
1967
+ layer.w2_weight_scale = torch.nn.Parameter(
1968
+ layer.w2_weight_scale.transpose(1, 2).contiguous(), requires_grad=False
1969
+ )
1970
+
1971
+ def get_fused_moe_quant_config(
1972
+ self, layer: torch.nn.Module
1973
+ ) -> FusedMoEQuantConfig | None:
1974
+ assert self.num_bits == 4 or self.num_bits == 8
1975
+ config_builder = (
1976
+ int4_w4a16_moe_quant_config
1977
+ if self.num_bits == 4
1978
+ else int8_w8a16_moe_quant_config
1979
+ )
1980
+
1981
+ return config_builder(
1982
+ w1_scale=layer.w13_weight_scale,
1983
+ w2_scale=layer.w2_weight_scale,
1984
+ w1_zp=None,
1985
+ w2_zp=None,
1986
+ block_shape=[0, self.group_size],
1987
+ )
1988
+
1989
+ def apply(
1990
+ self,
1991
+ layer: FusedMoE,
1992
+ x: torch.Tensor,
1993
+ router_logits: torch.Tensor,
1994
+ ) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
1995
+ from vllm.model_executor.layers.fused_moe import fused_experts
1996
+
1997
+ topk_weights, topk_ids, _ = layer.select_experts(
1998
+ hidden_states=x,
1999
+ router_logits=router_logits,
2000
+ )
2001
+
2002
+ return fused_experts(
2003
+ x,
2004
+ layer.w13_weight_packed,
2005
+ layer.w2_weight_packed,
2006
+ topk_weights=topk_weights,
2007
+ topk_ids=topk_ids,
2008
+ inplace=True,
2009
+ activation=layer.activation,
2010
+ apply_router_weight_on_input=layer.apply_router_weight_on_input,
2011
+ global_num_experts=layer.global_num_experts,
2012
+ expert_map=layer.expert_map,
2013
+ quant_config=self.moe_quant_config,
2014
+ )
2015
+
2016
+ @property
2017
+ def supports_eplb(self) -> bool:
2018
+ return True
2019
+
2020
+
2021
+ class CompressedTensorsW4A8Int8MoEMethod(CompressedTensorsMoEMethod):
2022
+ """
2023
+ CPU-only MoE method using dynamic 4-bit matmul kernels on Arm Platform
2024
+ - Weights: int4 (stored as int8 values in [-8,7], packed to uint8 nibbles)
2025
+ - Scales: Fp32 for Channelwise , bf16 for groupwise quantization
2026
+ - Bias: Same data type as original weights
2027
+ - Activations: FP32/Bf16 dynamic per-token (A8 Int),
2028
+ quantized inside the kernel
2029
+ """
2030
+
2031
+ def __init__(
2032
+ self,
2033
+ weight_quant: QuantizationArgs,
2034
+ input_quant: QuantizationArgs,
2035
+ moe: FusedMoEConfig,
2036
+ layer_name: str | None = None,
2037
+ ):
2038
+ super().__init__(moe)
2039
+ self.has_bias = self.moe.has_bias
2040
+ self.weight_quant = weight_quant
2041
+ self.input_quant = input_quant
2042
+
2043
+ # Validate scheme: weights=W4 (channel or group),
2044
+ # activations=dynamic TOKEN (A8)
2045
+
2046
+ # Must be dynamic per-token activations
2047
+ if (
2048
+ input_quant.strategy != QuantizationStrategy.TOKEN
2049
+ or not input_quant.dynamic
2050
+ ):
2051
+ raise ValueError(
2052
+ "W4A8-int MoE needs dynamic per-token activation quantization."
2053
+ )
2054
+
2055
+ # Weight can be channel-wise (group_size=None) or group-wise
2056
+ self.group_size = (
2057
+ weight_quant.group_size if (weight_quant.group_size is not None) else -1
2058
+ )
2059
+ if weight_quant.num_bits != 4:
2060
+ raise ValueError("This method only supports 4-bit weights (num_bits=4).")
2061
+
2062
+ # CPU only
2063
+ if not current_platform.is_cpu():
2064
+ raise ValueError("CompressedTensorsW4A8Int8MoEMethod is CPU-only.")
2065
+
2066
+ # Arm: check _dyn ops availability
2067
+ if current_platform.get_cpu_architecture() == CpuArchEnum.ARM:
2068
+ try:
2069
+ _ = torch.ops.aten._dyn_quant_matmul_4bit
2070
+ _ = torch.ops.aten._dyn_quant_pack_4bit_weight
2071
+ except AttributeError as err:
2072
+ raise RuntimeError(
2073
+ f"""PyTorch {torch.__version__} lacks _dyn_quant_* 4bit ops;
2074
+ install a newer build."""
2075
+ ) from err
2076
+ self.static_input_scales = False # always dynamic per token
2077
+
2078
+ # ---- parameter creation ----
2079
+ def create_weights(
2080
+ self,
2081
+ layer: torch.nn.Module,
2082
+ num_experts: int,
2083
+ hidden_size: int,
2084
+ intermediate_size_per_partition: int,
2085
+ params_dtype: torch.dtype,
2086
+ **extra_weight_attrs,
2087
+ ):
2088
+ # Shapes per local rank (TP/EP):
2089
+ # w13: [E, 2*I_local, H] int8 (int4 values in [-8,7])
2090
+ # w2 : [E, H, I_local] int8
2091
+ # Scales:
2092
+ # channel-wise: group_size=-1 -> per-output-row, single scale per row
2093
+ # group-wise : group_size=g ->
2094
+ # per-output-row, (in_features/g) scales
2095
+
2096
+ E = num_experts
2097
+ H = hidden_size
2098
+ IN = intermediate_size_per_partition
2099
+ g = self.group_size
2100
+
2101
+ # Per-row scale columns
2102
+ def _n_scale_cols(in_features: int) -> int:
2103
+ return 1 if g == -1 else (in_features // g)
2104
+
2105
+ # Register unpacked int4-as-int8 weights the loader will fill.
2106
+ w13 = torch.nn.Parameter(
2107
+ torch.empty(E, 2 * IN, H, dtype=torch.int8), requires_grad=False
2108
+ )
2109
+ set_weight_attrs(w13, extra_weight_attrs)
2110
+ layer.register_parameter("w13_weight", w13)
2111
+
2112
+ w2 = torch.nn.Parameter(
2113
+ torch.empty(E, H, IN, dtype=torch.int8), requires_grad=False
2114
+ )
2115
+ set_weight_attrs(w2, extra_weight_attrs)
2116
+ layer.register_parameter("w2_weight", w2)
2117
+
2118
+ # Register scales
2119
+ # KleidiAI groupwise kernels accepts float32 scales
2120
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2121
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2122
+
2123
+ w13_s = torch.nn.Parameter(
2124
+ torch.ones(E, 2 * IN, _n_scale_cols(H), dtype=scale_dtype),
2125
+ requires_grad=False,
2126
+ )
2127
+ set_weight_attrs(
2128
+ w13_s,
2129
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2130
+ )
2131
+ layer.register_parameter("w13_weight_scale", w13_s)
2132
+
2133
+ w2_s = torch.nn.Parameter(
2134
+ torch.ones(E, H, _n_scale_cols(IN), dtype=scale_dtype), requires_grad=False
2135
+ )
2136
+ set_weight_attrs(
2137
+ w2_s,
2138
+ {"quant_method": "channel" if g == -1 else "group", **extra_weight_attrs},
2139
+ )
2140
+ layer.register_parameter("w2_weight_scale", w2_s)
2141
+
2142
+ if self.has_bias:
2143
+ w13_bias = torch.nn.Parameter(
2144
+ torch.zeros(E, 2 * IN, dtype=params_dtype), requires_grad=False
2145
+ )
2146
+ layer.register_parameter("w13_bias", w13_bias)
2147
+ set_weight_attrs(w13_bias, extra_weight_attrs)
2148
+
2149
+ w2_bias = torch.nn.Parameter(
2150
+ torch.zeros(num_experts, hidden_size, dtype=params_dtype),
2151
+ requires_grad=False,
2152
+ )
2153
+ layer.register_parameter("w2_bias", w2_bias)
2154
+ set_weight_attrs(w2_bias, extra_weight_attrs)
2155
+
2156
+ # Placeholders for packed weights (will be replaced after packing)
2157
+ layer.register_parameter(
2158
+ "w13_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2159
+ )
2160
+ set_weight_attrs(layer.w13_weight_packed, extra_weight_attrs)
2161
+
2162
+ layer.register_parameter(
2163
+ "w2_weight_packed", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2164
+ )
2165
+ set_weight_attrs(layer.w2_weight_packed, extra_weight_attrs)
2166
+
2167
+ # dims for 4 bit fused matmuls
2168
+ layer.w13_in_features = H
2169
+ layer.w13_out_features = 2 * IN
2170
+ layer.w2_in_features = IN
2171
+ layer.w2_out_features = H
2172
+ layer.group_size = g
2173
+
2174
+ # post-load packing to dyn-4bit KleidiAI kernel's format
2175
+ def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
2176
+ E = layer.w13_weight.shape[0]
2177
+ H = layer.w13_in_features
2178
+ I2 = layer.w13_out_features
2179
+ IN = layer.w2_in_features
2180
+ g = layer.group_size
2181
+
2182
+ def _pack_matrix(
2183
+ int4_as_int8_2d: torch.Tensor,
2184
+ scales_2d: torch.Tensor,
2185
+ bias_1d: torch.Tensor | None,
2186
+ in_features: int,
2187
+ out_features: int,
2188
+ ) -> torch.Tensor:
2189
+ # int4 values are stored as int8 in [-8,7].
2190
+ # Shift to unsigned nibble and pack pairs along input-dim.
2191
+ tmp = int4_as_int8_2d.add(8) # [out, in]
2192
+ uint8_nibbles = ((tmp[:, 1::2] << 4) | tmp[:, ::2]).to(
2193
+ torch.uint8
2194
+ ) # [out, in//2]
2195
+
2196
+ # KleidiAI groupwise kernels accepts float32 scales
2197
+ # KleidiAI groupwise kernels accepts bfloat16 scales
2198
+ scale_dtype = torch.float32 if g == -1 else torch.bfloat16
2199
+ scales = scales_2d.to(scale_dtype)
2200
+ bias = None if bias_1d is None else bias_1d.to(torch.float32)
2201
+ return torch.ops.aten._dyn_quant_pack_4bit_weight(
2202
+ uint8_nibbles,
2203
+ scales,
2204
+ bias,
2205
+ g if g != -1 else in_features,
2206
+ in_features,
2207
+ out_features,
2208
+ )
2209
+
2210
+ # Pack per expert
2211
+ w13_packed_list = []
2212
+ w2_packed_list = []
2213
+
2214
+ has_w13_bias = hasattr(layer, "w13_bias") and layer.w13_bias is not None
2215
+ has_w2_bias = hasattr(layer, "w2_bias") and layer.w2_bias is not None
2216
+
2217
+ for e in range(E):
2218
+ w13_packed_list.append(
2219
+ _pack_matrix(
2220
+ layer.w13_weight[e], # [2I, H]
2221
+ layer.w13_weight_scale[e], # [2I, H/g or 1]
2222
+ layer.w13_bias[e] if has_w13_bias else None, # [2I]
2223
+ H,
2224
+ I2,
2225
+ )
2226
+ )
2227
+ w2_packed_list.append(
2228
+ _pack_matrix(
2229
+ # w2 shape is [H, IN]; we need [out, in] == [H, IN].
2230
+ layer.w2_weight[e], # [H, IN]
2231
+ layer.w2_weight_scale[e], # [H, IN/g or 1]
2232
+ layer.w2_bias[e] if has_w2_bias else None, # [H]
2233
+ IN,
2234
+ layer.w2_out_features, # in_features=IN, out_features=H
2235
+ )
2236
+ )
2237
+
2238
+ # each packed tensor has identical shape per expert; stack on dim 0
2239
+ w13_packed = torch.stack(w13_packed_list, dim=0)
2240
+ w2_packed = torch.stack(w2_packed_list, dim=0)
2241
+
2242
+ replace_parameter(
2243
+ layer,
2244
+ "w13_weight_packed",
2245
+ torch.nn.Parameter(w13_packed, requires_grad=False),
2246
+ )
2247
+ replace_parameter(
2248
+ layer,
2249
+ "w2_weight_packed",
2250
+ torch.nn.Parameter(w2_packed, requires_grad=False),
2251
+ )
2252
+
2253
+ # free raw tensors/scales/bias now that they're packed into the payload.
2254
+ replace_parameter(
2255
+ layer, "w13_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2256
+ )
2257
+ replace_parameter(
2258
+ layer, "w2_weight", torch.nn.Parameter(torch.empty(0), requires_grad=False)
2259
+ )
2260
+ replace_parameter(
2261
+ layer,
2262
+ "w13_weight_scale",
2263
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2264
+ )
2265
+ replace_parameter(
2266
+ layer,
2267
+ "w2_weight_scale",
2268
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2269
+ )
2270
+ if has_w13_bias:
2271
+ replace_parameter(
2272
+ layer,
2273
+ "w13_bias",
2274
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2275
+ )
2276
+ if has_w2_bias:
2277
+ replace_parameter(
2278
+ layer,
2279
+ "w2_bias",
2280
+ torch.nn.Parameter(torch.empty(0), requires_grad=False),
2281
+ )
2282
+
2283
+ def get_fused_moe_quant_config(
2284
+ self, layer: torch.nn.Module
2285
+ ) -> FusedMoEQuantConfig | None:
2286
+ # CPU dynamic 4-bit MoE path does not use modular kernels or
2287
+ # fused_experts; quant config is not needed.
2288
+ return None
2289
+
2290
+ def apply(
2291
+ self,
2292
+ layer: FusedMoE,
2293
+ x: torch.Tensor,
2294
+ router_logits: torch.Tensor,
2295
+ ) -> torch.Tensor:
2296
+ assert not layer.enable_eplb, "EPLB not supported for W4A8-int MoE yet."
2297
+ assert layer.activation in ("silu", "swigluoai", "swiglu"), (
2298
+ "Only SiLU/SwiGLUGU/SwiGLUUG are supported."
2299
+ )
2300
+ assert layer.expert_map is None, """expert_map/EP not implemented
2301
+ for CPU dyn-4bit MoE."""
2302
+
2303
+ def _act_kind(s: str) -> int:
2304
+ # 0 = SwiGLU_Gu (SiLU(g)*u), 1 = SwiGLU_Ug (SiLU(u)*g), 2 = SiLU
2305
+ if s == "swiglu":
2306
+ return 0
2307
+ if s == "swigluoai":
2308
+ return 1
2309
+ if s == "silu":
2310
+ return 2
2311
+ raise ValueError(f"Unknown activation '{s}'")
2312
+
2313
+ # Apply topk softmax on router output
2314
+ topk_weights, topk_ids = select_experts(
2315
+ hidden_states=x,
2316
+ router_logits=router_logits,
2317
+ top_k=layer.top_k,
2318
+ use_grouped_topk=layer.use_grouped_topk,
2319
+ renormalize=layer.renormalize,
2320
+ )
2321
+
2322
+ return torch.ops._C.dynamic_4bit_int_moe(
2323
+ x,
2324
+ topk_ids.to(torch.long),
2325
+ topk_weights,
2326
+ layer.w13_weight_packed,
2327
+ layer.w2_weight_packed,
2328
+ layer.w2_out_features,
2329
+ layer.w2_in_features,
2330
+ layer.w13_out_features,
2331
+ layer.group_size,
2332
+ layer.apply_router_weight_on_input,
2333
+ int(_act_kind(layer.activation)),
2334
+ )
2335
+
2336
+
2337
+ class CompressedTensorsW4A8Fp8MoEMethod(CompressedTensorsMoEMethod):
2338
+ def __init__(
2339
+ self,
2340
+ weight_quant: QuantizationArgs,
2341
+ input_quant: QuantizationArgs,
2342
+ moe: FusedMoEConfig,
2343
+ layer_name: str | None = None,
2344
+ ):
2345
+ super().__init__(moe)
2346
+ self.weight_quant = weight_quant
2347
+ self.input_quant = input_quant
2348
+
2349
+ self.group_size = self.weight_quant.group_size
2350
+ self.num_bits = self.weight_quant.num_bits
2351
+ self.packed_factor = 32 // self.num_bits
2352
+
2353
+ assert self.weight_quant.symmetric, (
2354
+ "Only symmetric quantization is supported for W4A8 MoE"
2355
+ )
2356
+ assert self.weight_quant.actorder != "group"
2357
+ assert self.group_size == 128, "Only group size 128 supported for W4A8 MoE"
2358
+
2359
+ self.disable_expert_map = False
2360
+ self.layer_name = layer_name
2361
+
2362
+ from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
2363
+ from vllm.model_executor.layers.quantization.utils.quant_utils import (
2364
+ GroupShape,
2365
+ )
2366
+
2367
+ self.quant_fp8 = QuantFP8(static=False, group_shape=GroupShape.PER_TOKEN)
2368
+
2369
+ def create_weights(
2370
+ self,
2371
+ layer: torch.nn.Module,
2372
+ num_experts: int,
2373
+ hidden_size: int,
2374
+ intermediate_size_per_partition: int,
2375
+ params_dtype: torch.dtype,
2376
+ **extra_weight_attrs,
2377
+ ):
2378
+ layer.intermediate_size_per_partition = intermediate_size_per_partition
2379
+ layer.hidden_size = hidden_size
2380
+ layer.num_experts = num_experts
2381
+ layer.orig_dtype = params_dtype
2382
+ layer.weight_block_size = None
2383
+
2384
+ # requirement for CUTLASS reorder_tensor
2385
+ assert hidden_size % 256 == 0, f"{hidden_size=} must be divisible by 256"
2386
+ assert intermediate_size_per_partition % 256 == 0, (
2387
+ f"{intermediate_size_per_partition=} must be divisible by 256"
2388
+ )
2389
+ # storage type, pack 8xint4 into int32
2390
+ params_dtype = torch.int32
2391
+
2392
+ # WEIGHTS
2393
+ w13_weight_packed = torch.nn.Parameter(
2394
+ torch.empty(
2395
+ num_experts,
2396
+ 2 * intermediate_size_per_partition,
2397
+ hidden_size // self.packed_factor,
2398
+ dtype=params_dtype,
2399
+ ),
2400
+ requires_grad=False,
2401
+ )
2402
+ layer.register_parameter("w13_weight_packed", w13_weight_packed)
2403
+ set_weight_attrs(w13_weight_packed, extra_weight_attrs)
2404
+
2405
+ w2_weight_packed = torch.nn.Parameter(
2406
+ torch.empty(
2407
+ num_experts,
2408
+ hidden_size,
2409
+ intermediate_size_per_partition // self.packed_factor,
2410
+ dtype=params_dtype,
2411
+ ),
2412
+ requires_grad=False,
2413
+ )
2414
+ layer.register_parameter("w2_weight_packed", w2_weight_packed)
2415
+ set_weight_attrs(w2_weight_packed, extra_weight_attrs)
2416
+
2417
+ # SCALES
2418
+ # weight_scale refers to the group-wise scales
2419
+ # they are initially loaded as bf16, we will convert to fp8
2420
+ # after loading
2421
+ w13_weight_scale = torch.nn.Parameter(
2422
+ torch.ones(
2423
+ num_experts,
2424
+ 2 * intermediate_size_per_partition,
2425
+ hidden_size // self.group_size,
2426
+ dtype=layer.orig_dtype,
2427
+ ),
2428
+ requires_grad=False,
2429
+ )
2430
+ layer.register_parameter("w13_weight_scale", w13_weight_scale)
2431
+
2432
+ w2_weight_scale = torch.nn.Parameter(
2433
+ torch.ones(
2434
+ num_experts,
2435
+ hidden_size,
2436
+ intermediate_size_per_partition // self.group_size,
2437
+ dtype=layer.orig_dtype,
2438
+ ),
2439
+ requires_grad=False,
2440
+ )
2441
+ layer.register_parameter("w2_weight_scale", w2_weight_scale)
2442
+ # Add PER-GROUP quantization for FusedMoE.weight_loader.
2443
+ extra_weight_attrs.update(
2444
+ {"quant_method": FusedMoeWeightScaleSupported.GROUP.value}
2445
+ )
2446
+ set_weight_attrs(w13_weight_scale, extra_weight_attrs)
2447
+ set_weight_attrs(w2_weight_scale, extra_weight_attrs)
2448
+
2449
+ # weight shapes
2450
+ w2_weight_shape = torch.nn.Parameter(
2451
+ torch.empty(num_experts, 2), requires_grad=False
2452
+ )
2453
+ layer.register_parameter("w2_weight_shape", w2_weight_shape)
2454
+ set_weight_attrs(w2_weight_shape, extra_weight_attrs)
2455
+ w13_weight_shape = torch.nn.Parameter(
2456
+ torch.empty(num_experts, 2), requires_grad=False
2457
+ )
2458
+ layer.register_parameter("w13_weight_shape", w13_weight_shape)
2459
+ set_weight_attrs(w13_weight_shape, extra_weight_attrs)
2460
+
2461
+ # don't use input scales
2462
+ layer.w13_input_scale = None
2463
+ layer.w2_input_scale = None
2464
+
2465
+ def process_weights_after_loading(self, layer):
2466
+ device = layer.w13_weight_packed.device
2467
+
2468
+ # STRIDES
2469
+ # A, C
2470
+ self.a_strides1_c_strides2 = torch.full(
2471
+ (layer.local_num_experts,),
2472
+ layer.hidden_size,
2473
+ device=device,
2474
+ dtype=torch.int64,
2475
+ )
2476
+ self.a_strides2 = torch.full(
2477
+ (layer.local_num_experts,),
2478
+ layer.intermediate_size_per_partition,
2479
+ device=device,
2480
+ dtype=torch.int64,
2481
+ )
2482
+ self.c_strides1 = torch.full(
2483
+ (layer.local_num_experts,),
2484
+ 2 * layer.intermediate_size_per_partition,
2485
+ device=device,
2486
+ dtype=torch.int64,
2487
+ )
2488
+
2489
+ # S (group-wise scales)
2490
+ # sizeof(StrideS) = 16 bytes, so we need to use 2xint64 to encode it
2491
+ self.s_strides1 = torch.zeros(
2492
+ (layer.local_num_experts, 2), device=device, dtype=torch.int64
2493
+ )
2494
+ self.s_strides1[:, 0] = 2 * layer.intermediate_size_per_partition
2495
+
2496
+ self.s_strides2 = torch.zeros(
2497
+ (layer.local_num_experts, 2), device=device, dtype=torch.int64
2498
+ )
2499
+ self.s_strides2[:, 0] = layer.hidden_size
2500
+
2501
+ # encode and reorder weight tensors, and get the layout to pass to
2502
+ # the grouped gemm kernel. `b_strides1/2` specifies the entire layout
2503
+ convert_packed_uint4b8_to_signed_int4_inplace(layer.w13_weight_packed)
2504
+ w13_weight_shuffled, self.b_strides1 = (
2505
+ ops.cutlass_encode_and_reorder_int4b_grouped(layer.w13_weight_packed)
2506
+ )
2507
+ replace_parameter(layer, "w13_weight_packed", w13_weight_shuffled)
2508
+ convert_packed_uint4b8_to_signed_int4_inplace(layer.w2_weight_packed)
2509
+ w2_weight_shuffled, self.b_strides2 = (
2510
+ ops.cutlass_encode_and_reorder_int4b_grouped(layer.w2_weight_packed)
2511
+ )
2512
+ replace_parameter(layer, "w2_weight_packed", w2_weight_shuffled)
2513
+
2514
+ # convert bf16 scales to (fp8_scales, channel_scales)
2515
+ w13_weight_scale, w13_weight_chan_scale = convert_bf16_scales_to_fp8(
2516
+ self.quant_fp8, layer.w13_weight_scale
2517
+ )
2518
+ w2_weight_scale, w2_weight_chan_scale = convert_bf16_scales_to_fp8(
2519
+ self.quant_fp8, layer.w2_weight_scale
2520
+ )
2521
+
2522
+ # register channel scales
2523
+ layer.register_parameter(
2524
+ "w13_weight_chan_scale",
2525
+ torch.nn.Parameter(w13_weight_chan_scale, requires_grad=False),
2526
+ )
2527
+ layer.register_parameter(
2528
+ "w2_weight_chan_scale",
2529
+ torch.nn.Parameter(w2_weight_chan_scale, requires_grad=False),
2530
+ )
2531
+
2532
+ # The scales are stored as (E, N, K // 128) but the kernel expects
2533
+ # (E, K // 128, N) in row-major format, so we need to permute the last 2 dims
2534
+ # and make it contiguous
2535
+ w13_weight_scale_packed = ops.cutlass_pack_scale_fp8(
2536
+ w13_weight_scale.permute(0, 2, 1).contiguous()
2537
+ )
2538
+ replace_parameter(layer, "w13_weight_scale", w13_weight_scale_packed)
2539
+ w2_weight_scale_packed = ops.cutlass_pack_scale_fp8(
2540
+ w2_weight_scale.permute(0, 2, 1).contiguous()
2541
+ )
2542
+ replace_parameter(layer, "w2_weight_scale", w2_weight_scale_packed)
2543
+
2544
+ def maybe_make_prepare_finalize(
2545
+ self,
2546
+ routing_tables: tuple[torch.Tensor, torch.Tensor, torch.Tensor] | None = None,
2547
+ ) -> mk.FusedMoEPrepareAndFinalize | None:
2548
+ return super().maybe_make_prepare_finalize(routing_tables)
2549
+
2550
+ def get_fused_moe_quant_config(
2551
+ self, layer: torch.nn.Module
2552
+ ) -> FusedMoEQuantConfig | None:
2553
+ # Store quantization scales; both per-group and per-channel
2554
+ # Note we haven't specified the group size here because
2555
+ # the quant config logic assumes group-wise scaling
2556
+ # and channel-wise scaling are exclusive.
2557
+ return int4_w4afp8_moe_quant_config(
2558
+ w1_scale=layer.w13_weight_scale, # group scale
2559
+ w2_scale=layer.w2_weight_scale, # group scale
2560
+ g1_alphas=layer.w13_weight_chan_scale,
2561
+ g2_alphas=layer.w2_weight_chan_scale,
2562
+ per_act_token_quant=True, # always use dynamc per-token
2563
+ per_out_ch_quant=True, # always use per-channel
2564
+ )
2565
+
2566
+ def select_gemm_impl(
2567
+ self,
2568
+ prepare_finalize: mk.FusedMoEPrepareAndFinalize,
2569
+ layer: torch.nn.Module,
2570
+ ) -> mk.FusedMoEPermuteExpertsUnpermute:
2571
+ assert self.moe_quant_config is not None
2572
+ assert (
2573
+ prepare_finalize.activation_format == FusedMoEActivationFormat.Standard
2574
+ ), "BatchedExperts not supported"
2575
+
2576
+ from vllm.model_executor.layers.fused_moe import CutlassExpertsW4A8Fp8
2577
+
2578
+ experts: FusedMoEPermuteExpertsUnpermute
2579
+
2580
+ logger.debug("CutlassExpertsW4A8Fp8(%s)", self.__class__.__name__)
2581
+ experts = CutlassExpertsW4A8Fp8(
2582
+ out_dtype=self.moe.in_dtype,
2583
+ a_strides1=self.a_strides1_c_strides2,
2584
+ a_strides2=self.a_strides2,
2585
+ b_strides1=self.b_strides1,
2586
+ b_strides2=self.b_strides2,
2587
+ c_strides1=self.c_strides1,
2588
+ c_strides2=self.a_strides1_c_strides2,
2589
+ s_strides1=self.s_strides1,
2590
+ s_strides2=self.s_strides2,
2591
+ quant_config=self.moe_quant_config,
2592
+ group_size=self.group_size,
2593
+ )
2594
+
2595
+ num_dispatchers = prepare_finalize.num_dispatchers()
2596
+ self.disable_expert_map = (
2597
+ num_dispatchers > 1 or not experts.supports_expert_map()
2598
+ )
2599
+
2600
+ return experts
2601
+
2602
+ def apply(
2603
+ self,
2604
+ layer: FusedMoE,
2605
+ x: torch.Tensor,
2606
+ router_logits: torch.Tensor,
2607
+ ):
2608
+ if layer.enable_eplb:
2609
+ raise NotImplementedError(
2610
+ "EPLB not supported for `CompressedTensorsW4A8Fp8MoEMethod` yet."
2611
+ )
2612
+ assert self.moe_quant_config is not None
2613
+ topk_weights, topk_ids, _ = layer.select_experts(
2614
+ hidden_states=x,
2615
+ router_logits=router_logits,
2616
+ )
2617
+
2618
+ from vllm.model_executor.layers.fused_moe.cutlass_moe import (
2619
+ cutlass_moe_w4a8_fp8,
2620
+ )
2621
+
2622
+ return cutlass_moe_w4a8_fp8(
2623
+ x,
2624
+ layer.w13_weight_packed,
2625
+ layer.w2_weight_packed,
2626
+ topk_weights,
2627
+ topk_ids,
2628
+ quant_config=self.moe_quant_config,
2629
+ activation=layer.activation,
2630
+ global_num_experts=layer.global_num_experts,
2631
+ expert_map=None if self.disable_expert_map else layer.expert_map,
2632
+ a_strides1=self.a_strides1_c_strides2,
2633
+ a_strides2=self.a_strides2,
2634
+ b_strides1=self.b_strides1,
2635
+ b_strides2=self.b_strides2,
2636
+ c_strides1=self.c_strides1,
2637
+ c_strides2=self.a_strides1_c_strides2,
2638
+ s_strides1=self.s_strides1,
2639
+ s_strides2=self.s_strides2,
2640
+ group_size=self.group_size,
2641
+ )
2642
+
2643
+ @property
2644
+ def supports_eplb(self) -> bool:
2645
+ return False